Skip to main content
Top
Published in: Current Allergy and Asthma Reports 6/2023

09-05-2023 | Artificial Intelligence

Artificial Intelligence: Exploring the Future of Innovation in Allergy Immunology

Authors: Derek MacMath, Meng Chen, Paneez Khoury

Published in: Current Allergy and Asthma Reports | Issue 6/2023

Login to get access

Abstract

Purpose of Review

Artificial intelligence (AI) has increasingly been used in healthcare. Given the capacity of AI to handle large data and complex relationships between variables, AI is well suited for applications in healthcare. Recently, AI has been applied to allergy research.

Recent Findings

In this article, we review how AI technologies have been utilized in basic science and clinical allergy research for asthma, atopic dermatitis, rhinology, adverse reactions to drugs and vaccines, food allergy, anaphylaxis, urticaria, and eosinophilic gastrointestinal disorders. We discuss barriers for AI adoption to improve the care of patients with atopic diseases.

Summary

These studies demonstrate the utility of applying AI to the field of allergy to help investigators expand their understanding of disease pathogenesis, improve diagnostic accuracy, enable prediction for treatments and outcomes, and for drug discovery.
Literature
1.
go back to reference • Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022 Jan 20;28(1):31–8. Review of major advances and trends of AI in medicine over the past two years with the discussion of promising avenues for future medical AI research. • Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022 Jan 20;28(1):31–8. Review of major advances and trends of AI in medicine over the past two years with the discussion of promising avenues for future medical AI research.
2.
go back to reference Lopez-Jimenez F, Attia Z, Arruda-Olson AM, Carter R, Chareonthaitawee P, Jouni H, et al. Artificial intelligence in cardiology: present and future. Mayo Clin Proc. 2020;95(5):1015–39.PubMedCrossRef Lopez-Jimenez F, Attia Z, Arruda-Olson AM, Carter R, Chareonthaitawee P, Jouni H, et al. Artificial intelligence in cardiology: present and future. Mayo Clin Proc. 2020;95(5):1015–39.PubMedCrossRef
3.
go back to reference •• Rider NL, Srinivasan R, Khoury P. Artificial intelligence and the hunt for immunological disorders. Curr Opin Allergy Clin Immunol. 2020;20(6). Review highlighting artificial intelligence applications in clinical immunology. •• Rider NL, Srinivasan R, Khoury P. Artificial intelligence and the hunt for immunological disorders. Curr Opin Allergy Clin Immunol. 2020;20(6). Review highlighting artificial intelligence applications in clinical immunology.
4.
go back to reference Ferrante G, Licari A, Fasola S, Marseglia GL, La Grutta S. Artificial intelligence in the diagnosis of pediatric allergic diseases. Pediatr Allergy Immunol. 2021;32(3):405–13.PubMedCrossRef Ferrante G, Licari A, Fasola S, Marseglia GL, La Grutta S. Artificial intelligence in the diagnosis of pediatric allergic diseases. Pediatr Allergy Immunol. 2021;32(3):405–13.PubMedCrossRef
5.
go back to reference Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70–6.PubMedCrossRef Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70–6.PubMedCrossRef
6.
go back to reference Matheny M. Artificial intelligence in health care: the hope, the hype, the promise, the peril. National Academy of Medicine2; 2019. Matheny M. Artificial intelligence in health care: the hope, the hype, the promise, the peril. National Academy of Medicine2; 2019.
7.
go back to reference Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.PubMedCrossRef Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.PubMedCrossRef
8.
go back to reference Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.PubMedCrossRef Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.PubMedCrossRef
10.
go back to reference Khoury P, Srinivasan R, Kakumanu S, Ochoa S, Keswani A, Sparks R, et al. A framework for augmented intelligence in allergy and immunology practice and research-a work group report of the AAAAI health informatics, technology, and education committee. J Allergy Clin Immunol Pract. 2022;10(5):1178–88.PubMedCrossRef Khoury P, Srinivasan R, Kakumanu S, Ochoa S, Keswani A, Sparks R, et al. A framework for augmented intelligence in allergy and immunology practice and research-a work group report of the AAAAI health informatics, technology, and education committee. J Allergy Clin Immunol Pract. 2022;10(5):1178–88.PubMedCrossRef
11.
go back to reference • Sagheb E, Wi C-I, Yoon J, Seol HY, Shrestha P, Ryu E, et al. Artificial intelligence assesses clinicians’ adherence to asthma guidelines using electronic health records. J Allergy Clin Immunol Pract. 2022 Apr;10(4):1047–1056.e1. Demonstration of the use of NLP to assess clinician adherence to asthma guidelines in a retrospective cross-sectional study evaluating 1039 clinical notes for 300 patients with an asthma diagnosis. • Sagheb E, Wi C-I, Yoon J, Seol HY, Shrestha P, Ryu E, et al. Artificial intelligence assesses clinicians’ adherence to asthma guidelines using electronic health records. J Allergy Clin Immunol Pract. 2022 Apr;10(4):1047–1056.e1. Demonstration of the use of NLP to assess clinician adherence to asthma guidelines in a retrospective cross-sectional study evaluating 1039 clinical notes for 300 patients with an asthma diagnosis.
14.
go back to reference Joumaa H, Sigogne R, Maravic M, Perray L, Bourdin A, Roche N. Artificial intelligence to differentiate asthma from COPD in medico-administrative databases. BMC Pulm Med. 2022;22(1):357.PubMedPubMedCentralCrossRef Joumaa H, Sigogne R, Maravic M, Perray L, Bourdin A, Roche N. Artificial intelligence to differentiate asthma from COPD in medico-administrative databases. BMC Pulm Med. 2022;22(1):357.PubMedPubMedCentralCrossRef
15.
go back to reference Kaplan A, Cao H, FitzGerald JM, Iannotti N, Yang E, Kocks JWH, et al. Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. J Allergy Clin Immunol Pract. 2021;9(6):2255–61.PubMedCrossRef Kaplan A, Cao H, FitzGerald JM, Iannotti N, Yang E, Kocks JWH, et al. Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. J Allergy Clin Immunol Pract. 2021;9(6):2255–61.PubMedCrossRef
16.
go back to reference Hurst JH, Zhao C, Hostetler HP, Ghiasi Gorveh M, Lang JE, Goldstein BA. Environmental and clinical data utility in pediatric asthma exacerbation risk prediction models. BMC Med Inform Decis Mak. 2022;22(1):108.PubMedPubMedCentralCrossRef Hurst JH, Zhao C, Hostetler HP, Ghiasi Gorveh M, Lang JE, Goldstein BA. Environmental and clinical data utility in pediatric asthma exacerbation risk prediction models. BMC Med Inform Decis Mak. 2022;22(1):108.PubMedPubMedCentralCrossRef
17.
go back to reference Jiao T, Schnitzer ME, Forget A, Blais L. Identifying asthma patients at high risk of exacerbation in a routine visit: a machine learning model. Respir Med. 2022;198: 106866.PubMedCrossRef Jiao T, Schnitzer ME, Forget A, Blais L. Identifying asthma patients at high risk of exacerbation in a routine visit: a machine learning model. Respir Med. 2022;198: 106866.PubMedCrossRef
18.
go back to reference Inselman JW, Jeffery MM, Maddux JT, Lam RW, Shah ND, Rank MA, et al. A prediction model for asthma exacerbations after stopping asthma biologics. Ann Allergy Asthma Immunol. 2022 Dec 9. Inselman JW, Jeffery MM, Maddux JT, Lam RW, Shah ND, Rank MA, et al. A prediction model for asthma exacerbations after stopping asthma biologics. Ann Allergy Asthma Immunol. 2022 Dec 9.
19.
go back to reference D’Amato M, Ambrosino P, Simioli F, Adamo S, Stanziola AA, D’Addio G, et al. A machine learning approach to characterize patients with asthma exacerbation attending an acute care setting. Eur J Intern Med. 2022;104:66–72.PubMedCrossRef D’Amato M, Ambrosino P, Simioli F, Adamo S, Stanziola AA, D’Addio G, et al. A machine learning approach to characterize patients with asthma exacerbation attending an acute care setting. Eur J Intern Med. 2022;104:66–72.PubMedCrossRef
20.
go back to reference Lugogo NL, DePietro M, Reich M, Merchant R, Chrystyn H, Pleasants R, et al. A predictive machine learning tool for asthma exacerbations: results from a 12-week, open-label study using an electronic multi-dose dry powder inhaler with integrated sensors. J Asthma Allergy. 2022;11(15):1623–37.CrossRef Lugogo NL, DePietro M, Reich M, Merchant R, Chrystyn H, Pleasants R, et al. A predictive machine learning tool for asthma exacerbations: results from a 12-week, open-label study using an electronic multi-dose dry powder inhaler with integrated sensors. J Asthma Allergy. 2022;11(15):1623–37.CrossRef
21.
go back to reference Tsang KCH, Pinnock H, Wilson AM, Salvi D, Shah SA. Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol. BMJ Open. 2022;12(10): e064166.PubMedPubMedCentralCrossRef Tsang KCH, Pinnock H, Wilson AM, Salvi D, Shah SA. Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol. BMJ Open. 2022;12(10): e064166.PubMedPubMedCentralCrossRef
22.
go back to reference Bae WD, Alkobaisi S, Horak M, Park C-S, Kim S, Davidson J. Predicting health risks of adult asthmatics susceptible to indoor air quality using improved logistic and quantile regression models. Life (Basel). 2022 Oct 18;12(10). Bae WD, Alkobaisi S, Horak M, Park C-S, Kim S, Davidson J. Predicting health risks of adult asthmatics susceptible to indoor air quality using improved logistic and quantile regression models. Life (Basel). 2022 Oct 18;12(10).
23.
go back to reference Ray A, Das J, Wenzel SE. Determining asthma endotypes and outcomes: complementing existing clinical practice with modern machine learning. Cell Rep Med. 2022;3(12): 100857.PubMedPubMedCentralCrossRef Ray A, Das J, Wenzel SE. Determining asthma endotypes and outcomes: complementing existing clinical practice with modern machine learning. Cell Rep Med. 2022;3(12): 100857.PubMedPubMedCentralCrossRef
24.
go back to reference Bose S, Kenyon CC, Masino AJ. Personalized prediction of early childhood asthma persistence: a machine learning approach. PLoS ONE. 2021;16(3): e0247784.PubMedPubMedCentralCrossRef Bose S, Kenyon CC, Masino AJ. Personalized prediction of early childhood asthma persistence: a machine learning approach. PLoS ONE. 2021;16(3): e0247784.PubMedPubMedCentralCrossRef
25.
go back to reference Iqbal FM, Lam K, Joshi M, Khan S, Ashrafian H, Darzi A. Clinical outcomes of digital sensor alerting systems in remote monitoring: a systematic review and meta-analysis. npj Digital Med. 2021 Jan 8;4(1):7. Iqbal FM, Lam K, Joshi M, Khan S, Ashrafian H, Darzi A. Clinical outcomes of digital sensor alerting systems in remote monitoring: a systematic review and meta-analysis. npj Digital Med. 2021 Jan 8;4(1):7.
26.
go back to reference Eikholt AA, Wiertz MBR, Hew M, Chan AHY, van Boven JFM. Electronic monitoring devices to support inhalation technique in patients with asthma: a narrative review. Curr Treat Options Allergy. 2023 Feb 17. Eikholt AA, Wiertz MBR, Hew M, Chan AHY, van Boven JFM. Electronic monitoring devices to support inhalation technique in patients with asthma: a narrative review. Curr Treat Options Allergy. 2023 Feb 17.
27.
go back to reference Duverdier A, Custovic A, Tanaka RJ. Data-driven research on eczema: systematic characterization of the field and recommendations for the future. Clin Transl Allergy. 2022;12(6): e12170.PubMedPubMedCentralCrossRef Duverdier A, Custovic A, Tanaka RJ. Data-driven research on eczema: systematic characterization of the field and recommendations for the future. Clin Transl Allergy. 2022;12(6): e12170.PubMedPubMedCentralCrossRef
29.
go back to reference Eyerich K, Brown SJ, Perez White BE, Tanaka RJ, Bissonette R, Dhar S, et al. Human and computational models of atopic dermatitis: a review and perspectives by an expert panel of the International Eczema Council. J Allergy Clin Immunol. 2019;143(1):36–45.PubMedCrossRef Eyerich K, Brown SJ, Perez White BE, Tanaka RJ, Bissonette R, Dhar S, et al. Human and computational models of atopic dermatitis: a review and perspectives by an expert panel of the International Eczema Council. J Allergy Clin Immunol. 2019;143(1):36–45.PubMedCrossRef
30.
go back to reference Aggarwal SLP. Data augmentation in dermatology image recognition using machine learning. Skin Res Technol. 2019;25(6):815–20.PubMedCrossRef Aggarwal SLP. Data augmentation in dermatology image recognition using machine learning. Skin Res Technol. 2019;25(6):815–20.PubMedCrossRef
31.
go back to reference Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep learning system for differential diagnosis of skin diseases. Nat Med. 2020;26(6):900–8.PubMedCrossRef Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep learning system for differential diagnosis of skin diseases. Nat Med. 2020;26(6):900–8.PubMedCrossRef
32.
go back to reference Rasheed A, Umar AI, Shirazi SH, Khan Z, Nawaz S, Shahzad M. Automatic eczema classification in clinical images based on hybrid deep neural network. Comput Biol Med. 2022;147: 105807.PubMedCrossRef Rasheed A, Umar AI, Shirazi SH, Khan Z, Nawaz S, Shahzad M. Automatic eczema classification in clinical images based on hybrid deep neural network. Comput Biol Med. 2022;147: 105807.PubMedCrossRef
33.
go back to reference Guimarães P, Batista A, Zieger M, Kaatz M, Koenig K. Artificial intelligence in multiphoton tomography: atopic dermatitis diagnosis. Sci Rep. 2020;10(1):7968.PubMedPubMedCentralCrossRef Guimarães P, Batista A, Zieger M, Kaatz M, Koenig K. Artificial intelligence in multiphoton tomography: atopic dermatitis diagnosis. Sci Rep. 2020;10(1):7968.PubMedPubMedCentralCrossRef
34.
go back to reference Park S, Saw SN, Li X, Paknezhad M, Coppola D, Dinish US, et al. Model learning analysis of 3D optoacoustic mesoscopy images for the classification of atopic dermatitis. Biomed Opt Express. 2021;12(6):3671–83.PubMedPubMedCentralCrossRef Park S, Saw SN, Li X, Paknezhad M, Coppola D, Dinish US, et al. Model learning analysis of 3D optoacoustic mesoscopy images for the classification of atopic dermatitis. Biomed Opt Express. 2021;12(6):3671–83.PubMedPubMedCentralCrossRef
35.
go back to reference Aguirre J, Schwarz M, Garzorz N, Omar M, Buehler A, Eyerich K, et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat Biomed Eng. 2017;1(5):0068.CrossRef Aguirre J, Schwarz M, Garzorz N, Omar M, Buehler A, Eyerich K, et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat Biomed Eng. 2017;1(5):0068.CrossRef
36.
go back to reference Schmitt J, Langan S, Deckert S, Svensson A, von Kobyletzki L, Thomas K, et al. Assessment of clinical signs of atopic dermatitis: a systematic review and recommendation. J Allergy Clin Immunol. 2013;132(6):1337–47.PubMedCrossRef Schmitt J, Langan S, Deckert S, Svensson A, von Kobyletzki L, Thomas K, et al. Assessment of clinical signs of atopic dermatitis: a systematic review and recommendation. J Allergy Clin Immunol. 2013;132(6):1337–47.PubMedCrossRef
37.
go back to reference Medela A, Mac Carthy T, Aguilar Robles SA, Chiesa-Estomba CM, Grimalt R. Automatic scoring of atopic dermatitis using deep learning: a pilot study. JID Innov. 2022;2(3): 100107.PubMedPubMedCentralCrossRef Medela A, Mac Carthy T, Aguilar Robles SA, Chiesa-Estomba CM, Grimalt R. Automatic scoring of atopic dermatitis using deep learning: a pilot study. JID Innov. 2022;2(3): 100107.PubMedPubMedCentralCrossRef
38.
go back to reference Hurault G, Domínguez-Hüttinger E, Langan SM, Williams HC, Tanaka RJ. Personalized prediction of daily eczema severity scores using a mechanistic machine learning model. Clin Exp Allergy. 2020;50(11):1258–66.PubMedCrossRef Hurault G, Domínguez-Hüttinger E, Langan SM, Williams HC, Tanaka RJ. Personalized prediction of daily eczema severity scores using a mechanistic machine learning model. Clin Exp Allergy. 2020;50(11):1258–66.PubMedCrossRef
39.
go back to reference Hurault G, Stalder JF, Mery S, Delarue A, Saint Aroman M, Josse G, et al. EczemaPred: A computational framework for personalised prediction of eczema severity dynamics. Clin Transl Allergy. 2022;12(3): e12140.PubMedPubMedCentralCrossRef Hurault G, Stalder JF, Mery S, Delarue A, Saint Aroman M, Josse G, et al. EczemaPred: A computational framework for personalised prediction of eczema severity dynamics. Clin Transl Allergy. 2022;12(3): e12140.PubMedPubMedCentralCrossRef
40.
go back to reference Holm JG, Hurault G, Agner T, Clausen ML, Kezic S, Tanaka RJ, et al. Immunoinflammatory biomarkers in serum are associated with disease severity in atopic dermatitis. Dermatology (Basel). 2021;237(4):513–20.CrossRef Holm JG, Hurault G, Agner T, Clausen ML, Kezic S, Tanaka RJ, et al. Immunoinflammatory biomarkers in serum are associated with disease severity in atopic dermatitis. Dermatology (Basel). 2021;237(4):513–20.CrossRef
41.
go back to reference Maintz L, Welchowski T, Herrmann N, Brauer J, Kläschen AS, Fimmers R, et al. Machine learning-based deep phenotyping of atopic dermatitis: severity-associated factors in adolescent and adult patients. JAMA Dermatol. 2021;157(12):1414–24.PubMedCrossRef Maintz L, Welchowski T, Herrmann N, Brauer J, Kläschen AS, Fimmers R, et al. Machine learning-based deep phenotyping of atopic dermatitis: severity-associated factors in adolescent and adult patients. JAMA Dermatol. 2021;157(12):1414–24.PubMedCrossRef
42.
go back to reference Clayton K, Vallejo A, Sirvent S, Davies J, Porter G, Reading IC, et al. Machine learning applied to atopic dermatitis transcriptome reveals distinct therapy-dependent modification of the keratinocyte immunophenotype. Br J Dermatol. 2021;184(5):913–22.PubMedCrossRef Clayton K, Vallejo A, Sirvent S, Davies J, Porter G, Reading IC, et al. Machine learning applied to atopic dermatitis transcriptome reveals distinct therapy-dependent modification of the keratinocyte immunophenotype. Br J Dermatol. 2021;184(5):913–22.PubMedCrossRef
43.
go back to reference Acharjee A, Gribaleva E, Bano S, Gkoutos GV. Multi-omics-based identification of atopic dermatitis target genes and their potential associations with metabolites and miRNAs. Am J Transl Res. 2021;13(12):13697–709.PubMedPubMedCentral Acharjee A, Gribaleva E, Bano S, Gkoutos GV. Multi-omics-based identification of atopic dermatitis target genes and their potential associations with metabolites and miRNAs. Am J Transl Res. 2021;13(12):13697–709.PubMedPubMedCentral
44.
go back to reference Jiang Z, Li J, Kong N, Kim J-H, Kim B-S, Lee M-J, et al. Accurate diagnosis of atopic dermatitis by combining transcriptome and microbiota data with supervised machine learning. Sci Rep. 2022;12(1):290.PubMedPubMedCentralCrossRef Jiang Z, Li J, Kong N, Kim J-H, Kim B-S, Lee M-J, et al. Accurate diagnosis of atopic dermatitis by combining transcriptome and microbiota data with supervised machine learning. Sci Rep. 2022;12(1):290.PubMedPubMedCentralCrossRef
45.
go back to reference Zeldin J, Chaudhary PP, Spathies J, Yadav M, D’Souza BN, Alishahedani ME, et al. Exposure to isocyanates predicts atopic dermatitis prevalence and disrupts therapeutic pathways in commensal bacteria. Sci Adv. 2023 Jan 6;9(1):eade8898. Zeldin J, Chaudhary PP, Spathies J, Yadav M, D’Souza BN, Alishahedani ME, et al. Exposure to isocyanates predicts atopic dermatitis prevalence and disrupts therapeutic pathways in commensal bacteria. Sci Adv. 2023 Jan 6;9(1):eade8898.
46.
go back to reference Fadadu RP, Grimes B, Jewell NP, Vargo J, Young AT, Abuabara K, et al. Association of wildfire air pollution and health care use for atopic dermatitis and itch. JAMA Dermatol. 2021;157(6):658–66.PubMedCrossRef Fadadu RP, Grimes B, Jewell NP, Vargo J, Young AT, Abuabara K, et al. Association of wildfire air pollution and health care use for atopic dermatitis and itch. JAMA Dermatol. 2021;157(6):658–66.PubMedCrossRef
47.
go back to reference Hurault G, Roekevisch E, Schram ME, Szegedi K, Kezic S, Middelkamp-Hup MA, et al. Can serum biomarkers predict the outcome of systemic immunosuppressive therapy in adult atopic dermatitis patients? Skin Health and Disease. 2022;2(1): e77.PubMedPubMedCentralCrossRef Hurault G, Roekevisch E, Schram ME, Szegedi K, Kezic S, Middelkamp-Hup MA, et al. Can serum biomarkers predict the outcome of systemic immunosuppressive therapy in adult atopic dermatitis patients? Skin Health and Disease. 2022;2(1): e77.PubMedPubMedCentralCrossRef
48.
go back to reference Wu JJ, Hong C-H, Merola JF, Gruben D, Güler E, Feeney C, et al. Predictors of nonresponse to dupilumab in patients with atopic dermatitis: a machine learning analysis. Ann Allergy Asthma Immunol. 2022;129(3):354-359.e5.PubMedCrossRef Wu JJ, Hong C-H, Merola JF, Gruben D, Güler E, Feeney C, et al. Predictors of nonresponse to dupilumab in patients with atopic dermatitis: a machine learning analysis. Ann Allergy Asthma Immunol. 2022;129(3):354-359.e5.PubMedCrossRef
49.
go back to reference Huang J, Habib AR, Mendis D, Chong J, Smith M, Duvnjak M, et al. An artificial intelligence algorithm that differentiates anterior ethmoidal artery location on sinus computed tomography scans. J Laryngol Otol. 2020;134(1):52–5.PubMedCrossRef Huang J, Habib AR, Mendis D, Chong J, Smith M, Duvnjak M, et al. An artificial intelligence algorithm that differentiates anterior ethmoidal artery location on sinus computed tomography scans. J Laryngol Otol. 2020;134(1):52–5.PubMedCrossRef
50.
go back to reference Parmar P, Habib AR, Mendis D, Daniel A, Duvnjak M, Ho J, et al. An artificial intelligence algorithm that identifies middle turbinate pneumatisation (concha bullosa) on sinus computed tomography scans. J Laryngol Otol. 2020;134(4):328–31.PubMedCrossRef Parmar P, Habib AR, Mendis D, Daniel A, Duvnjak M, Ho J, et al. An artificial intelligence algorithm that identifies middle turbinate pneumatisation (concha bullosa) on sinus computed tomography scans. J Laryngol Otol. 2020;134(4):328–31.PubMedCrossRef
51.
go back to reference Jeon Y, Lee K, Sunwoo L, Choi D, Oh DY, Lee KJ, et al. Deep learning for diagnosis of paranasal sinusitis using multi-view radiographs. Diagnostics (Basel). 2021 Feb 5;11(2). Jeon Y, Lee K, Sunwoo L, Choi D, Oh DY, Lee KJ, et al. Deep learning for diagnosis of paranasal sinusitis using multi-view radiographs. Diagnostics (Basel). 2021 Feb 5;11(2).
52.
go back to reference Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2019;35(3):301–7.PubMedCrossRef Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2019;35(3):301–7.PubMedCrossRef
53.
go back to reference Grayson JW, Hopkins C, Mori E, Senior B, Harvey RJ. Contemporary classification of chronic rhinosinusitis beyond polyps vs no polyps: a review. JAMA Otolaryngol Head Neck Surg. 2020;146(9):831–8.PubMedCrossRef Grayson JW, Hopkins C, Mori E, Senior B, Harvey RJ. Contemporary classification of chronic rhinosinusitis beyond polyps vs no polyps: a review. JAMA Otolaryngol Head Neck Surg. 2020;146(9):831–8.PubMedCrossRef
54.
go back to reference • Zhou H, Fan W, Qin D, Liu P, Gao Z, Lv H, et al. Development, validation and comparison of artificial neural network and logistic regression models predicting eosinophilic chronic rhinosinusitis with nasal polyps. Allergy Asthma Immunol Res. 2023 Jan;15(1):67–82. ANN models to predict eosinophilic CRSwNP based on clinical biomarkers in 109 CRSwNP patients outperformed logistic regression models. • Zhou H, Fan W, Qin D, Liu P, Gao Z, Lv H, et al. Development, validation and comparison of artificial neural network and logistic regression models predicting eosinophilic chronic rhinosinusitis with nasal polyps. Allergy Asthma Immunol Res. 2023 Jan;15(1):67–82. ANN models to predict eosinophilic CRSwNP based on clinical biomarkers in 109 CRSwNP patients outperformed logistic regression models.
55.
go back to reference Demoly P, Adkinson NF, Brockow K, Castells M, Chiriac AM, Greenberger PA, et al. International Consensus on drug allergy. Allergy. 2014;69(4):420–37.PubMedCrossRef Demoly P, Adkinson NF, Brockow K, Castells M, Chiriac AM, Greenberger PA, et al. International Consensus on drug allergy. Allergy. 2014;69(4):420–37.PubMedCrossRef
56.
go back to reference Sogn DD, Evans R, Shepherd GM, Casale TB, Condemi J, Greenberger PA, et al. Results of the National Institute of Allergy and Infectious Diseases Collaborative Clinical Trial to test the predictive value of skin testing with major and minor penicillin derivatives in hospitalized adults. Arch Intern Med. 1992;152(5):1025–32.PubMedCrossRef Sogn DD, Evans R, Shepherd GM, Casale TB, Condemi J, Greenberger PA, et al. Results of the National Institute of Allergy and Infectious Diseases Collaborative Clinical Trial to test the predictive value of skin testing with major and minor penicillin derivatives in hospitalized adults. Arch Intern Med. 1992;152(5):1025–32.PubMedCrossRef
57.
go back to reference Park M, Markus P, Matesic D, Li JTC. Safety and effectiveness of a preoperative allergy clinic in decreasing vancomycin use in patients with a history of penicillin allergy. Ann Allergy Asthma Immunol. 2006;97(5):681–7.PubMedCrossRef Park M, Markus P, Matesic D, Li JTC. Safety and effectiveness of a preoperative allergy clinic in decreasing vancomycin use in patients with a history of penicillin allergy. Ann Allergy Asthma Immunol. 2006;97(5):681–7.PubMedCrossRef
58.
go back to reference Gadde J, Spence M, Wheeler B, Adkinson NF. Clinical experience with penicillin skin testing in a large inner-city STD clinic. JAMA. 1993;270(20):2456–63.PubMedCrossRef Gadde J, Spence M, Wheeler B, Adkinson NF. Clinical experience with penicillin skin testing in a large inner-city STD clinic. JAMA. 1993;270(20):2456–63.PubMedCrossRef
59.
go back to reference Blumenthal KG, Oreskovic NM, Fu X, Shebl FM, Mancini CM, Maniates JM, et al. High-cost, high-need patients: the impact of reported penicillin allergy. Am J Manag Care. 2020;26(4):154–61.PubMedPubMedCentralCrossRef Blumenthal KG, Oreskovic NM, Fu X, Shebl FM, Mancini CM, Maniates JM, et al. High-cost, high-need patients: the impact of reported penicillin allergy. Am J Manag Care. 2020;26(4):154–61.PubMedPubMedCentralCrossRef
60.
go back to reference Inglis JM, Bacchi S, Troelnikov A, Smith W, Shakib S. Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing. Int J Med Inform. 2021;156: 104611.PubMedCrossRef Inglis JM, Bacchi S, Troelnikov A, Smith W, Shakib S. Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing. Int J Med Inform. 2021;156: 104611.PubMedCrossRef
61.
go back to reference Moreno EM, Moreno V, Laffond E, Gracia-Bara MT, Muñoz-Bellido FJ, Macías EM, et al. Usefulness of an artificial neural network in the prediction of β-lactam allergy. J Allergy Clin Immunol Pract. 2020;8(9):2974-2982.e1.PubMedCrossRef Moreno EM, Moreno V, Laffond E, Gracia-Bara MT, Muñoz-Bellido FJ, Macías EM, et al. Usefulness of an artificial neural network in the prediction of β-lactam allergy. J Allergy Clin Immunol Pract. 2020;8(9):2974-2982.e1.PubMedCrossRef
62.
go back to reference • Banerji A, Lai KH, Li Y, Saff RR, Camargo CA, Blumenthal KG, et al. Natural language processing combined with ICD-9-CM codes as a novel method to study the epidemiology of allergic drug reactions. J Allergy Clin Immunol Pract. 2020;8(3):1032–1038.e1. Highlights the potential for NLP utilization in epidemiologic evaluation of drug allergy by showing how NLP increases the PPV of ICD code review in identifying true cases of drug allergy. • Banerji A, Lai KH, Li Y, Saff RR, Camargo CA, Blumenthal KG, et al. Natural language processing combined with ICD-9-CM codes as a novel method to study the epidemiology of allergic drug reactions. J Allergy Clin Immunol Pract. 2020;8(3):1032–1038.e1. Highlights the potential for NLP utilization in epidemiologic evaluation of drug allergy by showing how NLP increases the PPV of ICD code review in identifying true cases of drug allergy.
63.
go back to reference Chaichulee S, Promchai C, Kaewkomon T, Kongkamol C, Ingviya T, Sangsupawanich P. Multi-label classification of symptom terms from free-text bilingual adverse drug reaction reports using natural language processing. PLoS One. 2022;17(8): e0270595.PubMedPubMedCentralCrossRef Chaichulee S, Promchai C, Kaewkomon T, Kongkamol C, Ingviya T, Sangsupawanich P. Multi-label classification of symptom terms from free-text bilingual adverse drug reaction reports using natural language processing. PLoS One. 2022;17(8): e0270595.PubMedPubMedCentralCrossRef
64.
go back to reference Lo Y-C, Varghese S, Blackley S, Seger DL, Blumenthal KG, Goss FR, et al. Reconciling allergy information in the electronic health record after a drug challenge using natural language processing. FrontAllergy. 2022;10(3): 904923. Lo Y-C, Varghese S, Blackley S, Seger DL, Blumenthal KG, Goss FR, et al. Reconciling allergy information in the electronic health record after a drug challenge using natural language processing. FrontAllergy. 2022;10(3): 904923.
65.
go back to reference Blanca-Lopez N, Somoza-Alvarez ML, Bellon T, Amo G, Canto G, Blanca M. NSAIDs hypersensitivity: questions not resolved. Curr Opin Allergy Clin Immunol. 2018;18(4):291–301.PubMedCrossRef Blanca-Lopez N, Somoza-Alvarez ML, Bellon T, Amo G, Canto G, Blanca M. NSAIDs hypersensitivity: questions not resolved. Curr Opin Allergy Clin Immunol. 2018;18(4):291–301.PubMedCrossRef
66.
go back to reference Tyrak KE, Pajdzik K, Konduracka E, Ćmiel A, Jakieła B, Celejewska-Wójcik N, et al. Artificial neural network identifies nonsteroidal anti-inflammatory drugs exacerbated respiratory disease (N-ERD) cohort. Allergy. 2020;75(7):1649–58.PubMedCrossRef Tyrak KE, Pajdzik K, Konduracka E, Ćmiel A, Jakieła B, Celejewska-Wójcik N, et al. Artificial neural network identifies nonsteroidal anti-inflammatory drugs exacerbated respiratory disease (N-ERD) cohort. Allergy. 2020;75(7):1649–58.PubMedCrossRef
67.
go back to reference Tay SH, Santosa A, Goh ECH, Xu CX, Wu LH, Bigliardi-Qi M, et al. Distinct transcriptomic and metabolomic profiles characterize NSAID-induced urticaria/angioedema patients undergoing aspirin desensitization. J Allergy Clin Immunol. 2022;150(6):1486–97.PubMedCrossRef Tay SH, Santosa A, Goh ECH, Xu CX, Wu LH, Bigliardi-Qi M, et al. Distinct transcriptomic and metabolomic profiles characterize NSAID-induced urticaria/angioedema patients undergoing aspirin desensitization. J Allergy Clin Immunol. 2022;150(6):1486–97.PubMedCrossRef
68.
go back to reference Joint Task Force on Practice Parameters, American Academy of Allergy, Asthma and Immunology, American College of Allergy, Asthma and Immunology, Joint Council of Allergy, Asthma and Immunology. Drug allergy: an updated practice parameter. Ann Allergy Asthma Immunol. 2010 Oct;105(4):259–73. Joint Task Force on Practice Parameters, American Academy of Allergy, Asthma and Immunology, American College of Allergy, Asthma and Immunology, Joint Council of Allergy, Asthma and Immunology. Drug allergy: an updated practice parameter. Ann Allergy Asthma Immunol. 2010 Oct;105(4):259–73.
69.
go back to reference Abrams EM, Greenhawt M, Shaker M, Kosowan L, Singer AG. Primary care provider-reported prevalence of vaccine and polyethylene glycol allergy in Canada. Ann Allergy Asthma Immunol. 2021;127(4):446-450.e1.PubMedPubMedCentralCrossRef Abrams EM, Greenhawt M, Shaker M, Kosowan L, Singer AG. Primary care provider-reported prevalence of vaccine and polyethylene glycol allergy in Canada. Ann Allergy Asthma Immunol. 2021;127(4):446-450.e1.PubMedPubMedCentralCrossRef
70.
go back to reference Abbaspour S, Robbins GK, Blumenthal KG, Hashimoto D, Hopcia K, Mukerji SS, et al. Identifying modifiable predictors of COVID-19 vaccine side effects: a machine learning approach. Vaccines (Basel). 2022 Oct 19;10(10). Abbaspour S, Robbins GK, Blumenthal KG, Hashimoto D, Hopcia K, Mukerji SS, et al. Identifying modifiable predictors of COVID-19 vaccine side effects: a machine learning approach. Vaccines (Basel). 2022 Oct 19;10(10).
71.
go back to reference Flora J, Khan W, Jin J, Jin D, Hussain A, Dajani K, et al. Usefulness of vaccine adverse event reporting system for machine-learning based vaccine research: a case study for COVID-19 vaccines. Int J Mol Sci. 2022 Jul 26;23(15). Flora J, Khan W, Jin J, Jin D, Hussain A, Dajani K, et al. Usefulness of vaccine adverse event reporting system for machine-learning based vaccine research: a case study for COVID-19 vaccines. Int J Mol Sci. 2022 Jul 26;23(15).
72.
go back to reference Patel JS, Zhan S, Siddiqui Z, Dzomba B, Wu H. Automatic identification of self-reported COVID-19 vaccine information from vaccine adverse events reporting system. Methods Inf Med. 2023 Jan 9. Patel JS, Zhan S, Siddiqui Z, Dzomba B, Wu H. Automatic identification of self-reported COVID-19 vaccine information from vaccine adverse events reporting system. Methods Inf Med. 2023 Jan 9.
73.
go back to reference Khalid MB, Frischmeyer-Guerrerio PA. The conundrum of COVID-19 mRNA vaccine-induced anaphylaxis. J Allergy Clin Immunol Glob. 2023;2(1):1–13.PubMedCrossRef Khalid MB, Frischmeyer-Guerrerio PA. The conundrum of COVID-19 mRNA vaccine-induced anaphylaxis. J Allergy Clin Immunol Glob. 2023;2(1):1–13.PubMedCrossRef
74.
go back to reference Metwally AA, Yu PS, Reiman D, Dai Y, Finn PW, Perkins DL. Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via long short-term memory networks. PLoS Comput Biol. 2019;15(2): e1006693.PubMedPubMedCentralCrossRef Metwally AA, Yu PS, Reiman D, Dai Y, Finn PW, Perkins DL. Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via long short-term memory networks. PLoS Comput Biol. 2019;15(2): e1006693.PubMedPubMedCentralCrossRef
75.
go back to reference Suprun M, Sicherer SH, Wood RA, Jones SM, Leung DYM, Henning AK, et al. Early epitope-specific IgE antibodies are predictive of childhood peanut allergy. J Allergy Clin Immunol. 2020;146(5):1080–8.PubMedPubMedCentralCrossRef Suprun M, Sicherer SH, Wood RA, Jones SM, Leung DYM, Henning AK, et al. Early epitope-specific IgE antibodies are predictive of childhood peanut allergy. J Allergy Clin Immunol. 2020;146(5):1080–8.PubMedPubMedCentralCrossRef
76.
go back to reference • Grinek S, Suprun M, Raghunathan R, Tomalin LE, Getts R, Bahnson T, et al. Epitope-specific IgE at 1 year of age can predict peanut allergy status at 5 years. Int Arch Allergy Immunol. 2022 Dec 9;1–6. Utilization of elastic net regression ML model trained on demographics, total IgE, IgE to egg white, egg yolk, and ovomucoid from pediatric patients in the peanut avoidance arm of LEAP trial at 1 year to predict heated egg OFC success at 5 years with 83% accuracy. • Grinek S, Suprun M, Raghunathan R, Tomalin LE, Getts R, Bahnson T, et al. Epitope-specific IgE at 1 year of age can predict peanut allergy status at 5 years. Int Arch Allergy Immunol. 2022 Dec 9;1–6. Utilization of elastic net regression ML model trained on demographics, total IgE, IgE to egg white, egg yolk, and ovomucoid from pediatric patients in the peanut avoidance arm of LEAP trial at 1 year to predict heated egg OFC success at 5 years with 83% accuracy.
77.
go back to reference Kuniyoshi Y, Tokutake H, Takahashi N, Kamura A, Yasuda S, Tashiro M. Machine learning approach and oral food challenge with heated egg. Pediatr Allergy Immunol. 2021;32(4):776–8.PubMedCrossRef Kuniyoshi Y, Tokutake H, Takahashi N, Kamura A, Yasuda S, Tashiro M. Machine learning approach and oral food challenge with heated egg. Pediatr Allergy Immunol. 2021;32(4):776–8.PubMedCrossRef
78.
go back to reference Machnes-Maayan D, Yahia SH, Frizinsky S, Maoz-Segal R, Offengenden I, Kenett RS, et al. A clinical pathway for the diagnosis of sesame allergy in children. World Allergy Organiz J. 2022;15(11): 100713.CrossRef Machnes-Maayan D, Yahia SH, Frizinsky S, Maoz-Segal R, Offengenden I, Kenett RS, et al. A clinical pathway for the diagnosis of sesame allergy in children. World Allergy Organiz J. 2022;15(11): 100713.CrossRef
79.
go back to reference Suárez-Fariñas M, Suprun M, Chang HL, Gimenez G, Grishina G, Getts R, et al. Predicting development of sustained unresponsiveness to milk oral immunotherapy using epitope-specific antibody binding profiles. J Allergy Clin Immunol. 2019;143(3):1038–46.PubMedCrossRef Suárez-Fariñas M, Suprun M, Chang HL, Gimenez G, Grishina G, Getts R, et al. Predicting development of sustained unresponsiveness to milk oral immunotherapy using epitope-specific antibody binding profiles. J Allergy Clin Immunol. 2019;143(3):1038–46.PubMedCrossRef
80.
go back to reference Bann MA, Carrell DS, Gruber S, Shinde M, Ball R, Nelson JC, et al. Identification and validation of anaphylaxis using electronic health data in a population-based setting. Epidemiology. 2021;32(3):439–43.PubMedCrossRef Bann MA, Carrell DS, Gruber S, Shinde M, Ball R, Nelson JC, et al. Identification and validation of anaphylaxis using electronic health data in a population-based setting. Epidemiology. 2021;32(3):439–43.PubMedCrossRef
81.
go back to reference Carrell DS, Gruber S, Floyd JS, Bann MA, Cushing-Haugen KL, Johnson RL, et al. Improving methods of identifying anaphylaxis for medical product safety surveillance using natural language processing and machine learning. Am J Epidemiol. 2023;192(2):283–95.PubMedCrossRef Carrell DS, Gruber S, Floyd JS, Bann MA, Cushing-Haugen KL, Johnson RL, et al. Improving methods of identifying anaphylaxis for medical product safety surveillance using natural language processing and machine learning. Am J Epidemiol. 2023;192(2):283–95.PubMedCrossRef
82.
go back to reference Garcia-Moreno FM, Gutiérrez-Naranjo MA. ALLERDET: a novel web app for prediction of protein allergenicity. J Biomed Inform. 2022;135: 104217.PubMedCrossRef Garcia-Moreno FM, Gutiérrez-Naranjo MA. ALLERDET: a novel web app for prediction of protein allergenicity. J Biomed Inform. 2022;135: 104217.PubMedCrossRef
83.
go back to reference Segú-Vergés C, Gómez J, Terradas-Montana P, Artigas L, Smeets S, Ferrer M, et al. Unveiling chronic spontaneous urticaria pathophysiology through systems biology. J Allergy Clin Immunol. 2022 Dec 29. Segú-Vergés C, Gómez J, Terradas-Montana P, Artigas L, Smeets S, Ferrer M, et al. Unveiling chronic spontaneous urticaria pathophysiology through systems biology. J Allergy Clin Immunol. 2022 Dec 29.
84.
go back to reference Pivneva I, Balp M-M, Geissbühler Y, Severin T, Smeets S, Signorovitch J, et al. Predicting clinical remission of chronic urticaria using random survival forests: machine learning applied to real-world data. Dermatol Ther (Heidelb). 2022;12(12):2747–63.PubMedCrossRef Pivneva I, Balp M-M, Geissbühler Y, Severin T, Smeets S, Signorovitch J, et al. Predicting clinical remission of chronic urticaria using random survival forests: machine learning applied to real-world data. Dermatol Ther (Heidelb). 2022;12(12):2747–63.PubMedCrossRef
85.
go back to reference Sardina DS, Valenti G, Papia F, Uasuf CG. Exploring machine learning techniques to predict the response to omalizumab in chronic spontaneous urticaria. Diagnostics (Basel). 2021 Nov 20;11(11). Sardina DS, Valenti G, Papia F, Uasuf CG. Exploring machine learning techniques to predict the response to omalizumab in chronic spontaneous urticaria. Diagnostics (Basel). 2021 Nov 20;11(11).
86.
go back to reference Sallis BF, Erkert L, Moñino-Romero S, Acar U, Wu R, Konnikova L, et al. An algorithm for the classification of mRNA patterns in eosinophilic esophagitis: integration of machine learning. J Allergy Clin Immunol. 2018;141(4):1354-1364.e9.PubMedCrossRef Sallis BF, Erkert L, Moñino-Romero S, Acar U, Wu R, Konnikova L, et al. An algorithm for the classification of mRNA patterns in eosinophilic esophagitis: integration of machine learning. J Allergy Clin Immunol. 2018;141(4):1354-1364.e9.PubMedCrossRef
87.
go back to reference Okimoto E, Ishimura N, Adachi K, Kinoshita Y, Ishihara S, Tada T. Application of convolutional neural networks for diagnosis of eosinophilic esophagitis based on endoscopic imaging. J Clin Med. 2022 Apr 30;11(9). Okimoto E, Ishimura N, Adachi K, Kinoshita Y, Ishihara S, Tada T. Application of convolutional neural networks for diagnosis of eosinophilic esophagitis based on endoscopic imaging. J Clin Med. 2022 Apr 30;11(9).
88.
go back to reference Czyzewski T, Daniel N, Rochman M, Caldwell JM, Osswald GA, Collins MH, et al. Machine learning approach for biopsy-based identification of eosinophilic esophagitis reveals importance of global features. IEEE Open J Eng Med Biol. 2021;16(2):218–23.CrossRef Czyzewski T, Daniel N, Rochman M, Caldwell JM, Osswald GA, Collins MH, et al. Machine learning approach for biopsy-based identification of eosinophilic esophagitis reveals importance of global features. IEEE Open J Eng Med Biol. 2021;16(2):218–23.CrossRef
89.
go back to reference Archila LR, Smith L, Sihvo H-K, Westerling-Bui T, Koponen V, O’Sullivan DM, et al. Development and technical validation of an artificial intelligence model for quantitative analysis of histopathologic features of eosinophilic esophagitis. J Pathol Inform. 2022;27(13): 100144.CrossRef Archila LR, Smith L, Sihvo H-K, Westerling-Bui T, Koponen V, O’Sullivan DM, et al. Development and technical validation of an artificial intelligence model for quantitative analysis of histopathologic features of eosinophilic esophagitis. J Pathol Inform. 2022;27(13): 100144.CrossRef
90.
go back to reference Larey A, Aknin E, Daniel N, Osswald GA, Caldwell JM, Rochman M, et al. Harnessing artificial intelligence to infer novel spatial biomarkers for the diagnosis of eosinophilic esophagitis. arXiv. 2022 May 26. Larey A, Aknin E, Daniel N, Osswald GA, Caldwell JM, Rochman M, et al. Harnessing artificial intelligence to infer novel spatial biomarkers for the diagnosis of eosinophilic esophagitis. arXiv. 2022 May 26.
91.
go back to reference Celi LA, Cellini J, Charpignon M-L, Dee EC, Dernoncourt F, Eber R, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities-a global review. PLOS Digit Health. 2022;1(3): e0000022.PubMedPubMedCentralCrossRef Celi LA, Cellini J, Charpignon M-L, Dee EC, Dernoncourt F, Eber R, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities-a global review. PLOS Digit Health. 2022;1(3): e0000022.PubMedPubMedCentralCrossRef
92.
go back to reference McCradden MD, Joshi S, Mazwi M, Anderson JA. Ethical limitations of algorithmic fairness solutions in health care machine learning. Lancet Digit Health. 2020;2(5):e221–3.PubMedCrossRef McCradden MD, Joshi S, Mazwi M, Anderson JA. Ethical limitations of algorithmic fairness solutions in health care machine learning. Lancet Digit Health. 2020;2(5):e221–3.PubMedCrossRef
93.
go back to reference •• Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med. 2020 Sep 9;26(9):1364–74. Consensus guidelines establishing new reporting standards for clinical trials evaluating AI interventions. •• Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med. 2020 Sep 9;26(9):1364–74. Consensus guidelines establishing new reporting standards for clinical trials evaluating AI interventions.
96.
go back to reference He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30–6.PubMedPubMedCentralCrossRef He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30–6.PubMedPubMedCentralCrossRef
99.
100.
go back to reference Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc Med. 2019;112(1):22–8.PubMedCrossRef Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc Med. 2019;112(1):22–8.PubMedCrossRef
101.
go back to reference McGreevey JD, Hanson CW, Koppel R. Clinical, legal, and ethical aspects of artificial intelligence-assisted conversational agents in health care. JAMA. 2020;324(6):552–3.PubMedCrossRef McGreevey JD, Hanson CW, Koppel R. Clinical, legal, and ethical aspects of artificial intelligence-assisted conversational agents in health care. JAMA. 2020;324(6):552–3.PubMedCrossRef
102.
go back to reference • Vollmer S, Mateen BA, Bohner G, Király FJ, Ghani R, Jonsson P, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020 Mar 20;368:l6927. Proposes a framework for investigators using machine learning to ensure that AI tools in medicine are safe and effective. • Vollmer S, Mateen BA, Bohner G, Király FJ, Ghani R, Jonsson P, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020 Mar 20;368:l6927. Proposes a framework for investigators using machine learning to ensure that AI tools in medicine are safe and effective.
103.
go back to reference Morley J, Floridi L, Kinsey L, Elhalal A. From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices. Sci Eng Ethics. 2020;26(4):2141–68.PubMedCrossRef Morley J, Floridi L, Kinsey L, Elhalal A. From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices. Sci Eng Ethics. 2020;26(4):2141–68.PubMedCrossRef
Metadata
Title
Artificial Intelligence: Exploring the Future of Innovation in Allergy Immunology
Authors
Derek MacMath
Meng Chen
Paneez Khoury
Publication date
09-05-2023
Publisher
Springer US
Published in
Current Allergy and Asthma Reports / Issue 6/2023
Print ISSN: 1529-7322
Electronic ISSN: 1534-6315
DOI
https://doi.org/10.1007/s11882-023-01084-z

Other articles of this Issue 6/2023

Current Allergy and Asthma Reports 6/2023 Go to the issue