Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Hypotension | Research article

Non-invasive hemodynamic profiling of patients undergoing hemodialysis - a multicenter observational cohort study

Authors: Keren Doenyas-Barak, Marcia H. F. G. de Abreu, Lucas E. Borges, Helcio A. Tavares Filho, Feng Yunlin, Zou Yurong, Nathan W. Levin, Allen M. Kaufman, Shay Efrati, David Pereg, Ilya Litovchik, Shmuel Fuchs, Sa’ar Minha

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

Intradialytic blood pressure (BP) measurement is currently the main parameter used for monitoring hemodynamics during hemodialysis (HD). Since BP is dependent on cardiac output and total peripheral resistance, knowledge of these parameters throughout the HD treatment would potentially be valuable.

Methods

The use of a novel non-invasive monitoring system for profiling hemodynamic response patterns during HD was explored: a whole-body bio-impedance system was used to assess cardiac index (CI), total peripheral resistance index (TPRI), cardiac power index (CPI) among other parameters in chronic HD patients from 4 medical centers. Measurements were made pre, during and post dialysis. Patients were grouped into 5 hemodynamic profiles based on their main hemodynamic response during dialysis i.e. high TPRI; high CPI; low CPI; low TPRI and those with normal hemodynamics. Comparisons were made between the groups for baseline characteristics and 1-year mortality.

Results

In 144 patients with mean age of 67.3 ± 12.1 years pre-dialysis hemodynamic measurements were within normal limits in 35.4% but only 6.9% overall remained hemodynamically stable during dialysis. Intradialytic BP decreased in 65 (45.1%) in whom, low CPI (47 (72.3%)) and low TPRI (18 (27.7%) were recorded. At 1-year follow-up, mortality rates were highest in patients with low CPI (23.4%) and low TPRI (22.2%).

Conclusions

Non-invasive assessment of patients’ response to HD provides relevant hemodynamic information that exceeds that provided by currently used BP measurements. Use of these online analyses could potentially improve the safety and performance standards of dialysis by guiding appropriate interventions, particularly in responding to hypertension and hypotension.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shoji T, Tsubakihara Y, Fujii M, Imai E. Hemodialysis-associated hypotension as an independent risk factor for two-year mortality in hemodialysis patients. Kidney Int. 2004;66(3):1212–20.PubMedCrossRef Shoji T, Tsubakihara Y, Fujii M, Imai E. Hemodialysis-associated hypotension as an independent risk factor for two-year mortality in hemodialysis patients. Kidney Int. 2004;66(3):1212–20.PubMedCrossRef
2.
go back to reference Del Greco F, Simon NM, Roguska J, Walker C. Hemodynamic studies in chronic uremia. Circulation. 1969;40(1):87–95.PubMedCrossRef Del Greco F, Simon NM, Roguska J, Walker C. Hemodynamic studies in chronic uremia. Circulation. 1969;40(1):87–95.PubMedCrossRef
3.
go back to reference Strangfeld D, Gunther KH, Bohm R, Gunther H, Buchali K, Dutz H. Cardiac function in chronic renal failure before and after hemodialysis. Cardiology. 1973;58(2):109–17.PubMedCrossRef Strangfeld D, Gunther KH, Bohm R, Gunther H, Buchali K, Dutz H. Cardiac function in chronic renal failure before and after hemodialysis. Cardiology. 1973;58(2):109–17.PubMedCrossRef
4.
go back to reference Wehle B, Asaba H, Castenfors J, Furst P, Gunnarsson B, Shaldon S, Bergstrom J. Hemodynamic changes during sequential ultrafiltration and dialysis. Kidney Int. 1979;15(4):411–8.PubMedCrossRef Wehle B, Asaba H, Castenfors J, Furst P, Gunnarsson B, Shaldon S, Bergstrom J. Hemodynamic changes during sequential ultrafiltration and dialysis. Kidney Int. 1979;15(4):411–8.PubMedCrossRef
5.
go back to reference Rouby JJ, Rottembourg J, Durande JP, Basset JY, Degoulet P, Glaser P, Legrain M. Hemodynamic changes induced by regular hemodialysis and sequential ultrafiltration hemodialysis: a comparative study. Kidney Int. 1980;17(6):801–10.PubMedCrossRef Rouby JJ, Rottembourg J, Durande JP, Basset JY, Degoulet P, Glaser P, Legrain M. Hemodynamic changes induced by regular hemodialysis and sequential ultrafiltration hemodialysis: a comparative study. Kidney Int. 1980;17(6):801–10.PubMedCrossRef
6.
go back to reference Selby NM, Burton JO, Chesterton LJ, McIntyre CW. Dialysis-induced regional left ventricular dysfunction is ameliorated by cooling the dialysate. Clin J Am Soc Nephrol. 2006;1(6):1216–25.PubMedCrossRef Selby NM, Burton JO, Chesterton LJ, McIntyre CW. Dialysis-induced regional left ventricular dysfunction is ameliorated by cooling the dialysate. Clin J Am Soc Nephrol. 2006;1(6):1216–25.PubMedCrossRef
7.
go back to reference Selby NM, Lambie SH, Camici PG, Baker CS, McIntyre CW. Occurrence of regional left ventricular dysfunction in patients undergoing standard and biofeedback dialysis. Am J Kidney Dis. 2006;47(5):830–41.PubMedCrossRef Selby NM, Lambie SH, Camici PG, Baker CS, McIntyre CW. Occurrence of regional left ventricular dysfunction in patients undergoing standard and biofeedback dialysis. Am J Kidney Dis. 2006;47(5):830–41.PubMedCrossRef
8.
go back to reference Cotter G, Moshkovitz Y, Kaluski E, Cohen AJ, Miller H, Goor D, Vered Z. Accurate, noninvasive continuous monitoring of cardiac output by whole-body electrical bioimpedance. Chest. 2004;125(4):1431–40.PubMedCrossRef Cotter G, Moshkovitz Y, Kaluski E, Cohen AJ, Miller H, Goor D, Vered Z. Accurate, noninvasive continuous monitoring of cardiac output by whole-body electrical bioimpedance. Chest. 2004;125(4):1431–40.PubMedCrossRef
9.
go back to reference Grodin JL, Mullens W, Dupont M, Wu Y, Taylor DO, Starling RC, Tang WH. Prognostic role of cardiac power index in ambulatory patients with advanced heart failure. Eur J Heart Fail. 2015;17(7):689–96.PubMedPubMedCentralCrossRef Grodin JL, Mullens W, Dupont M, Wu Y, Taylor DO, Starling RC, Tang WH. Prognostic role of cardiac power index in ambulatory patients with advanced heart failure. Eur J Heart Fail. 2015;17(7):689–96.PubMedPubMedCentralCrossRef
10.
go back to reference Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, LeJemtel TH, Cotter G, Investigators S. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol. 2004;44(2):340–8.PubMedCrossRef Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, LeJemtel TH, Cotter G, Investigators S. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol. 2004;44(2):340–8.PubMedCrossRef
11.
go back to reference Popovic B, Fay R, Cravoisy-Popovic A, Levy B. Cardiac power index, mean arterial pressure, and simplified acute physiology score II are strong predictors of survival and response to revascularization in cardiogenic shock. Shock. 2014;42(1):22–6.PubMedCrossRef Popovic B, Fay R, Cravoisy-Popovic A, Levy B. Cardiac power index, mean arterial pressure, and simplified acute physiology score II are strong predictors of survival and response to revascularization in cardiogenic shock. Shock. 2014;42(1):22–6.PubMedCrossRef
12.
go back to reference Paredes OL, Shite J, Shinke T, Watanabe S, Otake H, Matsumoto D, Imuro Y, Ogasawara D, Sawada T, Yokoyama M. Impedance cardiography for cardiac output estimation: reliability of wrist-to-ankle electrode configuration. Circ J. 2006;70(9):1164–8.PubMedCrossRef Paredes OL, Shite J, Shinke T, Watanabe S, Otake H, Matsumoto D, Imuro Y, Ogasawara D, Sawada T, Yokoyama M. Impedance cardiography for cardiac output estimation: reliability of wrist-to-ankle electrode configuration. Circ J. 2006;70(9):1164–8.PubMedCrossRef
13.
go back to reference Leitman M, Sucher E, Kaluski E, Wolf R, Peleg E, Moshkovitz Y, Milo-Cotter O, Vered Z, Cotter G. Non-invasive measurement of cardiac output by whole-body bio-impedance during dobutamine stress echocardiography: clinical implications in patients with left ventricular dysfunction and ischaemia. Eur J Heart Fail. 2006;8(2):136–40.PubMedCrossRef Leitman M, Sucher E, Kaluski E, Wolf R, Peleg E, Moshkovitz Y, Milo-Cotter O, Vered Z, Cotter G. Non-invasive measurement of cardiac output by whole-body bio-impedance during dobutamine stress echocardiography: clinical implications in patients with left ventricular dysfunction and ischaemia. Eur J Heart Fail. 2006;8(2):136–40.PubMedCrossRef
14.
go back to reference Germain MJ, Joubert J, O'Grady D, Nathanson BH, Chait Y, Levin NW. Comparison of stroke volume measurements during hemodialysis using bioimpedance cardiography and echocardiography. Hemodialysis international International Symposium on Home Hemodialysis. 2018;22(2):201–8.PubMedCrossRef Germain MJ, Joubert J, O'Grady D, Nathanson BH, Chait Y, Levin NW. Comparison of stroke volume measurements during hemodialysis using bioimpedance cardiography and echocardiography. Hemodialysis international International Symposium on Home Hemodialysis. 2018;22(2):201–8.PubMedCrossRef
15.
go back to reference Levin NW, de Abreu M, Borges LE, Tavares Filho HA, Sarwar R, Gupta S, Hafeez T, Lev S, Williams C. Hemodynamic response to fluid removal during hemodialysis: categorization of causes of intradialytic hypotension. Nephrol Dial Transplant. 2018. Levin NW, de Abreu M, Borges LE, Tavares Filho HA, Sarwar R, Gupta S, Hafeez T, Lev S, Williams C. Hemodynamic response to fluid removal during hemodialysis: categorization of causes of intradialytic hypotension. Nephrol Dial Transplant. 2018.
16.
go back to reference McIntyre CW, Salerno FR. Diagnosis and treatment of intradialytic hypotension in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2018;13(3):486–9.PubMedPubMedCentralCrossRef McIntyre CW, Salerno FR. Diagnosis and treatment of intradialytic hypotension in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2018;13(3):486–9.PubMedPubMedCentralCrossRef
17.
go back to reference Azancot I, Degoulet P, Juillet Y, Rottembourg J, Legrain M. Hemodynamic evaluation of hypotension during chronic hemodialysis. Clin Nephrol. 1977;8(1):312–6.PubMed Azancot I, Degoulet P, Juillet Y, Rottembourg J, Legrain M. Hemodynamic evaluation of hypotension during chronic hemodialysis. Clin Nephrol. 1977;8(1):312–6.PubMed
18.
go back to reference Thijssen S, Kappel F, Kotanko P. Absolute blood volume in hemodialysis patients: why is it relevant, and how to measure it? Blood Purif. 2013;35(1–3):63–71.PubMedCrossRef Thijssen S, Kappel F, Kotanko P. Absolute blood volume in hemodialysis patients: why is it relevant, and how to measure it? Blood Purif. 2013;35(1–3):63–71.PubMedCrossRef
19.
go back to reference McIntyre CW, Odudu A. Hemodialysis-associated cardiomyopathy: a newly defined disease entity. Semin Dial. 2014;27(2):87–97.PubMedCrossRef McIntyre CW, Odudu A. Hemodialysis-associated cardiomyopathy: a newly defined disease entity. Semin Dial. 2014;27(2):87–97.PubMedCrossRef
20.
go back to reference Flythe JE, Xue H, Lynch KE, Curhan GC, Brunelli SM. Association of mortality risk with various definitions of intradialytic hypotension. J Am Soc Nephrol. 2015;26(3):724–34.PubMedCrossRef Flythe JE, Xue H, Lynch KE, Curhan GC, Brunelli SM. Association of mortality risk with various definitions of intradialytic hypotension. J Am Soc Nephrol. 2015;26(3):724–34.PubMedCrossRef
21.
go back to reference Gul A, Miskulin D, Harford A, Zager P. Intradialytic hypotension. Curr Opin Nephrol Hypertens. 2016;25(6):545–50.PubMedCrossRef Gul A, Miskulin D, Harford A, Zager P. Intradialytic hypotension. Curr Opin Nephrol Hypertens. 2016;25(6):545–50.PubMedCrossRef
22.
23.
go back to reference Wu JS, Yang YC, Lu FH, Wu CH, Wang RH, Chang CJ. Population-based study on the prevalence and risk factors of orthostatic hypotension in subjects with pre-diabetes and diabetes. Diabetes Care. 2009;32(1):69–74.PubMedPubMedCentralCrossRef Wu JS, Yang YC, Lu FH, Wu CH, Wang RH, Chang CJ. Population-based study on the prevalence and risk factors of orthostatic hypotension in subjects with pre-diabetes and diabetes. Diabetes Care. 2009;32(1):69–74.PubMedPubMedCentralCrossRef
24.
go back to reference Sood MM, Pauly RP, Rigatto C, Komenda P. Left ventricular dysfunction in the haemodialysis population. NDT plus. 2008;1(4):199–205.PubMedPubMedCentral Sood MM, Pauly RP, Rigatto C, Komenda P. Left ventricular dysfunction in the haemodialysis population. NDT plus. 2008;1(4):199–205.PubMedPubMedCentral
25.
go back to reference Odudu A, McIntyre CW. An update on intradialytic cardiac dysfunction. Semin Dial. 2016;29(6):435–41.PubMedCrossRef Odudu A, McIntyre CW. An update on intradialytic cardiac dysfunction. Semin Dial. 2016;29(6):435–41.PubMedCrossRef
26.
go back to reference Burton JO, Jefferies HJ, Selby NM, McIntyre CW. Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin J Am Soc Nephrol. 2009;4(5):914–20.PubMedPubMedCentralCrossRef Burton JO, Jefferies HJ, Selby NM, McIntyre CW. Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin J Am Soc Nephrol. 2009;4(5):914–20.PubMedPubMedCentralCrossRef
27.
go back to reference Multicenter Diltiazem Postinfarction Trial Research G. The effect of diltiazem on mortality and reinfarction after myocardial infarction. N Engl J Med. 1988;319(7):385–92.CrossRef Multicenter Diltiazem Postinfarction Trial Research G. The effect of diltiazem on mortality and reinfarction after myocardial infarction. N Engl J Med. 1988;319(7):385–92.CrossRef
28.
go back to reference Hoeben H, Abu-Alfa AK, Mahnensmith R, Perazella MA. Hemodynamics in patients with intradialytic hypotension treated with cool dialysate or midodrine. Am J Kidney Dis. 2002;39(1):102–7.PubMedCrossRef Hoeben H, Abu-Alfa AK, Mahnensmith R, Perazella MA. Hemodynamics in patients with intradialytic hypotension treated with cool dialysate or midodrine. Am J Kidney Dis. 2002;39(1):102–7.PubMedCrossRef
Metadata
Title
Non-invasive hemodynamic profiling of patients undergoing hemodialysis - a multicenter observational cohort study
Authors
Keren Doenyas-Barak
Marcia H. F. G. de Abreu
Lucas E. Borges
Helcio A. Tavares Filho
Feng Yunlin
Zou Yurong
Nathan W. Levin
Allen M. Kaufman
Shay Efrati
David Pereg
Ilya Litovchik
Shmuel Fuchs
Sa’ar Minha
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1542-4

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.