Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | COVID-19 | Research

The underlying molecular mechanisms and biomarkers between periodontitis and COVID-19

Authors: Danlei Qin, Feiyan Yu, Dongchao Wu, Chong Han, Xuemin Yao, Lulu Yang, Xi Yang, Qianqian Wang, Dongning He, Bin Zhao

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Objective

Emerging evidence shows the clinical consequences of patient with COVID-19 and periodontitis are not promising, and periodontitis is a risk factor. Periodontitis and COVID-19 probably have a relationship. Hence, this study aimed to identify the common molecular mechanism that may help to devise potential therapeutic strategies in the future.

Material and methods

We analyzed two RNA-seq datasets for differential expressed genes, enrichment of biological processes, transcription factors (TFs) and deconvolution-based immune cell types in periodontitis, COVID-19 and healthy controls. Relationships between TFs and mRNA were established by Pearson correlation analysis, and the common TFs-mRNA regulatory network and nine co-upregulated TFs of the two diseases was obtained. The RT-PCR detected the TFs.

Results

A total of 1616 and 10201 differentially expressed gene (DEGs) from periodontitis and COVID-19 are found. Moreover, nine shared TFs and common biological processes associated with lymphocyte activation involved in immune response were identified across periodontitis and COVID-19. The cell type enrichment revealed elevated plasma cells among two diseases. The RT-PCR further confirmed the nine TFs up-regulation in periodontitis.

Conclusion

The pathogenesis of periodontitis and COVID-19 is closely related to the expression of TFs and lymphocyte activation, which can provide potential targets for treatment.
Appendix
Available only for authorised users
Literature
3.
go back to reference Nashiry A, Sarmin Sumi S, Islam S, Quinn JMW, Moni MA. Bioinformatics and system biology approach to identify the influences of COVID-19 on cardiovascular and hypertensive comorbidities. Brief Bioinform. 2021;22(2):1387–401.PubMedCrossRef Nashiry A, Sarmin Sumi S, Islam S, Quinn JMW, Moni MA. Bioinformatics and system biology approach to identify the influences of COVID-19 on cardiovascular and hypertensive comorbidities. Brief Bioinform. 2021;22(2):1387–401.PubMedCrossRef
4.
go back to reference Rahman MR, Islam T, Shahjaman M, et al. Discovering common pathogenetic processes between COVID-19 and diabetes mellitus by differential gene expression pattern analysis. Brief Bioinform. 2021;22(6):bbab262.PubMedPubMedCentralCrossRef Rahman MR, Islam T, Shahjaman M, et al. Discovering common pathogenetic processes between COVID-19 and diabetes mellitus by differential gene expression pattern analysis. Brief Bioinform. 2021;22(6):bbab262.PubMedPubMedCentralCrossRef
5.
go back to reference Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. China JAMA Intern Med. 2020;180(7):934–43.PubMedCrossRef Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan. China JAMA Intern Med. 2020;180(7):934–43.PubMedCrossRef
6.
go back to reference Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.PubMedPubMedCentralCrossRef Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.PubMedPubMedCentralCrossRef
8.
go back to reference Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;386(9995):743–800.PubMedCentralCrossRef Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;386(9995):743–800.PubMedCentralCrossRef
9.
10.
go back to reference Plachokova AS, Andreu-Sanchez S, Noz MP, Fu J, Riksen NP. Oral microbiome in relation to periodontitis severity and systemic inflammation. Int J Mol Sci. 2021;22(11):5876.PubMedPubMedCentralCrossRef Plachokova AS, Andreu-Sanchez S, Noz MP, Fu J, Riksen NP. Oral microbiome in relation to periodontitis severity and systemic inflammation. Int J Mol Sci. 2021;22(11):5876.PubMedPubMedCentralCrossRef
12.
go back to reference Marouf N, Cai W, Said KN, et al. Association between periodontitis and severity of COVID-19 infection: a case–control study. J Clin Periodontol. 2021;48(4):483–91.PubMedPubMedCentralCrossRef Marouf N, Cai W, Said KN, et al. Association between periodontitis and severity of COVID-19 infection: a case–control study. J Clin Periodontol. 2021;48(4):483–91.PubMedPubMedCentralCrossRef
13.
go back to reference Anand PS, Jadhav P, Kamath KP, Kumar SR, Vijayalaxmi S, Anil S. A case-control study on the association between periodontitis and coronavirus disease (COVID-19). J Periodontol. 2022;93(4):584–90.PubMedCrossRef Anand PS, Jadhav P, Kamath KP, Kumar SR, Vijayalaxmi S, Anil S. A case-control study on the association between periodontitis and coronavirus disease (COVID-19). J Periodontol. 2022;93(4):584–90.PubMedCrossRef
14.
go back to reference Larvin H, Wilmott S, Wu J, Kang J. the impact of periodontal disease on hospital admission and mortality during COVID-19 pandemic. Front Med (Lausanne). 2020;7:604980.PubMedCrossRef Larvin H, Wilmott S, Wu J, Kang J. the impact of periodontal disease on hospital admission and mortality during COVID-19 pandemic. Front Med (Lausanne). 2020;7:604980.PubMedCrossRef
15.
go back to reference Baima G, Marruganti C, Sanz M, et al. Periodontitis and COVID-19: biological mechanisms and meta-analyses of epidemiological evidence. J Dent Res. 2022;101(12):1430–40.PubMedCrossRef Baima G, Marruganti C, Sanz M, et al. Periodontitis and COVID-19: biological mechanisms and meta-analyses of epidemiological evidence. J Dent Res. 2022;101(12):1430–40.PubMedCrossRef
16.
go back to reference Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.PubMedPubMedCentralCrossRef Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.PubMedPubMedCentralCrossRef
17.
18.
20.
go back to reference Matarese G, Isola G, Anastasi GP, et al. Immunohistochemical analysis of TGF-β1 and VEGF in gingival and periodontal tissues: a role of these biomarkers in the pathogenesis of scleroderma and periodontal disease. Int J Mol Med. 2012;30(3):502–8.PubMedCrossRef Matarese G, Isola G, Anastasi GP, et al. Immunohistochemical analysis of TGF-β1 and VEGF in gingival and periodontal tissues: a role of these biomarkers in the pathogenesis of scleroderma and periodontal disease. Int J Mol Med. 2012;30(3):502–8.PubMedCrossRef
21.
go back to reference Nagashima S, Liberalesso V, de Vaz Paula CB, et al. COVID-19: immunohistochemical analysis of TGF-β signaling pathways in pulmonary fibrosis. Int J Mol Sci. 2021;23(1):168.PubMedPubMedCentralCrossRef Nagashima S, Liberalesso V, de Vaz Paula CB, et al. COVID-19: immunohistochemical analysis of TGF-β signaling pathways in pulmonary fibrosis. Int J Mol Sci. 2021;23(1):168.PubMedPubMedCentralCrossRef
22.
go back to reference Isola G, Giudice AL, Polizzi A, et al. Periodontitis and tooth loss have negative systemic impact on circulating progenitor cell levels: a clinical study. Genes (Basel). 2019;10(12):1022.PubMedCrossRef Isola G, Giudice AL, Polizzi A, et al. Periodontitis and tooth loss have negative systemic impact on circulating progenitor cell levels: a clinical study. Genes (Basel). 2019;10(12):1022.PubMedCrossRef
23.
go back to reference Karaahmet F, Kocaman SA. Endothelial progenitor cells and mesenchymal stem cells to overcome vascular deterioration and cytokine storm in critical patients with COVID-19. Med Hypotheses. 2020;144:109973.PubMedPubMedCentralCrossRef Karaahmet F, Kocaman SA. Endothelial progenitor cells and mesenchymal stem cells to overcome vascular deterioration and cytokine storm in critical patients with COVID-19. Med Hypotheses. 2020;144:109973.PubMedPubMedCentralCrossRef
25.
go back to reference Shi W, Liu X, Cao Q, et al. High-dimensional single-cell analysis reveals the immune characteristics of COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;320(1):L84–98.PubMedCrossRef Shi W, Liu X, Cao Q, et al. High-dimensional single-cell analysis reveals the immune characteristics of COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;320(1):L84–98.PubMedCrossRef
26.
go back to reference Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650–65.PubMedCrossRef Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650–65.PubMedCrossRef
27.
go back to reference Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412(6844):300–7.PubMedCrossRef Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412(6844):300–7.PubMedCrossRef
31.
go back to reference Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China JAMA. 2020;323(11):1061–9.PubMedCrossRef Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China JAMA. 2020;323(11):1061–9.PubMedCrossRef
32.
go back to reference Takahashi Y, Watanabe N, Kamio N, Kobayashi R, Iinuma T, Imai K. Aspiration of periodontopathic bacteria due to poor oral hygiene potentially contributes to the aggravation of COVID-19. J Oral Sci. 2020;63(1):1–3.PubMedCrossRef Takahashi Y, Watanabe N, Kamio N, Kobayashi R, Iinuma T, Imai K. Aspiration of periodontopathic bacteria due to poor oral hygiene potentially contributes to the aggravation of COVID-19. J Oral Sci. 2020;63(1):1–3.PubMedCrossRef
33.
go back to reference Sima C, Aboodi GM, Lakschevitz FS, Sun C, Goldberg MB, Glogauer M. Nuclear factor erythroid 2-related factor 2 down-regulation in oral neutrophils is associated with periodontal oxidative damage and severe chronic periodontitis. Am J Pathol. 2016;186(6):1417–26.PubMedPubMedCentralCrossRef Sima C, Aboodi GM, Lakschevitz FS, Sun C, Goldberg MB, Glogauer M. Nuclear factor erythroid 2-related factor 2 down-regulation in oral neutrophils is associated with periodontal oxidative damage and severe chronic periodontitis. Am J Pathol. 2016;186(6):1417–26.PubMedPubMedCentralCrossRef
34.
go back to reference Chiu AV, Saigh MA, McCulloch CA, Glogauer M. The role of NrF2 in the Regulation of periodontal health and disease. J Dent Res. 2017;96(9):975–83.PubMedCrossRef Chiu AV, Saigh MA, McCulloch CA, Glogauer M. The role of NrF2 in the Regulation of periodontal health and disease. J Dent Res. 2017;96(9):975–83.PubMedCrossRef
36.
go back to reference Brunner C, Sindrilaru A, Girkontaite I, Fischer KD, Sunderkötter C, Wirth T. BOB.1/OBF.1 controls the balance of TH1 and TH2 immune responses. EMBO J. 2007;26(13):3191–202.PubMedPubMedCentralCrossRef Brunner C, Sindrilaru A, Girkontaite I, Fischer KD, Sunderkötter C, Wirth T. BOB.1/OBF.1 controls the balance of TH1 and TH2 immune responses. EMBO J. 2007;26(13):3191–202.PubMedPubMedCentralCrossRef
37.
go back to reference Zhou H, Brekman A, Zuo WL, et al. POU2AF1 functions in the human airway epithelium to regulate expression of host defense genes. J Immunol. 2016;196(7):3159–67.PubMedCrossRef Zhou H, Brekman A, Zuo WL, et al. POU2AF1 functions in the human airway epithelium to regulate expression of host defense genes. J Immunol. 2016;196(7):3159–67.PubMedCrossRef
38.
go back to reference Napoli S, Cascione L, Rinaldi A, et al. Characterization of GECPAR, a noncoding RNA that regulates the transcriptional program of diffuse large B cell lymphoma. Haematologica. 2021;107(5):1131–43.PubMedCentralCrossRef Napoli S, Cascione L, Rinaldi A, et al. Characterization of GECPAR, a noncoding RNA that regulates the transcriptional program of diffuse large B cell lymphoma. Haematologica. 2021;107(5):1131–43.PubMedCentralCrossRef
40.
go back to reference Ning J, Hong T, Ward A, et al. Constitutive role for IRE1α-XBP1 signaling pathway in the insulin-mediated hepatic lipogenic program. Endocrinology. 2011;152(6):2247–55.PubMedPubMedCentralCrossRef Ning J, Hong T, Ward A, et al. Constitutive role for IRE1α-XBP1 signaling pathway in the insulin-mediated hepatic lipogenic program. Endocrinology. 2011;152(6):2247–55.PubMedPubMedCentralCrossRef
41.
go back to reference Akiyama M, Liew CW, Lu S, et al. X-box binding protein 1 is essential for insulin regulation of pancreatic α-cell function. Diabetes. 2013;62(7):2439–49.PubMedPubMedCentralCrossRef Akiyama M, Liew CW, Lu S, et al. X-box binding protein 1 is essential for insulin regulation of pancreatic α-cell function. Diabetes. 2013;62(7):2439–49.PubMedPubMedCentralCrossRef
43.
go back to reference Nam S, Lim JS. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res. 2016;39(11):1548–55.PubMedCrossRef Nam S, Lim JS. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res. 2016;39(11):1548–55.PubMedCrossRef
44.
go back to reference Rodríguez-Carrio J, López P, Alperi-López M, Caminal-Montero L, Ballina-García FJ, Suárez A. IRF4 and IRGs delineate clinically relevant gene expression signatures in systemic lupus erythematosus and rheumatoid arthritis. Front Immunol. 2018;9:3085.PubMedCrossRef Rodríguez-Carrio J, López P, Alperi-López M, Caminal-Montero L, Ballina-García FJ, Suárez A. IRF4 and IRGs delineate clinically relevant gene expression signatures in systemic lupus erythematosus and rheumatoid arthritis. Front Immunol. 2018;9:3085.PubMedCrossRef
45.
go back to reference Gharibi T, Babaloo Z, Hosseini A, et al. Targeting STAT3 in cancer and autoimmune diseases. Eur J Pharmacol. 2020;878:173107.PubMedCrossRef Gharibi T, Babaloo Z, Hosseini A, et al. Targeting STAT3 in cancer and autoimmune diseases. Eur J Pharmacol. 2020;878:173107.PubMedCrossRef
46.
go back to reference Hu Y, Zhang X, Zhang J, et al. Activated STAT3 signaling pathway by ligature-induced periodontitis could contribute to neuroinflammation and cognitive impairment in rats. J Neuroinflammation. 2021;18(1):80.PubMedPubMedCentralCrossRef Hu Y, Zhang X, Zhang J, et al. Activated STAT3 signaling pathway by ligature-induced periodontitis could contribute to neuroinflammation and cognitive impairment in rats. J Neuroinflammation. 2021;18(1):80.PubMedPubMedCentralCrossRef
47.
go back to reference Mokuda S, Tokunaga T, Masumoto J, Sugiyama E. Angiotensin-converting Enzyme 2, a SARS-CoV-2 receptor, is upregulated by interleukin 6 through STAT3 signaling in synovial tissues. J Rheumatol. 2020;47(10):1593–5.PubMedCrossRef Mokuda S, Tokunaga T, Masumoto J, Sugiyama E. Angiotensin-converting Enzyme 2, a SARS-CoV-2 receptor, is upregulated by interleukin 6 through STAT3 signaling in synovial tissues. J Rheumatol. 2020;47(10):1593–5.PubMedCrossRef
48.
go back to reference Jenkins BJ, Roberts AW, Greenhill CJ, et al. Pathologic consequences of STAT3 hyperactivation by IL-6 and IL-11 during hematopoiesis and lymphopoiesis. Blood. 2007;109(6):2380–8.PubMedCrossRef Jenkins BJ, Roberts AW, Greenhill CJ, et al. Pathologic consequences of STAT3 hyperactivation by IL-6 and IL-11 during hematopoiesis and lymphopoiesis. Blood. 2007;109(6):2380–8.PubMedCrossRef
49.
go back to reference Kristan A, Debeljak N, Kunej T. Integration and Visualization of regulatory elements and variations of the EPAS1 gene in human. Genes (Basel). 2021;12(11):1793.PubMedCrossRef Kristan A, Debeljak N, Kunej T. Integration and Visualization of regulatory elements and variations of the EPAS1 gene in human. Genes (Basel). 2021;12(11):1793.PubMedCrossRef
50.
go back to reference Zhen Q, Zhang Y, Gao L, et al. EPAS1 promotes peritoneal carcinomatosis of non-small-cell lung cancer by enhancing mesothelial-mesenchymal transition. Strahlenther Onkol. 2021;197(2):141–9.PubMedCrossRef Zhen Q, Zhang Y, Gao L, et al. EPAS1 promotes peritoneal carcinomatosis of non-small-cell lung cancer by enhancing mesothelial-mesenchymal transition. Strahlenther Onkol. 2021;197(2):141–9.PubMedCrossRef
51.
go back to reference Islam F, Pillai S, Gopalan V, Lam AK. Identification of novel mutations and expressions of EPAS1 in phaeochromocytomas and paragangliomas. Genes (Basel). 2020;11(11):1254.PubMedCrossRef Islam F, Pillai S, Gopalan V, Lam AK. Identification of novel mutations and expressions of EPAS1 in phaeochromocytomas and paragangliomas. Genes (Basel). 2020;11(11):1254.PubMedCrossRef
52.
go back to reference Liu H, Tang F, Su J, et al. EPAS1 regulates proliferation of erythroblasts in chronic mountain sickness. Blood Cells Mol Dis. 2020;84:102446.PubMedCrossRef Liu H, Tang F, Su J, et al. EPAS1 regulates proliferation of erythroblasts in chronic mountain sickness. Blood Cells Mol Dis. 2020;84:102446.PubMedCrossRef
53.
go back to reference Zhu L, Yang P, Zhao Y, et al. Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients. Immunity. 2020;53(3):685-696.e3.PubMedPubMedCentralCrossRef Zhu L, Yang P, Zhao Y, et al. Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients. Immunity. 2020;53(3):685-696.e3.PubMedPubMedCentralCrossRef
54.
go back to reference Boulanger M, Molina E, Wang K, Kickler T, Xu Y, Garibaldi BT. Peripheral plasma cells associated with mortality benefit in severe COVID-19: a marker of disease resolution. Am J Med. 2021;134(8):1029–33.PubMedPubMedCentralCrossRef Boulanger M, Molina E, Wang K, Kickler T, Xu Y, Garibaldi BT. Peripheral plasma cells associated with mortality benefit in severe COVID-19: a marker of disease resolution. Am J Med. 2021;134(8):1029–33.PubMedPubMedCentralCrossRef
56.
go back to reference Li W, Zhang Z, Wang ZM. Differential immune cell infiltrations between healthy periodontal and chronic periodontitis tissues. BMC Oral Health. 2020;20(1):293.PubMedPubMedCentralCrossRef Li W, Zhang Z, Wang ZM. Differential immune cell infiltrations between healthy periodontal and chronic periodontitis tissues. BMC Oral Health. 2020;20(1):293.PubMedPubMedCentralCrossRef
57.
go back to reference Mahanonda R, Champaiboon C, Subbalekha K, et al. Human memory b cells in healthy gingiva, gingivitis, and periodontitis. J Immunol. 2016;197(3):715–25.PubMedCrossRef Mahanonda R, Champaiboon C, Subbalekha K, et al. Human memory b cells in healthy gingiva, gingivitis, and periodontitis. J Immunol. 2016;197(3):715–25.PubMedCrossRef
58.
go back to reference Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21(1):81–93.PubMedCrossRef Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21(1):81–93.PubMedCrossRef
59.
go back to reference Ochiai K, Maienschein-Cline M, Simonetti G, et al. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity. 2013;38(5):918–29.PubMedPubMedCentralCrossRef Ochiai K, Maienschein-Cline M, Simonetti G, et al. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity. 2013;38(5):918–29.PubMedPubMedCentralCrossRef
61.
go back to reference Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2: Synergistic or alternative to intramuscular vaccines? Int J Pharm. 2021;603:120686.PubMedPubMedCentralCrossRef Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2: Synergistic or alternative to intramuscular vaccines? Int J Pharm. 2021;603:120686.PubMedPubMedCentralCrossRef
62.
go back to reference Isola G, Matarese G, Cordasco G, et al. Anticoagulant therapy in patients undergoing dental interventions: a critical review of the literature and current perspectives. Minerva Stomatol. 2015;64(1):21–46.PubMed Isola G, Matarese G, Cordasco G, et al. Anticoagulant therapy in patients undergoing dental interventions: a critical review of the literature and current perspectives. Minerva Stomatol. 2015;64(1):21–46.PubMed
Metadata
Title
The underlying molecular mechanisms and biomarkers between periodontitis and COVID-19
Authors
Danlei Qin
Feiyan Yu
Dongchao Wu
Chong Han
Xuemin Yao
Lulu Yang
Xi Yang
Qianqian Wang
Dongning He
Bin Zhao
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
COVID-19
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03150-4

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue