Skip to main content
Top
Published in: Archives of Orthopaedic and Trauma Surgery 3/2019

01-03-2019 | Orthopaedic Surgery

Articular cartilage regeneration and tissue engineering models: a systematic review

Authors: Sebastian G. Walter, Robert Ossendorff, Frank A. Schildberg

Published in: Archives of Orthopaedic and Trauma Surgery | Issue 3/2019

Login to get access

Abstract

Introduction

Cartilage regeneration and restoration is a major topic in orthopedic research as cartilaginous degeneration and damage is associated with osteoarthritis and joint destruction. This systematic review aims to summarize current research strategies in cartilage regeneration research.

Materials and methods

A Pubmed search for models investigating single-site cartilage defects as well as chondrogenesis was conducted and articles were evaluated for content by title and abstract. Finally, only manuscripts were included, which report new models or approaches of cartilage regeneration.

Results

The search resulted in 2217 studies, 200 of which were eligible for inclusion in this review. The identified manuscripts consisted of a large spectrum of research approaches spanning from cell culture to tissue engineering and transplantation as well as sophisticated computational modeling.

Conclusions

In the past three decades, knowledge about articular cartilage and its defects has multiplied in clinical and experimental settings and the respective body of research literature has grown significantly. However, current strategies for articular cartilage repair have not yet succeeded to replicate the structure and function of innate articular cartilage, which makes it even more important to understand the current strategies and their impact. Therefore, the purpose of this review was to globally summarize experimental strategies investigating cartilage regeneration in vitro as well as in vivo. This will allow for better referencing when designing new models or strategies and potentially improve research translation from bench to bedside.
Literature
1.
go back to reference Felson DT, Lawrence RC, Dieppe PA et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646CrossRefPubMed Felson DT, Lawrence RC, Dieppe PA et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646CrossRefPubMed
2.
go back to reference Furukawa T, Eyre DR, Koide S, Glimcher MJ (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Jt Surg Am Vol 62:79–89CrossRef Furukawa T, Eyre DR, Koide S, Glimcher MJ (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Jt Surg Am Vol 62:79–89CrossRef
3.
go back to reference Hurtig MB, Fretz PB, Doige CE, Schnurr DL (1988) Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res 52:137–146PubMedPubMedCentral Hurtig MB, Fretz PB, Doige CE, Schnurr DL (1988) Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res 52:137–146PubMedPubMedCentral
4.
go back to reference Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Jt Surg Am Vol 64:460–466CrossRef Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Jt Surg Am Vol 64:460–466CrossRef
5.
go back to reference O’Driscoll SW, Salter RB (1986) The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 208:131–140 O’Driscoll SW, Salter RB (1986) The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 208:131–140
6.
go back to reference Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35CrossRefPubMedPubMedCentral Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35CrossRefPubMedPubMedCentral
7.
8.
go back to reference Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:1824–1833CrossRef Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:1824–1833CrossRef
9.
go back to reference Nelson AE (2018) Osteoarthritis year in review 2017: clinical. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):319–325CrossRef Nelson AE (2018) Osteoarthritis year in review 2017: clinical. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):319–325CrossRef
10.
go back to reference Karmarkar TD, Maurer A, Parks ML et al (2017) A fresh perspective on a familiar problem: examining disparities in knee osteoarthritis using a Markov model. Med Care 55:993–1000CrossRefPubMedPubMedCentral Karmarkar TD, Maurer A, Parks ML et al (2017) A fresh perspective on a familiar problem: examining disparities in knee osteoarthritis using a Markov model. Med Care 55:993–1000CrossRefPubMedPubMedCentral
11.
go back to reference Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarty EC (2017) A cost-effectiveness analysis of surgical treatment modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation. Orthop J Sports Med 5:2325967117704634PubMedPubMedCentral Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarty EC (2017) A cost-effectiveness analysis of surgical treatment modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation. Orthop J Sports Med 5:2325967117704634PubMedPubMedCentral
12.
go back to reference Caminal M, Fonseca C, Peris D et al (2014) Use of a chronic model of articular cartilage and meniscal injury for the assessment of long-term effects after autologous mesenchymal stromal cell treatment in sheep. N Biotechnol 31:492–498CrossRefPubMed Caminal M, Fonseca C, Peris D et al (2014) Use of a chronic model of articular cartilage and meniscal injury for the assessment of long-term effects after autologous mesenchymal stromal cell treatment in sheep. N Biotechnol 31:492–498CrossRefPubMed
13.
14.
go back to reference Intema F, DeGroot J, Elshof B et al (2008) The canine bilateral groove model of osteoarthritis. J Orthop Res Off Publ Orthop Res Soc 26:1471–1477CrossRef Intema F, DeGroot J, Elshof B et al (2008) The canine bilateral groove model of osteoarthritis. J Orthop Res Off Publ Orthop Res Soc 26:1471–1477CrossRef
15.
go back to reference To N, Curtiss S, Neu CP, Salgado CJ, Jamali AA (2011) Rabbit trochlear model of osteochondral allograft transplantation. Comp Med 61:427–435PubMedPubMedCentral To N, Curtiss S, Neu CP, Salgado CJ, Jamali AA (2011) Rabbit trochlear model of osteochondral allograft transplantation. Comp Med 61:427–435PubMedPubMedCentral
16.
go back to reference Gotterbarm T, Breusch SJ, Schneider U, Jung M (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42:71–82CrossRefPubMed Gotterbarm T, Breusch SJ, Schneider U, Jung M (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42:71–82CrossRefPubMed
17.
go back to reference Christensen BB, Foldager CB, Olesen ML et al (2015) Experimental articular cartilage repair in the Gottingen minipig: the influence of multiple defects per knee. J Exp Orthop 2:13CrossRefPubMedPubMedCentral Christensen BB, Foldager CB, Olesen ML et al (2015) Experimental articular cartilage repair in the Gottingen minipig: the influence of multiple defects per knee. J Exp Orthop 2:13CrossRefPubMedPubMedCentral
18.
go back to reference Flanigan DC, Harris JD, Brockmeier PM, Lathrop RL, Siston RA (2014) The effects of defect size, orientation, and location on subchondral bone contact in oval-shaped experimental articular cartilage defects in a bovine knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:174–180CrossRef Flanigan DC, Harris JD, Brockmeier PM, Lathrop RL, Siston RA (2014) The effects of defect size, orientation, and location on subchondral bone contact in oval-shaped experimental articular cartilage defects in a bovine knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:174–180CrossRef
19.
go back to reference Alves AC, Albertini R, dos Santos SA et al (2014) Effect of low-level laser therapy on metalloproteinase MMP-2 and MMP-9 production and percentage of collagen types I and III in a papain cartilage injury model. Lasers Med Sci 29:911–919CrossRefPubMed Alves AC, Albertini R, dos Santos SA et al (2014) Effect of low-level laser therapy on metalloproteinase MMP-2 and MMP-9 production and percentage of collagen types I and III in a papain cartilage injury model. Lasers Med Sci 29:911–919CrossRefPubMed
21.
go back to reference Fujimoto M, Ohte S, Shin M et al (2014) Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2. Biochem Biophys Res Commun 455:347–352CrossRefPubMed Fujimoto M, Ohte S, Shin M et al (2014) Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2. Biochem Biophys Res Commun 455:347–352CrossRefPubMed
22.
go back to reference Bragdon B, Lam S, Aly S et al (2017) Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone 101:49–61CrossRefPubMedPubMedCentral Bragdon B, Lam S, Aly S et al (2017) Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone 101:49–61CrossRefPubMedPubMedCentral
23.
go back to reference Schuller GC, Tichy B, Majdisova Z et al (2008) An in vivo mouse model for human cartilage regeneration. J Tissue Eng Regen Med 2:202–209CrossRefPubMed Schuller GC, Tichy B, Majdisova Z et al (2008) An in vivo mouse model for human cartilage regeneration. J Tissue Eng Regen Med 2:202–209CrossRefPubMed
24.
go back to reference Mueller-Rath R, Gavenis K, Gravius S, Andereya S, Mumme T, Schneider U (2007) In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model. Biomed Mater Eng 17:357–366PubMed Mueller-Rath R, Gavenis K, Gravius S, Andereya S, Mumme T, Schneider U (2007) In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model. Biomed Mater Eng 17:357–366PubMed
25.
go back to reference Bartz C, Meixner M, Giesemann P, Roel G, Bulwin GC, Smink JJ (2016) An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant. J Transl Med 14:317CrossRefPubMedPubMedCentral Bartz C, Meixner M, Giesemann P, Roel G, Bulwin GC, Smink JJ (2016) An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant. J Transl Med 14:317CrossRefPubMedPubMedCentral
26.
go back to reference de Vries-van Melle ML, Mandl EW, Kops N, Koevoet WJ, Verhaar JA, van Osch GJ (2012) An osteochondral culture model to study mechanisms involved in articular cartilage repair. Tissue Eng Part C Methods 18:45–53CrossRefPubMed de Vries-van Melle ML, Mandl EW, Kops N, Koevoet WJ, Verhaar JA, van Osch GJ (2012) An osteochondral culture model to study mechanisms involved in articular cartilage repair. Tissue Eng Part C Methods 18:45–53CrossRefPubMed
27.
go back to reference Tam HK, Srivastava A, Colwell CW Jr, D’Lima DD (2007) In vitro model of full-thickness cartilage defect healing. J Orthop Res Off Publ Orthop Res Soc 25:1136–1144CrossRef Tam HK, Srivastava A, Colwell CW Jr, D’Lima DD (2007) In vitro model of full-thickness cartilage defect healing. J Orthop Res Off Publ Orthop Res Soc 25:1136–1144CrossRef
28.
go back to reference Glenn RE Jr, McCarty EC, Potter HG, Juliao SF, Gordon JD, Spindler KP (2006) Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 34:1084–1093CrossRefPubMed Glenn RE Jr, McCarty EC, Potter HG, Juliao SF, Gordon JD, Spindler KP (2006) Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 34:1084–1093CrossRefPubMed
29.
go back to reference Jackson DW, Halbrecht J, Proctor C, Van Sickle D, Simon TM (1996) Assessment of donor cell and matrix survival in fresh articular cartilage allografts in a goat model. J Orthop Res Off Publ Orthop Res Soc 14:255–264CrossRef Jackson DW, Halbrecht J, Proctor C, Van Sickle D, Simon TM (1996) Assessment of donor cell and matrix survival in fresh articular cartilage allografts in a goat model. J Orthop Res Off Publ Orthop Res Soc 14:255–264CrossRef
30.
go back to reference Namba RS, Meuli M, Sullivan KM, Le AX, Adzick NS (1998) Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Jt Surg Am Vol 80:4–10CrossRef Namba RS, Meuli M, Sullivan KM, Le AX, Adzick NS (1998) Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Jt Surg Am Vol 80:4–10CrossRef
31.
go back to reference Seol D, Yu Y, Choe H et al (2014) Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage. Tissue Eng Part A 20:1807–1814CrossRefPubMedPubMedCentral Seol D, Yu Y, Choe H et al (2014) Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage. Tissue Eng Part A 20:1807–1814CrossRefPubMedPubMedCentral
32.
go back to reference Meretoja VV, Dahlin RL, Kasper FK, Mikos AG (2012) Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials 33:6362–6369CrossRefPubMedPubMedCentral Meretoja VV, Dahlin RL, Kasper FK, Mikos AG (2012) Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials 33:6362–6369CrossRefPubMedPubMedCentral
33.
go back to reference Dahlin RL, Kinard LA, Lam J et al (2014) Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35:7460–7469CrossRefPubMedPubMedCentral Dahlin RL, Kinard LA, Lam J et al (2014) Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35:7460–7469CrossRefPubMedPubMedCentral
34.
go back to reference Cakmak S, Cakmak AS, Kaplan DL, Gumusderelioglu M (2016) A silk fibroin and peptide amphiphile-based co-culture model for osteochondral tissue engineering. Macromol Biosci 16:1212–1226CrossRefPubMed Cakmak S, Cakmak AS, Kaplan DL, Gumusderelioglu M (2016) A silk fibroin and peptide amphiphile-based co-culture model for osteochondral tissue engineering. Macromol Biosci 16:1212–1226CrossRefPubMed
35.
go back to reference Kazemi D, Shams Asenjan K, Dehdilani N, Parsa H (2017) Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: macroscopic and histological assessments. Bone Jt Res 6:98–107CrossRef Kazemi D, Shams Asenjan K, Dehdilani N, Parsa H (2017) Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: macroscopic and histological assessments. Bone Jt Res 6:98–107CrossRef
36.
go back to reference Betsch M, Schneppendahl J, Thuns S et al (2013) Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PloS One 8:e71602CrossRefPubMedPubMedCentral Betsch M, Schneppendahl J, Thuns S et al (2013) Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PloS One 8:e71602CrossRefPubMedPubMedCentral
37.
go back to reference Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res Off Publ Orthop Res Soc 25:913–925CrossRef Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res Off Publ Orthop Res Soc 25:913–925CrossRef
38.
go back to reference Bornes TD, Adesida AB, Jomha NM (2018) Articular cartilage repair with mesenchymal stem cells after chondrogenic priming: a pilot study. Tissue Eng Part A 24(9–10):761–774CrossRefPubMed Bornes TD, Adesida AB, Jomha NM (2018) Articular cartilage repair with mesenchymal stem cells after chondrogenic priming: a pilot study. Tissue Eng Part A 24(9–10):761–774CrossRefPubMed
39.
go back to reference Nam HY, Karunanithi P, Loo WC et al (2013) The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther 15:R129CrossRefPubMedPubMedCentral Nam HY, Karunanithi P, Loo WC et al (2013) The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther 15:R129CrossRefPubMedPubMedCentral
40.
go back to reference Sato M, Uchida K, Nakajima H et al (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 14:R31CrossRefPubMedPubMedCentral Sato M, Uchida K, Nakajima H et al (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 14:R31CrossRefPubMedPubMedCentral
41.
go back to reference Bell AD, Hurtig MB, Quenneville E, Rivard GE, Hoemann CD (2017) Effect of a rapidly degrading presolidified 10 kDa chitosan/blood implant and subchondral marrow stimulation surgical approach on cartilage resurfacing in a sheep model. Cartilage 8:417–431CrossRefPubMed Bell AD, Hurtig MB, Quenneville E, Rivard GE, Hoemann CD (2017) Effect of a rapidly degrading presolidified 10 kDa chitosan/blood implant and subchondral marrow stimulation surgical approach on cartilage resurfacing in a sheep model. Cartilage 8:417–431CrossRefPubMed
42.
go back to reference Munoz-Criado I, Meseguer-Ripolles J, Mellado-Lopez M et al (2017) Human suprapatellar fat pad-derived mesenchymal stem cells induce chondrogenesis and cartilage repair in a model of severe osteoarthritis. Stem Cells Int 2017:4758930CrossRefPubMedPubMedCentral Munoz-Criado I, Meseguer-Ripolles J, Mellado-Lopez M et al (2017) Human suprapatellar fat pad-derived mesenchymal stem cells induce chondrogenesis and cartilage repair in a model of severe osteoarthritis. Stem Cells Int 2017:4758930CrossRefPubMedPubMedCentral
43.
go back to reference Park YB, Ha CW, Kim JA et al (2016) Effect of transplanting various concentrations of a composite of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel on articular cartilage repair in a rabbit model. PloS One 11:e0165446CrossRefPubMedPubMedCentral Park YB, Ha CW, Kim JA et al (2016) Effect of transplanting various concentrations of a composite of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel on articular cartilage repair in a rabbit model. PloS One 11:e0165446CrossRefPubMedPubMedCentral
44.
go back to reference Zhang Y, Liu S, Guo W et al (2018) Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(7):954–965CrossRef Zhang Y, Liu S, Guo W et al (2018) Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(7):954–965CrossRef
45.
go back to reference Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 23:178–187CrossRef Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 23:178–187CrossRef
46.
go back to reference Hindle P, Baily J, Khan N, Biant LC, Simpson AH, Peault B (2016) Perivascular mesenchymal stem cells in sheep: characterization and autologous transplantation in a model of articular cartilage repair. Stem Cells Dev 25:1659–1669CrossRefPubMed Hindle P, Baily J, Khan N, Biant LC, Simpson AH, Peault B (2016) Perivascular mesenchymal stem cells in sheep: characterization and autologous transplantation in a model of articular cartilage repair. Stem Cells Dev 25:1659–1669CrossRefPubMed
47.
go back to reference de Vries-van Melle ML, Narcisi R, Kops N et al (2014) Chondrogenesis of mesenchymal stem cells in an osteochondral environment is mediated by the subchondral bone. Tissue Eng Part A 20:23–33CrossRefPubMed de Vries-van Melle ML, Narcisi R, Kops N et al (2014) Chondrogenesis of mesenchymal stem cells in an osteochondral environment is mediated by the subchondral bone. Tissue Eng Part A 20:23–33CrossRefPubMed
48.
go back to reference Jiang L, Ma A, Song L et al (2014) Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model. J Tissue Eng Regen Med 8:896–905CrossRefPubMed Jiang L, Ma A, Song L et al (2014) Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model. J Tissue Eng Regen Med 8:896–905CrossRefPubMed
49.
go back to reference Fu WL, Zhou CY, Yu JK (2014) A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 42:592–601CrossRefPubMed Fu WL, Zhou CY, Yu JK (2014) A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 42:592–601CrossRefPubMed
50.
go back to reference Yoshioka T, Mishima H, Sakai S, Uemura T (2013) Long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells for large osteochondral defects in rabbit knees. Cartilage 4:339–344CrossRefPubMedPubMedCentral Yoshioka T, Mishima H, Sakai S, Uemura T (2013) Long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells for large osteochondral defects in rabbit knees. Cartilage 4:339–344CrossRefPubMedPubMedCentral
51.
go back to reference Sun Q, Zhang L, Xu T et al (2018) Combined use of adipose derived stem cells and TGF-beta3 microspheres promotes articular cartilage regeneration in vivo. Biotech Histochem 93(3):168–176CrossRefPubMed Sun Q, Zhang L, Xu T et al (2018) Combined use of adipose derived stem cells and TGF-beta3 microspheres promotes articular cartilage regeneration in vivo. Biotech Histochem 93(3):168–176CrossRefPubMed
52.
go back to reference Tsuchida AI, Beekhuizen M, Rutgers M et al (2012) Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res Ther 14:R262CrossRefPubMedPubMedCentral Tsuchida AI, Beekhuizen M, Rutgers M et al (2012) Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res Ther 14:R262CrossRefPubMedPubMedCentral
53.
go back to reference Ossendorff R, Grad S, Stoddart MJ et al (2018) Autologous chondrocyte implantation in osteoarthritic surroundings: TNFalpha and its inhibition by adalimumab in a knee-specific bioreactor. Am J Sports Med 46:431–440CrossRefPubMed Ossendorff R, Grad S, Stoddart MJ et al (2018) Autologous chondrocyte implantation in osteoarthritic surroundings: TNFalpha and its inhibition by adalimumab in a knee-specific bioreactor. Am J Sports Med 46:431–440CrossRefPubMed
54.
go back to reference Hingert D, Barreto Henriksson H, Brisby H (2018) Human mesenchymal stem cells pretreated with interleukin-1beta and stimulated with bone morphogenetic growth factor-3 enhance chondrogenesis. Tissue Eng Part A 24(9–10):775–785CrossRefPubMed Hingert D, Barreto Henriksson H, Brisby H (2018) Human mesenchymal stem cells pretreated with interleukin-1beta and stimulated with bone morphogenetic growth factor-3 enhance chondrogenesis. Tissue Eng Part A 24(9–10):775–785CrossRefPubMed
55.
go back to reference Madry H, Orth P, Kaul G et al (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130:1311–1322CrossRefPubMed Madry H, Orth P, Kaul G et al (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130:1311–1322CrossRefPubMed
56.
go back to reference Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Jt Surg Br Vol 89:672–685CrossRef Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Jt Surg Br Vol 89:672–685CrossRef
57.
go back to reference Deng MW, Wei SJ, Yew TL et al (2015) Cell therapy With G-CSF-mobilized stem cells in a rat osteoarthritis model. Cell Transplant 24:1085–1096CrossRefPubMed Deng MW, Wei SJ, Yew TL et al (2015) Cell therapy With G-CSF-mobilized stem cells in a rat osteoarthritis model. Cell Transplant 24:1085–1096CrossRefPubMed
58.
go back to reference Zhang X, Wu S, Naccarato T et al (2017) Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells. PloS One 12:e0180138CrossRefPubMedPubMedCentral Zhang X, Wu S, Naccarato T et al (2017) Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells. PloS One 12:e0180138CrossRefPubMedPubMedCentral
59.
go back to reference Lin S, Lee WYW, Feng Q et al (2017) Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Stem Cell Res Ther 8:221CrossRefPubMedPubMedCentral Lin S, Lee WYW, Feng Q et al (2017) Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Stem Cell Res Ther 8:221CrossRefPubMedPubMedCentral
60.
go back to reference Enders JT, Otto TJ, Peters HC et al (2010) A model for studying human articular cartilage integration in vitro. J Biomed Mater Res A 94:509–514PubMed Enders JT, Otto TJ, Peters HC et al (2010) A model for studying human articular cartilage integration in vitro. J Biomed Mater Res A 94:509–514PubMed
61.
go back to reference Igarashi T, Iwasaki N, Kawamura D et al (2012) Repair of articular cartilage defects with a novel injectable in situ forming material in a canine model. J Biomed Mater Res A 100:180–187CrossRefPubMed Igarashi T, Iwasaki N, Kawamura D et al (2012) Repair of articular cartilage defects with a novel injectable in situ forming material in a canine model. J Biomed Mater Res A 100:180–187CrossRefPubMed
62.
go back to reference Kitahara S, Nakagawa K, Sah RL et al (2008) In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite. Tissue Eng Part A 14:1905–1913CrossRefPubMed Kitahara S, Nakagawa K, Sah RL et al (2008) In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite. Tissue Eng Part A 14:1905–1913CrossRefPubMed
63.
go back to reference Saw KY, Hussin P, Loke SC et al (2009) Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 25:1391–1400CrossRef Saw KY, Hussin P, Loke SC et al (2009) Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 25:1391–1400CrossRef
64.
go back to reference Watts AE, Ackerman-Yost JC, Nixon AJ (2013) A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 19:2275–2283CrossRefPubMedPubMedCentral Watts AE, Ackerman-Yost JC, Nixon AJ (2013) A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 19:2275–2283CrossRefPubMedPubMedCentral
65.
go back to reference Ude CC, Sulaiman SB, Min-Hwei N et al (2014) Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PloS One 9:e98770CrossRefPubMedPubMedCentral Ude CC, Sulaiman SB, Min-Hwei N et al (2014) Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PloS One 9:e98770CrossRefPubMedPubMedCentral
66.
go back to reference Mehlhorn AT, Zwingmann J, Finkenzeller G et al (2009) Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A 15:1159–1167CrossRefPubMed Mehlhorn AT, Zwingmann J, Finkenzeller G et al (2009) Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A 15:1159–1167CrossRefPubMed
67.
go back to reference Mifune Y, Matsumoto T, Murasawa S et al (2013) Therapeutic superiority for cartilage repair by CD271-positive marrow stromal cell transplantation. Cell Transplant 22:1201–1211CrossRefPubMed Mifune Y, Matsumoto T, Murasawa S et al (2013) Therapeutic superiority for cartilage repair by CD271-positive marrow stromal cell transplantation. Cell Transplant 22:1201–1211CrossRefPubMed
68.
go back to reference Matsumoto T, Cooper GM, Gharaibeh B et al (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60:1390–1405CrossRefPubMedPubMedCentral Matsumoto T, Cooper GM, Gharaibeh B et al (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60:1390–1405CrossRefPubMedPubMedCentral
69.
go back to reference Shimomura K, Ando W, Tateishi K et al (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31:8004–8011CrossRefPubMed Shimomura K, Ando W, Tateishi K et al (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31:8004–8011CrossRefPubMed
70.
go back to reference Liu J, Nie H, Xu Z et al (2014) The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. PloS One 9:e111566CrossRefPubMedPubMedCentral Liu J, Nie H, Xu Z et al (2014) The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. PloS One 9:e111566CrossRefPubMedPubMedCentral
71.
go back to reference Diekman BO, Christoforou N, Willard VP et al (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci USA 109:19172–19177CrossRefPubMedPubMedCentral Diekman BO, Christoforou N, Willard VP et al (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci USA 109:19172–19177CrossRefPubMedPubMedCentral
72.
go back to reference Toh WS, Lee EH, Guo XM et al (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980CrossRefPubMed Toh WS, Lee EH, Guo XM et al (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980CrossRefPubMed
73.
go back to reference Williams R, Khan IM, Richardson K et al (2010) Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PloS One 5:e13246CrossRefPubMedPubMedCentral Williams R, Khan IM, Richardson K et al (2010) Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PloS One 5:e13246CrossRefPubMedPubMedCentral
74.
go back to reference Sato M, Yamato M, Hamahashi K, Okano T, Mochida J (2014) Articular cartilage regeneration using cell sheet technology. Anat Rec (Hoboken) 297:36–43CrossRef Sato M, Yamato M, Hamahashi K, Okano T, Mochida J (2014) Articular cartilage regeneration using cell sheet technology. Anat Rec (Hoboken) 297:36–43CrossRef
75.
go back to reference Ebihara G, Sato M, Yamato M et al (2012) Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 33:3846–3851CrossRefPubMed Ebihara G, Sato M, Yamato M et al (2012) Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 33:3846–3851CrossRefPubMed
76.
go back to reference Kim TK, Sharma B, Williams CG et al (2003) Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr Cartil OARS Osteoarthr Res Soc 11:653–664CrossRef Kim TK, Sharma B, Williams CG et al (2003) Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr Cartil OARS Osteoarthr Res Soc 11:653–664CrossRef
77.
go back to reference Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Jt Surg Am Vol 79:1439–1451CrossRef Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Jt Surg Am Vol 79:1439–1451CrossRef
78.
go back to reference Brehm W, Aklin B, Yamashita T et al (2006) Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1214–1226CrossRef Brehm W, Aklin B, Yamashita T et al (2006) Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1214–1226CrossRef
79.
go back to reference Frisbie DD, Bowman SM, Colhoun HA, DiCarlo EF, Kawcak CE, McIlwraith CW (2008) Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects: results at 12 and 18 months. Osteoarthr Cartil OARS Osteoarthr Res Soc 16:667–679CrossRef Frisbie DD, Bowman SM, Colhoun HA, DiCarlo EF, Kawcak CE, McIlwraith CW (2008) Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects: results at 12 and 18 months. Osteoarthr Cartil OARS Osteoarthr Res Soc 16:667–679CrossRef
80.
go back to reference Petersen JP, Ueblacker P, Goepfert C et al (2008) Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci Mater Med 19:2029–2038CrossRefPubMed Petersen JP, Ueblacker P, Goepfert C et al (2008) Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci Mater Med 19:2029–2038CrossRefPubMed
81.
go back to reference Breinan HA, Martin SD, Hsu HP, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res Off Publ Orthop Res Soc 18:781–789CrossRef Breinan HA, Martin SD, Hsu HP, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res Off Publ Orthop Res Soc 18:781–789CrossRef
82.
go back to reference Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H (2016) Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med 44:209–219CrossRefPubMed Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H (2016) Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med 44:209–219CrossRefPubMed
83.
go back to reference Zedde P, Cudoni S, Manunta L et al (2017) Second generation needling techniques for the treatment of chondral defects in animal model. Joints 5:27–33CrossRefPubMedPubMedCentral Zedde P, Cudoni S, Manunta L et al (2017) Second generation needling techniques for the treatment of chondral defects in animal model. Joints 5:27–33CrossRefPubMedPubMedCentral
84.
go back to reference Christensen BB, Foldager CB, Olesen ML, Hede KC, Lind M (2016) Implantation of autologous cartilage chips improves cartilage repair tissue quality in osteochondral defects: a study in gottingen minipigs. Am J Sports Med 44:1597–1604CrossRefPubMed Christensen BB, Foldager CB, Olesen ML, Hede KC, Lind M (2016) Implantation of autologous cartilage chips improves cartilage repair tissue quality in osteochondral defects: a study in gottingen minipigs. Am J Sports Med 44:1597–1604CrossRefPubMed
85.
go back to reference Baumbach K, Petersen JP, Ueblacker P et al (2008) The fate of osteochondral grafts after autologous osteochondral transplantation: a one-year follow-up study in a minipig model. Arch Orthop Trauma Surg 128:1255–1263CrossRefPubMed Baumbach K, Petersen JP, Ueblacker P et al (2008) The fate of osteochondral grafts after autologous osteochondral transplantation: a one-year follow-up study in a minipig model. Arch Orthop Trauma Surg 128:1255–1263CrossRefPubMed
86.
go back to reference Kleemann RU, Schell H, Thompson M, Epari DR, Duda GN, Weiler A (2007) Mechanical behavior of articular cartilage after osteochondral autograft transfer in an ovine model. Am J Sports Med 35:555–563CrossRefPubMed Kleemann RU, Schell H, Thompson M, Epari DR, Duda GN, Weiler A (2007) Mechanical behavior of articular cartilage after osteochondral autograft transfer in an ovine model. Am J Sports Med 35:555–563CrossRefPubMed
87.
go back to reference Nakaji N, Fujioka H, Nagura I et al (2006) The structural properties of an osteochondral cylinder graft-recipient construct on autologous osteochondral transplantation. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 22:422–427CrossRef Nakaji N, Fujioka H, Nagura I et al (2006) The structural properties of an osteochondral cylinder graft-recipient construct on autologous osteochondral transplantation. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 22:422–427CrossRef
88.
go back to reference Smyth NA, Ross KA, Haleem AM et al (2018) Platelet-rich plasma and hyaluronic acid are not synergistic when used as biological adjuncts with autologous osteochondral transplantation. Cartilage 9(3):321–328CrossRefPubMed Smyth NA, Ross KA, Haleem AM et al (2018) Platelet-rich plasma and hyaluronic acid are not synergistic when used as biological adjuncts with autologous osteochondral transplantation. Cartilage 9(3):321–328CrossRefPubMed
89.
go back to reference Bonasia DE, Martin JA, Marmotti A et al (2016) The use of autologous adult, allogenic juvenile, and combined juvenile-adult cartilage fragments for the repair of chondral defects. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:3988–3996CrossRef Bonasia DE, Martin JA, Marmotti A et al (2016) The use of autologous adult, allogenic juvenile, and combined juvenile-adult cartilage fragments for the repair of chondral defects. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:3988–3996CrossRef
90.
go back to reference Gelse K, Riedel D, Pachowsky M, Hennig FF, Trattnig S, Welsch GH (2015) Limited integrative repair capacity of native cartilage autografts within cartilage defects in a sheep model. J Orthop Res Off Publ Orthop Res Soc 33:390–397CrossRef Gelse K, Riedel D, Pachowsky M, Hennig FF, Trattnig S, Welsch GH (2015) Limited integrative repair capacity of native cartilage autografts within cartilage defects in a sheep model. J Orthop Res Off Publ Orthop Res Soc 33:390–397CrossRef
91.
go back to reference Guillen-Garcia P, Rodriguez-Inigo E, Guillen-Vicente I et al (2014) Increasing the dose of autologous chondrocytes improves articular cartilage repair: histological and molecular study in the sheep animal model. Cartilage 5:114–122CrossRefPubMedPubMedCentral Guillen-Garcia P, Rodriguez-Inigo E, Guillen-Vicente I et al (2014) Increasing the dose of autologous chondrocytes improves articular cartilage repair: histological and molecular study in the sheep animal model. Cartilage 5:114–122CrossRefPubMedPubMedCentral
92.
go back to reference Nixon AJ, Begum L, Mohammed HO, Huibregtse B, O’Callaghan MM, Matthews GL (2011) Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model. J Orthop Res Off Publ Orthop Res Soc 29:1121–1130CrossRef Nixon AJ, Begum L, Mohammed HO, Huibregtse B, O’Callaghan MM, Matthews GL (2011) Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model. J Orthop Res Off Publ Orthop Res Soc 29:1121–1130CrossRef
93.
go back to reference Aroen A, Heir S, Loken S, Engebretsen L, Reinholt FP (2006) Healing of articular cartilage defects. An experimental study of vascular and minimal vascular microenvironment. J Orthop Res Off Publ Orthop Res Soc 24:1069–1077CrossRef Aroen A, Heir S, Loken S, Engebretsen L, Reinholt FP (2006) Healing of articular cartilage defects. An experimental study of vascular and minimal vascular microenvironment. J Orthop Res Off Publ Orthop Res Soc 24:1069–1077CrossRef
94.
go back to reference Chen H, Chevrier A, Hoemann CD, Sun J, Picard G, Buschmann MD (2013) Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model. J Orthop Res Off Publ Orthop Res Soc 31:1757–1764CrossRef Chen H, Chevrier A, Hoemann CD, Sun J, Picard G, Buschmann MD (2013) Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model. J Orthop Res Off Publ Orthop Res Soc 31:1757–1764CrossRef
95.
go back to reference Lee JM, Kim BS, Lee H, Im GI (2012) In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol Ther 20:1434–1442CrossRefPubMedPubMedCentral Lee JM, Kim BS, Lee H, Im GI (2012) In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol Ther 20:1434–1442CrossRefPubMedPubMedCentral
96.
go back to reference Chen J, Wang F, Zhang Y et al (2012) In vivo tracking of superparamagnetic iron oxide nanoparticle labeled chondrocytes in large animal model. Ann Biomed Eng 40:2568–2578CrossRefPubMed Chen J, Wang F, Zhang Y et al (2012) In vivo tracking of superparamagnetic iron oxide nanoparticle labeled chondrocytes in large animal model. Ann Biomed Eng 40:2568–2578CrossRefPubMed
97.
go back to reference Hori J, Deie M, Kobayashi T, Yasunaga Y, Kawamata S, Ochi M (2011) Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J Orthop Res Off Publ Orthop Res Soc 29:531–538CrossRef Hori J, Deie M, Kobayashi T, Yasunaga Y, Kawamata S, Ochi M (2011) Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J Orthop Res Off Publ Orthop Res Soc 29:531–538CrossRef
98.
go back to reference Robinson D, Guetsky M, Halperin R, Schneider D, Nevo Z (2002) Articular cartilage reconstruction using xenogeneic epiphyses slices. Cell Tissue Bank 3:269–277CrossRefPubMed Robinson D, Guetsky M, Halperin R, Schneider D, Nevo Z (2002) Articular cartilage reconstruction using xenogeneic epiphyses slices. Cell Tissue Bank 3:269–277CrossRefPubMed
99.
go back to reference Ramallal M, Maneiro E, Lopez E et al (2004) Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen 12:337–345CrossRefPubMed Ramallal M, Maneiro E, Lopez E et al (2004) Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen 12:337–345CrossRefPubMed
100.
go back to reference Stone KR, Walgenbach AW, Abrams JT, Nelson J, Gillett N, Galili U (1997) Porcine and bovine cartilage transplants in cynomolgus monkey: I. A model for chronic xenograft rejection. Transplantation 63:640–645CrossRefPubMed Stone KR, Walgenbach AW, Abrams JT, Nelson J, Gillett N, Galili U (1997) Porcine and bovine cartilage transplants in cynomolgus monkey: I. A model for chronic xenograft rejection. Transplantation 63:640–645CrossRefPubMed
101.
go back to reference Prado D, Fuentes-Boquete IM, Blanco FJ (2012) In vitro repair model of focal articular cartilage defects in humans. Methods Mol Biol 885:251–261CrossRefPubMed Prado D, Fuentes-Boquete IM, Blanco FJ (2012) In vitro repair model of focal articular cartilage defects in humans. Methods Mol Biol 885:251–261CrossRefPubMed
102.
go back to reference Marquina M, Collado JA, Perez-Cruz M et al (2017) Biodistribution and immunogenicity of allogeneic mesenchymal stem cells in a rat model of intraarticular chondrocyte xenotransplantation. Front Immunol 8:1465CrossRefPubMedPubMedCentral Marquina M, Collado JA, Perez-Cruz M et al (2017) Biodistribution and immunogenicity of allogeneic mesenchymal stem cells in a rat model of intraarticular chondrocyte xenotransplantation. Front Immunol 8:1465CrossRefPubMedPubMedCentral
103.
go back to reference Pallante AL, Gortz S, Chen AC et al (2012) Treatment of articular cartilage defects in the goat with frozen versus fresh osteochondral allografts: effects on cartilage stiffness, zonal composition, and structure at six months. J Bone Jt Surg Am Vol 94:1984–1995CrossRef Pallante AL, Gortz S, Chen AC et al (2012) Treatment of articular cartilage defects in the goat with frozen versus fresh osteochondral allografts: effects on cartilage stiffness, zonal composition, and structure at six months. J Bone Jt Surg Am Vol 94:1984–1995CrossRef
104.
go back to reference Shibuya N, Imai Y, Lee YS, Kochi T, Tachi M (2014) Acute rejection of knee joint articular cartilage in a rat composite tissue allotransplantation model. J Bone Jt Surg Am Vol 96:1033–1039CrossRef Shibuya N, Imai Y, Lee YS, Kochi T, Tachi M (2014) Acute rejection of knee joint articular cartilage in a rat composite tissue allotransplantation model. J Bone Jt Surg Am Vol 96:1033–1039CrossRef
105.
go back to reference Jing L, Zhang J, Leng H, Guo Q, Hu Y (2015) Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23:1119–1127CrossRef Jing L, Zhang J, Leng H, Guo Q, Hu Y (2015) Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23:1119–1127CrossRef
106.
go back to reference Baragi VM, Renkiewicz RR, Qiu L et al (1997) Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthr Cartil OARS Osteoarthr Res Soc 5:275–282CrossRef Baragi VM, Renkiewicz RR, Qiu L et al (1997) Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthr Cartil OARS Osteoarthr Res Soc 5:275–282CrossRef
107.
go back to reference Huwe LW, Brown WE, Hu JC, Athanasiou KA (2018) Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J Tissue Eng Regen Med 12(5):1163–1176CrossRefPubMedPubMedCentral Huwe LW, Brown WE, Hu JC, Athanasiou KA (2018) Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J Tissue Eng Regen Med 12(5):1163–1176CrossRefPubMedPubMedCentral
108.
go back to reference Wong CC, Chen CH, Chiu LH et al (2018) Facilitating in vivo articular cartilage repair by tissue-engineered cartilage grafts produced from auricular chondrocytes. Am J Sports Med 46(3):713–727CrossRefPubMed Wong CC, Chen CH, Chiu LH et al (2018) Facilitating in vivo articular cartilage repair by tissue-engineered cartilage grafts produced from auricular chondrocytes. Am J Sports Med 46(3):713–727CrossRefPubMed
109.
go back to reference Olofsson LB, Svensson O, Lorentzon R, Lindstrom I, Alfredson H (2007) Periosteal transplantation to the rabbit patella. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 15:560–563CrossRef Olofsson LB, Svensson O, Lorentzon R, Lindstrom I, Alfredson H (2007) Periosteal transplantation to the rabbit patella. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 15:560–563CrossRef
110.
go back to reference Turhan AU, Aynaci O, Turgutalp H, Aydin H (1999) Treatment of osteochondral defects with tendon autografts in a dog knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 7:64–68CrossRef Turhan AU, Aynaci O, Turgutalp H, Aydin H (1999) Treatment of osteochondral defects with tendon autografts in a dog knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 7:64–68CrossRef
111.
go back to reference Pretzel D, Linss S, Ahrem H et al (2013) A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res Ther 15:R59CrossRefPubMedPubMedCentral Pretzel D, Linss S, Ahrem H et al (2013) A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res Ther 15:R59CrossRefPubMedPubMedCentral
112.
113.
go back to reference Coburn J, Gibson M, Bandalini PA et al (2011) Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst 7:213–222CrossRefPubMedPubMedCentral Coburn J, Gibson M, Bandalini PA et al (2011) Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst 7:213–222CrossRefPubMedPubMedCentral
114.
go back to reference Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res Off Publ Orthop Res Soc 28:116–124 Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res Off Publ Orthop Res Soc 28:116–124
115.
go back to reference Sartori M, Pagani S, Ferrari A et al (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70:101–111CrossRefPubMed Sartori M, Pagani S, Ferrari A et al (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70:101–111CrossRefPubMed
116.
go back to reference Gille J, Kunow J, Boisch L et al (2010) Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular cartilage defects: a histological and biomechanical study in sheep. Cartilage 1:29–42CrossRefPubMedPubMedCentral Gille J, Kunow J, Boisch L et al (2010) Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular cartilage defects: a histological and biomechanical study in sheep. Cartilage 1:29–42CrossRefPubMedPubMedCentral
117.
go back to reference Kon E, Filardo G, Robinson D et al (2014) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1452–1464CrossRef Kon E, Filardo G, Robinson D et al (2014) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1452–1464CrossRef
118.
go back to reference Ronken S, Wirz D, Daniels AU, Kurokawa T, Gong JP, Arnold MP (2013) Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech Model Mechanobiol 12:243–248CrossRefPubMed Ronken S, Wirz D, Daniels AU, Kurokawa T, Gong JP, Arnold MP (2013) Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech Model Mechanobiol 12:243–248CrossRefPubMed
119.
go back to reference Higa K, Kitamura N, Goto K et al (2017) Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskelet Disord 18:210CrossRefPubMedPubMedCentral Higa K, Kitamura N, Goto K et al (2017) Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskelet Disord 18:210CrossRefPubMedPubMedCentral
120.
go back to reference Miljkovic ND, Lin YC, Cherubino M, Minteer D, Marra KG (2009) A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 17:1326–1331CrossRef Miljkovic ND, Lin YC, Cherubino M, Minteer D, Marra KG (2009) A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 17:1326–1331CrossRef
121.
go back to reference Pound JC, Green DW, Roach HI, Mann S, Oreffo RO (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849CrossRefPubMed Pound JC, Green DW, Roach HI, Mann S, Oreffo RO (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849CrossRefPubMed
122.
go back to reference Hoemann CD, Hurtig M, Rossomacha E et al (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Jt Surg Am Vol 87:2671–2686CrossRef Hoemann CD, Hurtig M, Rossomacha E et al (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Jt Surg Am Vol 87:2671–2686CrossRef
123.
go back to reference Nagura I, Fujioka H, Kokubu T, Makino T, Sumi Y, Kurosaka M (2007) Repair of osteochondral defects with a new porous synthetic polymer scaffold. J Bone Jt Surg Br Vol 89:258–264CrossRef Nagura I, Fujioka H, Kokubu T, Makino T, Sumi Y, Kurosaka M (2007) Repair of osteochondral defects with a new porous synthetic polymer scaffold. J Bone Jt Surg Br Vol 89:258–264CrossRef
124.
go back to reference Huang X, Yang D, Yan W et al (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials 28:3091–3100CrossRefPubMed Huang X, Yang D, Yan W et al (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials 28:3091–3100CrossRefPubMed
125.
go back to reference Williams RJ, Gamradt SC (2008) Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect 57:563–571PubMed Williams RJ, Gamradt SC (2008) Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect 57:563–571PubMed
126.
go back to reference Woodfield TB, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J (2005) Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 11:1297–1311CrossRefPubMed Woodfield TB, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J (2005) Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 11:1297–1311CrossRefPubMed
127.
go back to reference Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75:156–167CrossRefPubMed Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75:156–167CrossRefPubMed
128.
go back to reference Hunter CJ, Levenston ME (2004) Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng 10:736–746CrossRefPubMed Hunter CJ, Levenston ME (2004) Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng 10:736–746CrossRefPubMed
129.
go back to reference Yang Q, Peng J, Lu SB et al (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J (Engl) 124:3930–3938 Yang Q, Peng J, Lu SB et al (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J (Engl) 124:3930–3938
130.
go back to reference Erggelet C, Endres M, Neumann K et al (2009) Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res Off Publ Orthop Res Soc 27:1353–1360CrossRef Erggelet C, Endres M, Neumann K et al (2009) Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res Off Publ Orthop Res Soc 27:1353–1360CrossRef
131.
go back to reference Christensen BB, Foldager CB, Hansen OM et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:1192–1204CrossRef Christensen BB, Foldager CB, Hansen OM et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:1192–1204CrossRef
132.
go back to reference Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3:1–10CrossRefPubMedPubMedCentral Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3:1–10CrossRefPubMedPubMedCentral
133.
go back to reference Schagemann JC, Rudert N, Taylor ME et al (2016) Bilayer implants: electromechanical assessment of regenerated articular cartilage in a sheep model. Cartilage 7:346–360CrossRefPubMedPubMedCentral Schagemann JC, Rudert N, Taylor ME et al (2016) Bilayer implants: electromechanical assessment of regenerated articular cartilage in a sheep model. Cartilage 7:346–360CrossRefPubMedPubMedCentral
134.
go back to reference Zylinska B, Stodolak-Zych E, Sobczynska-Rak A et al (2017) Osteochondral repair using porous three-dimensional nanocomposite scaffolds in a rabbit model. In Vivo 31:895–903PubMedPubMedCentral Zylinska B, Stodolak-Zych E, Sobczynska-Rak A et al (2017) Osteochondral repair using porous three-dimensional nanocomposite scaffolds in a rabbit model. In Vivo 31:895–903PubMedPubMedCentral
135.
go back to reference Mrosek EH, Chung HW, Fitzsimmons JS, O’Driscoll SW, Reinholz GG, Schagemann JC (2016) Porous tantalum biocomposites for osteochondral defect repair: a follow-up study in a sheep model. Bone Jt Res 5:403–411CrossRef Mrosek EH, Chung HW, Fitzsimmons JS, O’Driscoll SW, Reinholz GG, Schagemann JC (2016) Porous tantalum biocomposites for osteochondral defect repair: a follow-up study in a sheep model. Bone Jt Res 5:403–411CrossRef
136.
go back to reference Lin X, Chen J, Qiu P et al (2018) Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):433–444CrossRef Lin X, Chen J, Qiu P et al (2018) Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):433–444CrossRef
137.
go back to reference Dresing I, Zeiter S, Auer J, Alini M, Eglin D (2014) Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. J MATER SCI MATER MED 25:1691–1700CrossRefPubMed Dresing I, Zeiter S, Auer J, Alini M, Eglin D (2014) Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. J MATER SCI MATER MED 25:1691–1700CrossRefPubMed
138.
go back to reference Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24(7):2380–2387CrossRef Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24(7):2380–2387CrossRef
139.
go back to reference Brix M, Kaipel M, Kellner R et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40(3):625–632CrossRefPubMed Brix M, Kaipel M, Kellner R et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40(3):625–632CrossRefPubMed
140.
go back to reference Verhaegen J, Clockaerts S, Van Osch GJ, Somville J, Verdonk P, Mertens P (2015) TruFit plug for repair of osteochondral defects-where is the evidence? Systematic review of literature. Cartilage 6:12–19CrossRefPubMedPubMedCentral Verhaegen J, Clockaerts S, Van Osch GJ, Somville J, Verdonk P, Mertens P (2015) TruFit plug for repair of osteochondral defects-where is the evidence? Systematic review of literature. Cartilage 6:12–19CrossRefPubMedPubMedCentral
141.
go back to reference Nettles DL, Kitaoka K, Hanson NA et al (2008) In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng Part A 14:1133–1140CrossRefPubMedPubMedCentral Nettles DL, Kitaoka K, Hanson NA et al (2008) In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng Part A 14:1133–1140CrossRefPubMedPubMedCentral
142.
go back to reference Nakanishi T, Kawasaki K, Uchio Y, Kataoka H, Terashima M, Ochi M (2002) AG-041R, a cholecystokinin-B/gastrin receptor antagonist, stimulates the repair of osteochondral defect in rabbit model. Eur J Pharmacol 439:135–140CrossRefPubMed Nakanishi T, Kawasaki K, Uchio Y, Kataoka H, Terashima M, Ochi M (2002) AG-041R, a cholecystokinin-B/gastrin receptor antagonist, stimulates the repair of osteochondral defect in rabbit model. Eur J Pharmacol 439:135–140CrossRefPubMed
143.
go back to reference Levato R, Webb WR, Otto IA et al (2017) The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater 61:41–53CrossRefPubMedPubMedCentral Levato R, Webb WR, Otto IA et al (2017) The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater 61:41–53CrossRefPubMedPubMedCentral
144.
go back to reference Caterson EJ, Li WJ, Nesti LJ, Albert T, Danielson K, Tuan RS (2002) Polymer/alginate amalgam for cartilage-tissue engineering. Ann N Y Acad Sci 961:134–138CrossRefPubMed Caterson EJ, Li WJ, Nesti LJ, Albert T, Danielson K, Tuan RS (2002) Polymer/alginate amalgam for cartilage-tissue engineering. Ann N Y Acad Sci 961:134–138CrossRefPubMed
145.
go back to reference Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995) Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29:1147–1154CrossRefPubMed Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995) Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29:1147–1154CrossRefPubMed
146.
go back to reference Dounchis JS, Bae WC, Chen AC, Sah RL, Coutts RD, Amiel D (2000) Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res (377):248–264 Dounchis JS, Bae WC, Chen AC, Sah RL, Coutts RD, Amiel D (2000) Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res (377):248–264
147.
go back to reference Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W (2014) Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1424–1433CrossRef Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W (2014) Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1424–1433CrossRef
148.
go back to reference Shi J, Zhang X, Zeng X et al (2012) One-step articular cartilage repair: combination of in situ bone marrow stem cells with cell-free poly(l-lactic-co-glycolic acid) scaffold in a rabbit model. Orthopedics 35:e665–e671CrossRefPubMed Shi J, Zhang X, Zeng X et al (2012) One-step articular cartilage repair: combination of in situ bone marrow stem cells with cell-free poly(l-lactic-co-glycolic acid) scaffold in a rabbit model. Orthopedics 35:e665–e671CrossRefPubMed
149.
go back to reference Guo X, Wang C, Zhang Y et al (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 10:1818–1829CrossRefPubMed Guo X, Wang C, Zhang Y et al (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 10:1818–1829CrossRefPubMed
150.
151.
go back to reference Theodoropoulos JS, De Croos JN, Park SS, Pilliar R, Kandel RA (2011) Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin Orthop Relat Res 469:2785–2795CrossRefPubMedPubMedCentral Theodoropoulos JS, De Croos JN, Park SS, Pilliar R, Kandel RA (2011) Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin Orthop Relat Res 469:2785–2795CrossRefPubMedPubMedCentral
152.
go back to reference Vinardell T, Thorpe SD, Buckley CT, Kelly DJ (2009) Chondrogenesis and integration of mesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng 37:2556–2565CrossRefPubMed Vinardell T, Thorpe SD, Buckley CT, Kelly DJ (2009) Chondrogenesis and integration of mesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng 37:2556–2565CrossRefPubMed
153.
go back to reference Russlies M, Behrens P, Wunsch L, Gille J, Ehlers EM (2002) A cell-seeded biocomposite for cartilage repair. Ann Anat 184:317–323CrossRefPubMed Russlies M, Behrens P, Wunsch L, Gille J, Ehlers EM (2002) A cell-seeded biocomposite for cartilage repair. Ann Anat 184:317–323CrossRefPubMed
154.
go back to reference Ito Y, Ochi M, Adachi N et al (2005) Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 21:1155–1163CrossRef Ito Y, Ochi M, Adachi N et al (2005) Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 21:1155–1163CrossRef
155.
go back to reference Schinhan M, Gruber M, Dorotka R et al (2013) Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:217–225CrossRef Schinhan M, Gruber M, Dorotka R et al (2013) Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:217–225CrossRef
156.
go back to reference Chang CH, Kuo TF, Lin CC et al (2006) Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27:1876–1888CrossRefPubMed Chang CH, Kuo TF, Lin CC et al (2006) Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27:1876–1888CrossRefPubMed
157.
go back to reference Arumugam S, Bhupesh Karthik B, Chinnuswami R et al (2017) Transplantation of autologous chondrocytes ex-vivo expanded using thermoreversible gelation polymer in a rabbit model of articular cartilage defect. J Orthop 14:223–225CrossRefPubMedPubMedCentral Arumugam S, Bhupesh Karthik B, Chinnuswami R et al (2017) Transplantation of autologous chondrocytes ex-vivo expanded using thermoreversible gelation polymer in a rabbit model of articular cartilage defect. J Orthop 14:223–225CrossRefPubMedPubMedCentral
158.
go back to reference Nixon AJ, Sparks HD, Begum L et al (2017) Matrix-Induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J Bone Jt Surg Am Vol 99:1987–1998CrossRef Nixon AJ, Sparks HD, Begum L et al (2017) Matrix-Induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J Bone Jt Surg Am Vol 99:1987–1998CrossRef
159.
go back to reference Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S (2005) Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 26:3617–3629CrossRefPubMed Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S (2005) Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 26:3617–3629CrossRefPubMed
160.
go back to reference Fortier LA, Chapman HS, Pownder SL et al (2016) BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med 44:2366–2374CrossRefPubMed Fortier LA, Chapman HS, Pownder SL et al (2016) BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med 44:2366–2374CrossRefPubMed
161.
go back to reference Sarem M, Arya N, Heizmann M et al (2018) Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomater 69:83–94CrossRefPubMed Sarem M, Arya N, Heizmann M et al (2018) Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomater 69:83–94CrossRefPubMed
162.
go back to reference Schlichting K, Schell H, Kleemann RU et al (2008) Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36:2379–2391CrossRefPubMed Schlichting K, Schell H, Kleemann RU et al (2008) Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36:2379–2391CrossRefPubMed
163.
go back to reference Vikingsson L, Gallego Ferrer G, Gomez-Tejedor JA, Gomez Ribelles JL (2014) An “in vitro” experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131CrossRefPubMed Vikingsson L, Gallego Ferrer G, Gomez-Tejedor JA, Gomez Ribelles JL (2014) An “in vitro” experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131CrossRefPubMed
164.
go back to reference Friedman JM, Sennett ML, Bonadio MB et al (2018) Comparison of fixation techniques of 3D-woven poly(-caprolactone) scaffolds for cartilage repair in a weightbearing porcine large animal model. Cartilage 9(4):428–437CrossRefPubMed Friedman JM, Sennett ML, Bonadio MB et al (2018) Comparison of fixation techniques of 3D-woven poly(-caprolactone) scaffolds for cartilage repair in a weightbearing porcine large animal model. Cartilage 9(4):428–437CrossRefPubMed
165.
go back to reference Efe T, Fuglein A, Heyse TJ et al (2012) Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:210–215CrossRef Efe T, Fuglein A, Heyse TJ et al (2012) Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:210–215CrossRef
166.
go back to reference Chen W, Chen S, Morsi Y et al (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8:24415–24425CrossRefPubMed Chen W, Chen S, Morsi Y et al (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8:24415–24425CrossRefPubMed
167.
go back to reference Marmotti A, Bruzzone M, Bonasia DE et al (2012) One-step osteochondral repair with cartilage fragments in a composite scaffold. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:2590–2601CrossRef Marmotti A, Bruzzone M, Bonasia DE et al (2012) One-step osteochondral repair with cartilage fragments in a composite scaffold. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:2590–2601CrossRef
168.
go back to reference Desando G, Cavallo C, Tschon M et al (2012) Early-term effect of adult chondrocyte transplantation in an osteoarthritis animal model. Tissue Eng Part A 18:1617–1627CrossRefPubMed Desando G, Cavallo C, Tschon M et al (2012) Early-term effect of adult chondrocyte transplantation in an osteoarthritis animal model. Tissue Eng Part A 18:1617–1627CrossRefPubMed
169.
go back to reference Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818CrossRefPubMed Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818CrossRefPubMed
170.
go back to reference Custers RJ, Dhert WJ, Saris DB et al (2010) Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants. Osteoarthr Cartil OARS Osteoarthr Res Soc 18:377–388CrossRef Custers RJ, Dhert WJ, Saris DB et al (2010) Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants. Osteoarthr Cartil OARS Osteoarthr Res Soc 18:377–388CrossRef
172.
go back to reference Pappa AK, Soleimani S, Caballero M, Halevi AE, van Aalst JA (2017) A pilot study comparing mechanical properties of tissue-engineered cartilages and various endogenous cartilages. Clin Biomech (Bristol Avon) 50:105–109CrossRef Pappa AK, Soleimani S, Caballero M, Halevi AE, van Aalst JA (2017) A pilot study comparing mechanical properties of tissue-engineered cartilages and various endogenous cartilages. Clin Biomech (Bristol Avon) 50:105–109CrossRef
173.
go back to reference Juhasz T, Matta C, Somogyi C et al (2014) Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal 26:468–482CrossRefPubMed Juhasz T, Matta C, Somogyi C et al (2014) Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal 26:468–482CrossRefPubMed
174.
go back to reference van Haaften EE, Ito K, van Donkelaar CC (2017) The initial repair response of articular cartilage after mechanically induced damage. J Orthop Res Off Publ Orthop Res Soc 35:1265–1273CrossRef van Haaften EE, Ito K, van Donkelaar CC (2017) The initial repair response of articular cartilage after mechanically induced damage. J Orthop Res Off Publ Orthop Res Soc 35:1265–1273CrossRef
175.
go back to reference Theodoropoulos JS, DeCroos AJ, Petrera M, Park S, Kandel RA (2016) Mechanical stimulation enhances integration in an in vitro model of cartilage repair. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:2055–2064CrossRef Theodoropoulos JS, DeCroos AJ, Petrera M, Park S, Kandel RA (2016) Mechanical stimulation enhances integration in an in vitro model of cartilage repair. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:2055–2064CrossRef
176.
go back to reference Wang S, Bao Y, Guan Y et al (2018) Strain distribution of repaired articular cartilage defects by tissue engineering under compression loading. J Orthop Surg Res 13:19CrossRefPubMedPubMedCentral Wang S, Bao Y, Guan Y et al (2018) Strain distribution of repaired articular cartilage defects by tissue engineering under compression loading. J Orthop Surg Res 13:19CrossRefPubMedPubMedCentral
177.
go back to reference Nishino T, Ishii T, Chang F et al (2010) Effect of gradual weight-bearing on regenerated articular cartilage after joint distraction and motion in a rabbit model. J Orthop Res Off Publ Orthop Res Soc 28:600–606 Nishino T, Ishii T, Chang F et al (2010) Effect of gradual weight-bearing on regenerated articular cartilage after joint distraction and motion in a rabbit model. J Orthop Res Off Publ Orthop Res Soc 28:600–606
178.
go back to reference Tagil M, Aspenberg P (1999) Cartilage induction by controlled mechanical stimulation in vivo. J Orthop Res Off Publ Orthop Res Soc 17:200–204CrossRef Tagil M, Aspenberg P (1999) Cartilage induction by controlled mechanical stimulation in vivo. J Orthop Res Off Publ Orthop Res Soc 17:200–204CrossRef
179.
go back to reference Nishino T, Chang F, Ishii T, Yanai T, Mishima H, Ochiai N (2010) Joint distraction and movement for repair of articular cartilage in a rabbit model with subsequent weight-bearing. J Bone Jt Surg Br Vol 92:1033–1040CrossRef Nishino T, Chang F, Ishii T, Yanai T, Mishima H, Ochiai N (2010) Joint distraction and movement for repair of articular cartilage in a rabbit model with subsequent weight-bearing. J Bone Jt Surg Br Vol 92:1033–1040CrossRef
180.
go back to reference Wiegant K, Intema F, van Roermund PM et al (2015) Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis. Arthritis Rheumatol 67:465–474CrossRefPubMed Wiegant K, Intema F, van Roermund PM et al (2015) Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis. Arthritis Rheumatol 67:465–474CrossRefPubMed
181.
go back to reference Raimondi MT, Boschetti F, Falcone L et al (2002) Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech Model Mechanobiol 1:69–82CrossRefPubMed Raimondi MT, Boschetti F, Falcone L et al (2002) Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech Model Mechanobiol 1:69–82CrossRefPubMed
182.
go back to reference Wu Y, Stoddart MJ, Wuertz-Kozak K, Grad S, Alini M, Ferguson SJ (2017) Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading. J R Soc Interface 14(133):255–259CrossRef Wu Y, Stoddart MJ, Wuertz-Kozak K, Grad S, Alini M, Ferguson SJ (2017) Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading. J R Soc Interface 14(133):255–259CrossRef
183.
go back to reference Yamasaki T, Yasunaga Y, Oshima S, Ochi M (2016) Healing potential of the cartilage correlates with location on the femoral head: a basic research using a rabbit model. Hip Int 26:31–35CrossRefPubMed Yamasaki T, Yasunaga Y, Oshima S, Ochi M (2016) Healing potential of the cartilage correlates with location on the femoral head: a basic research using a rabbit model. Hip Int 26:31–35CrossRefPubMed
184.
go back to reference Mendelson S, Wooley P, Lucas D, Markel D (2004) The effect of hyaluronic acid on a rabbit model of full-thickness cartilage repair. Clin Orthop Relat Res (424):266–271 Mendelson S, Wooley P, Lucas D, Markel D (2004) The effect of hyaluronic acid on a rabbit model of full-thickness cartilage repair. Clin Orthop Relat Res (424):266–271
185.
go back to reference Nazempour A, Quisenberry CR, Van Wie BJ, Abu-Lail NI (2016) Nanomechanics of engineered articular cartilage: synergistic influences of transforming growth factor-beta3 and oscillating pressure. J Nanosci Nanotechnol 16:3136–3145CrossRefPubMedPubMedCentral Nazempour A, Quisenberry CR, Van Wie BJ, Abu-Lail NI (2016) Nanomechanics of engineered articular cartilage: synergistic influences of transforming growth factor-beta3 and oscillating pressure. J Nanosci Nanotechnol 16:3136–3145CrossRefPubMedPubMedCentral
186.
go back to reference Boopalan PR, Arumugam S, Livingston A, Mohanty M, Chittaranjan S (2011) Pulsed electromagnetic field therapy results in healing of full thickness articular cartilage defect. Int Orthop 35:143–148CrossRefPubMed Boopalan PR, Arumugam S, Livingston A, Mohanty M, Chittaranjan S (2011) Pulsed electromagnetic field therapy results in healing of full thickness articular cartilage defect. Int Orthop 35:143–148CrossRefPubMed
187.
go back to reference Yang SW, Kuo CL, Chang SJ et al (2014) Does low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study. BMC Musculoskelet Disord 15:36CrossRefPubMedPubMedCentral Yang SW, Kuo CL, Chang SJ et al (2014) Does low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study. BMC Musculoskelet Disord 15:36CrossRefPubMedPubMedCentral
188.
go back to reference Raimondi MT, Bonacina E, Candiani G et al (2011) Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model. Biomech Model Mechanobiol 10:259–268CrossRefPubMed Raimondi MT, Bonacina E, Candiani G et al (2011) Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model. Biomech Model Mechanobiol 10:259–268CrossRefPubMed
189.
go back to reference Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12:2509–2519CrossRefPubMed Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12:2509–2519CrossRefPubMed
190.
go back to reference Wilson W, Driessen NJ, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1196–1202CrossRef Wilson W, Driessen NJ, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1196–1202CrossRef
191.
go back to reference Bandeiras C, Completo A (2017) A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech Model Mechanobiol 16:651–666CrossRefPubMed Bandeiras C, Completo A (2017) A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech Model Mechanobiol 16:651–666CrossRefPubMed
192.
go back to reference O’Reilly A, Kelly DJ (2016) Unravelling the role of mechanical stimuli in regulating cell fate during osteochondral defect repair. Ann Biomed Eng 44:3446–3459CrossRefPubMed O’Reilly A, Kelly DJ (2016) Unravelling the role of mechanical stimuli in regulating cell fate during osteochondral defect repair. Ann Biomed Eng 44:3446–3459CrossRefPubMed
193.
go back to reference Appelman TP, Mizrahi J, Seliktar D (2011) A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation. J Biomech Eng 133:041010CrossRefPubMed Appelman TP, Mizrahi J, Seliktar D (2011) A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation. J Biomech Eng 133:041010CrossRefPubMed
194.
go back to reference O’Reilly A, Kelly DJ (2016) Role of oxygen as a regulator of stem cell fate during the spontaneous repair of osteochondral defects. J Orthop Res Off Publ Orthop Res Soc 34:1026–1036CrossRef O’Reilly A, Kelly DJ (2016) Role of oxygen as a regulator of stem cell fate during the spontaneous repair of osteochondral defects. J Orthop Res Off Publ Orthop Res Soc 34:1026–1036CrossRef
195.
go back to reference Catt CJ, Schuurman W, Sengers BG et al (2011) Mathematical modelling of tissue formation in chondrocyte filter cultures. Eur Cells Mater 22:377–392CrossRef Catt CJ, Schuurman W, Sengers BG et al (2011) Mathematical modelling of tissue formation in chondrocyte filter cultures. Eur Cells Mater 22:377–392CrossRef
196.
go back to reference Trewenack AJ, Please CP, Landman KA (2009) A continuum model for the development of tissue-engineered cartilage around a chondrocyte. Math Med Biol 26:241–262CrossRefPubMed Trewenack AJ, Please CP, Landman KA (2009) A continuum model for the development of tissue-engineered cartilage around a chondrocyte. Math Med Biol 26:241–262CrossRefPubMed
197.
go back to reference Pisu M, Lai N, Concas A, Cao G (2006) A novel simulation model for engineered cartilage growth in static systems. Tissue Eng 12:2311–2320CrossRefPubMed Pisu M, Lai N, Concas A, Cao G (2006) A novel simulation model for engineered cartilage growth in static systems. Tissue Eng 12:2311–2320CrossRefPubMed
198.
go back to reference Stender ME, Carpenter RD, Regueiro RA, Ferguson VL (2016) An evolutionary model of osteoarthritis including articular cartilage damage, and bone remodeling in a computational study. J Biomech 49:3502–3508CrossRefPubMed Stender ME, Carpenter RD, Regueiro RA, Ferguson VL (2016) An evolutionary model of osteoarthritis including articular cartilage damage, and bone remodeling in a computational study. J Biomech 49:3502–3508CrossRefPubMed
199.
go back to reference Lutianov M, Naire S, Roberts S, Kuiper JH (2011) A mathematical model of cartilage regeneration after cell therapy. J Theor Biol 289:136–150CrossRefPubMed Lutianov M, Naire S, Roberts S, Kuiper JH (2011) A mathematical model of cartilage regeneration after cell therapy. J Theor Biol 289:136–150CrossRefPubMed
200.
go back to reference Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60:3686–3692CrossRefPubMed Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60:3686–3692CrossRefPubMed
201.
go back to reference Chen MJ, Whiteley JP, Please CP et al (2018) Inducing chondrogenesis in MSC/chondrocyte co-cultures using exogenous TGF-beta: a mathematical model. J Theor Biol 439:1–13CrossRefPubMed Chen MJ, Whiteley JP, Please CP et al (2018) Inducing chondrogenesis in MSC/chondrocyte co-cultures using exogenous TGF-beta: a mathematical model. J Theor Biol 439:1–13CrossRefPubMed
Metadata
Title
Articular cartilage regeneration and tissue engineering models: a systematic review
Authors
Sebastian G. Walter
Robert Ossendorff
Frank A. Schildberg
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Archives of Orthopaedic and Trauma Surgery / Issue 3/2019
Print ISSN: 0936-8051
Electronic ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-018-3057-z

Other articles of this Issue 3/2019

Archives of Orthopaedic and Trauma Surgery 3/2019 Go to the issue