Skip to main content
Top
Published in: BMC Geriatrics 1/2017

Open Access 01-12-2017 | Study protocol

The effects of an extensive exercise programme on the progression of Mild Cognitive Impairment (MCI): study protocol for a randomised controlled trial

Authors: Kate E. Devenney, Marit L. Sanders, Brian Lawlor, Marcel G. M. Olde Rikkert, Stefan Schneider, on behalf of the NeuroExercise Study Group

Published in: BMC Geriatrics | Issue 1/2017

Login to get access

Abstract

Background

Exercise interventions to prevent dementia and delay cognitive decline have gained considerable attention in recent years. Human and animal studies have demonstrated that regular physical activity targets brain function by increasing cognitive reserve. There is also evidence of structural changes caused by exercise in preventing or delaying the genesis of neurodegeneration. Although initial studies indicate enhanced cognitive performance in patients with mild cognitive impairment (MCI) following an exercise intervention, little is known about the effect of an extensive, controlled and regular exercise regimen on the neuropathology of patients with MCI. This study aims to determine the effects of an extensive exercise programme on the progression of MCI.

Methods/design

This randomised controlled clinical intervention study will take place across three European sites. Seventy-five previously sedentary patients with a clinical diagnosis of MCI will be recruited at each site. Participants will be randomised to one of three groups. One group will receive a standardised 1-year extensive aerobic exercise intervention (3 units of 45 min/week). The second group will complete stretching and toning (non-aerobic) exercise (3 units of 45 min/week) and the third group will act as the control group. Change in all outcomes will be measured at baseline (T0), after six months (T1) and after 12 months (T2). The primary outcome, cognitive performance, will be determined by a neuropsychological test battery (CogState battery, Trail Making Test and Verbal fluency). Secondary outcomes include Montreal Cognitive Assessment (MoCA), cardiovascular fitness, physical activity, structural changes of the brain, quality of life measures and measures of frailty. Furthermore, outcome variables will be related to genetic variations on genes related to neurogenesis and epigenetic changes in these genes caused by the exercise intervention programme.

Discussion

The results will add new insights into the prevailing notion that exercise may slow the rate of cognitive decline in MCI.

Trial registration

ClinicalTrials.gov NCT02913053
Literature
1.
go back to reference Wimo A, Jönsson L, Gustavsson A, McDaid D, Ersek K, Georges J, Gulacsi L, Karpati K, Kenigsberg P, Valtonen H. The economic impact of dementia in Europe in 2008—cost estimates from the Eurocode project. Int J Geriatr Psychiatry. 2011;26:825–32.CrossRefPubMed Wimo A, Jönsson L, Gustavsson A, McDaid D, Ersek K, Georges J, Gulacsi L, Karpati K, Kenigsberg P, Valtonen H. The economic impact of dementia in Europe in 2008—cost estimates from the Eurocode project. Int J Geriatr Psychiatry. 2011;26:825–32.CrossRefPubMed
2.
go back to reference Kirton J. A summit of significant success: prospects for the G8 leaders at lough erne. G8 Res Group. 2013;12:2013. Kirton J. A summit of significant success: prospects for the G8 leaders at lough erne. G8 Res Group. 2013;12:2013.
3.
go back to reference Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral
4.
go back to reference Dubois B, Feldman HH, Jacova C, Cummings JL, DeKosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol. 2010;9:1118–27.CrossRefPubMed Dubois B, Feldman HH, Jacova C, Cummings JL, DeKosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol. 2010;9:1118–27.CrossRefPubMed
5.
go back to reference Pieramico V, Esposito R, Cesinaro S, Frazzini V, Sensi SL. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals. Front Syst Neurosc. 2014;8:153.CrossRef Pieramico V, Esposito R, Cesinaro S, Frazzini V, Sensi SL. Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals. Front Syst Neurosc. 2014;8:153.CrossRef
6.
go back to reference Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385:2255–63.CrossRefPubMed Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385:2255–63.CrossRefPubMed
7.
go back to reference Geda YE, Roberts RO, Knopman DS, Christianson TJ, Pankratz VS, Ivnik RJ, Boeve BF, Tangalos EG, Petersen RC, Rocca WA. Physical exercise, aging, and mild cognitive impairment: a population-based study. Arch Neurol. 2010;67:80–6.PubMedPubMedCentral Geda YE, Roberts RO, Knopman DS, Christianson TJ, Pankratz VS, Ivnik RJ, Boeve BF, Tangalos EG, Petersen RC, Rocca WA. Physical exercise, aging, and mild cognitive impairment: a population-based study. Arch Neurol. 2010;67:80–6.PubMedPubMedCentral
8.
go back to reference Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85:1694–704.CrossRefPubMed Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85:1694–704.CrossRefPubMed
9.
go back to reference Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–9.PubMedPubMedCentral Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–9.PubMedPubMedCentral
10.
go back to reference Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss MW, Sharma D, Liu-Ambrose T. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. J Aging Res. 2013;2013:861893. doi:10.1155/2013/861893.CrossRefPubMedPubMedCentral Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss MW, Sharma D, Liu-Ambrose T. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. J Aging Res. 2013;2013:861893. doi:10.​1155/​2013/​861893.CrossRefPubMedPubMedCentral
11.
go back to reference Nascimento CMC, Pereira JR, Pires de Andrade L, Garuffi M, Ayan C, Kerr DS, Talib LL, Cominetti MR, Stella F. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J Alzheimer Dis. 2015;43:81–91. Nascimento CMC, Pereira JR, Pires de Andrade L, Garuffi M, Ayan C, Kerr DS, Talib LL, Cominetti MR, Stella F. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J Alzheimer Dis. 2015;43:81–91.
12.
go back to reference Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50:1443–50. Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50:1443–50.
13.
go back to reference Gates N, Singh MAF, Sachdev PS, Valenzuela M. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013;21:1086–97.CrossRefPubMed Gates N, Singh MAF, Sachdev PS, Valenzuela M. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013;21:1086–97.CrossRefPubMed
14.
go back to reference Kirk-Sanchez NJ, McGough EL. Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging. 2014;9:51–62.PubMed Kirk-Sanchez NJ, McGough EL. Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging. 2014;9:51–62.PubMed
15.
go back to reference Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, Tolle TR. The runner’s high: opioidergic mechanisms in the human brain. Cereb Cortex. 2008;18:2523–31.CrossRefPubMed Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, Tolle TR. The runner’s high: opioidergic mechanisms in the human brain. Cereb Cortex. 2008;18:2523–31.CrossRefPubMed
16.
go back to reference Vogt T, Schneider S, Abeln V, Anneken V, Strüder HK. Exercise, mood and cognitive performance in intellectual disability—A neurophysiological approach. Behav Brain Res. 2012;226:473–80.CrossRefPubMed Vogt T, Schneider S, Abeln V, Anneken V, Strüder HK. Exercise, mood and cognitive performance in intellectual disability—A neurophysiological approach. Behav Brain Res. 2012;226:473–80.CrossRefPubMed
17.
go back to reference Chaddock L, Hillman CH, Pontifex MB, Johnson CR, Raine LB, Kramer AF. Childhood aerobic fitness predicts cognitive performance one year later. J Sports Sci. 2012;30:421–30.CrossRefPubMed Chaddock L, Hillman CH, Pontifex MB, Johnson CR, Raine LB, Kramer AF. Childhood aerobic fitness predicts cognitive performance one year later. J Sports Sci. 2012;30:421–30.CrossRefPubMed
18.
go back to reference Vaynman S, Gomez‐Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res. 2006;84:699–715.CrossRefPubMed Vaynman S, Gomez‐Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res. 2006;84:699–715.CrossRefPubMed
19.
go back to reference Gomez‐Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr Physiol. 2013;3:403–28. Gomez‐Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr Physiol. 2013;3:403–28.
20.
go back to reference Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci. 2011;108:3017–22.CrossRefPubMedPubMedCentral Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci. 2011;108:3017–22.CrossRefPubMedPubMedCentral
21.
go back to reference Holzschneider K, Wolbers T, Röder B, Hötting K. Cardiovascular fitness modulates brain activation associated with spatial learning. Neuroimage. 2012;59:3003–14.CrossRefPubMed Holzschneider K, Wolbers T, Röder B, Hötting K. Cardiovascular fitness modulates brain activation associated with spatial learning. Neuroimage. 2012;59:3003–14.CrossRefPubMed
22.
go back to reference Budde H, Brunelli A, Machado S, Velasques B, Ribeiro P, Arias-Carrión O, Voelcker-Rehage C. Intermittent maximal exercise improves attentional performance only in physically active students. Arch Med Res. 2012;43:125–31.CrossRefPubMed Budde H, Brunelli A, Machado S, Velasques B, Ribeiro P, Arias-Carrión O, Voelcker-Rehage C. Intermittent maximal exercise improves attentional performance only in physically active students. Arch Med Res. 2012;43:125–31.CrossRefPubMed
23.
go back to reference Voss MW, Chaddock L, Kim JS, VanPatter M, Pontifex MB, Raine LB, Cohen NJ, Hillman CH, Kramer AF. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience. 2011;199:166–76.CrossRefPubMedPubMedCentral Voss MW, Chaddock L, Kim JS, VanPatter M, Pontifex MB, Raine LB, Cohen NJ, Hillman CH, Kramer AF. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience. 2011;199:166–76.CrossRefPubMedPubMedCentral
24.
go back to reference Gómez-Pinilla F, Feng C. Molecular mechanisms for the ability of exercise supporting cognitive abilities and counteracting neurological disorders. In Functional Neuroimaging in Exercise and Sport Sciences. New York: Springer; 2012:25–43. Gómez-Pinilla F, Feng C. Molecular mechanisms for the ability of exercise supporting cognitive abilities and counteracting neurological disorders. In Functional Neuroimaging in Exercise and Sport Sciences. New York: Springer; 2012:25–43.
25.
go back to reference Wang Z, van Praag H. Exercise and the brain: neurogenesis, synaptic plasticity, spine density, and angiogenesis. In Functional Neuroimaging in Exercise and Sport Sciences. New York: Springer; 2012:3–24. Wang Z, van Praag H. Exercise and the brain: neurogenesis, synaptic plasticity, spine density, and angiogenesis. In Functional Neuroimaging in Exercise and Sport Sciences. New York: Springer; 2012:3–24.
26.
go back to reference Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J Neurosci. 2005;25:4217–21.CrossRefPubMed Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J Neurosci. 2005;25:4217–21.CrossRefPubMed
27.
go back to reference Ke H-C, Huang H-J, Liang K-C, Hsieh-Li HM. Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise. Brain Res. 2011;1403:1–11.CrossRefPubMed Ke H-C, Huang H-J, Liang K-C, Hsieh-Li HM. Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise. Brain Res. 2011;1403:1–11.CrossRefPubMed
28.
go back to reference Unger JB, Johnson CA, Marks G. Functional decline in the elderly: evidence for direct and stress-buffering protective effects of social interactions and physical activity. Ann Behav Med. 1997;19:152–60.CrossRefPubMed Unger JB, Johnson CA, Marks G. Functional decline in the elderly: evidence for direct and stress-buffering protective effects of social interactions and physical activity. Ann Behav Med. 1997;19:152–60.CrossRefPubMed
29.
go back to reference Lam LC, Chau R, Wong BM, Fung AW, Lui VW, Tam CC, Leung GT, Kwok TC, Chiu HF, Ng S. Interim follow‐up of a randomized controlled trial comparing Chinese style mind body (Tai Chi) and stretching exercises on cognitive function in subjects at risk of progressive cognitive decline. Int J Geriatr Psychiatry. 2011;26:733–40.CrossRefPubMed Lam LC, Chau R, Wong BM, Fung AW, Lui VW, Tam CC, Leung GT, Kwok TC, Chiu HF, Ng S. Interim follow‐up of a randomized controlled trial comparing Chinese style mind body (Tai Chi) and stretching exercises on cognitive function in subjects at risk of progressive cognitive decline. Int J Geriatr Psychiatry. 2011;26:733–40.CrossRefPubMed
30.
31.
go back to reference Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.CrossRefPubMed Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.CrossRefPubMed
32.
go back to reference Wechsler D. Wechsler adult intelligence scale-fourth. San Antonio, TX: The Psychological Corporation Google Scholar; 2008. Wechsler D. Wechsler adult intelligence scale-fourth. San Antonio, TX: The Psychological Corporation Google Scholar; 2008.
33.
go back to reference Hendriks M, Bouman Z, Kessels R, Aldenkamp A. Wechsler Memory Scale-Dutch Edition (WMS-IV-NL). Amsterdam: Pearson Assessment; 2014. Hendriks M, Bouman Z, Kessels R, Aldenkamp A. Wechsler Memory Scale-Dutch Edition (WMS-IV-NL). Amsterdam: Pearson Assessment; 2014.
34.
go back to reference Randolph C, Tierney MC, Mohr E, Chase TN. The repeatable battery for the assessment of neuropsychological Status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998;20:310–9.CrossRefPubMed Randolph C, Tierney MC, Mohr E, Chase TN. The repeatable battery for the assessment of neuropsychological Status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998;20:310–9.CrossRefPubMed
35.
go back to reference Corrado D, Pelliccia A, Heidbuchel H, Sharma S, Link M, Basso C, Biffi A, Buja G, Delise P, Gussac I. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J. 2010;31:243–59.CrossRefPubMed Corrado D, Pelliccia A, Heidbuchel H, Sharma S, Link M, Basso C, Biffi A, Buja G, Delise P, Gussac I. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J. 2010;31:243–59.CrossRefPubMed
36.
go back to reference Borg G. Borg’s perceived exertion and pain scales. Champaign: Human Kinetics; 1998. Borg G. Borg’s perceived exertion and pain scales. Champaign: Human Kinetics; 1998.
37.
go back to reference de Jager CA, Schrijnemaekers A-CM, Honey TE, Budge MM. Detection of MCI in the clinic: evaluation of the sensitivity and specificity of a computerised test battery, the Hopkins Verbal Learning Test and the MMSE. Age Ageing. 2009;38(4):455–60. doi:10.1093/ageing/afp068.CrossRefPubMed de Jager CA, Schrijnemaekers A-CM, Honey TE, Budge MM. Detection of MCI in the clinic: evaluation of the sensitivity and specificity of a computerised test battery, the Hopkins Verbal Learning Test and the MMSE. Age Ageing. 2009;38(4):455–60. doi:10.​1093/​ageing/​afp068.CrossRefPubMed
38.
go back to reference Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, Pietrzak RH. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24:165–78.CrossRefPubMed Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, Pietrzak RH. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24:165–78.CrossRefPubMed
39.
go back to reference Thurstone LL. Primary mental abilities. In The Measurement of Intelligence. Netherlands: Springer; 1973:131–136. Thurstone LL. Primary mental abilities. In The Measurement of Intelligence. Netherlands: Springer; 1973:131–136.
40.
go back to reference Benton A, Hamsher K, Sivan A. Multilingual Aphasia Examination. Iowa City, IA: AJA Associates. Inc; 1989. Benton A, Hamsher K, Sivan A. Multilingual Aphasia Examination. Iowa City, IA: AJA Associates. Inc; 1989.
41.
go back to reference Reitan RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955;19:393.CrossRefPubMed Reitan RM. The relation of the trail making test to organic brain damage. J Consult Psychol. 1955;19:393.CrossRefPubMed
42.
go back to reference Lezak MD. Neuropsychological assessment. USA: Oxford University Press; 2004. Lezak MD. Neuropsychological assessment. USA: Oxford University Press; 2004.
43.
go back to reference Thompson TA, Wilson PH, Snyder PJ, Pietrzak RH, Darby D, Maruff P, Buschke H. Sensitivity and test–retest reliability of the international shopping list test in assessing verbal learning and memory in mild Alzheimer's disease. Arch Clin Neuropsychol. 2011;26:412–24.CrossRefPubMed Thompson TA, Wilson PH, Snyder PJ, Pietrzak RH, Darby D, Maruff P, Buschke H. Sensitivity and test–retest reliability of the international shopping list test in assessing verbal learning and memory in mild Alzheimer's disease. Arch Clin Neuropsychol. 2011;26:412–24.CrossRefPubMed
44.
go back to reference Lim YY, Ellis KA, Harrington K, Ames D, Martins RN, Masters CL, Rowe C, Savage G, Szoeke C, Darby D. Use of the CogState Brief Battery in the assessment of Alzheimer's disease related cognitive impairment in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. J Clin Exp Neuropsychol. 2012;34:345–58.CrossRefPubMed Lim YY, Ellis KA, Harrington K, Ames D, Martins RN, Masters CL, Rowe C, Savage G, Szoeke C, Darby D. Use of the CogState Brief Battery in the assessment of Alzheimer's disease related cognitive impairment in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. J Clin Exp Neuropsychol. 2012;34:345–58.CrossRefPubMed
45.
go back to reference Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, Froelicher VF, Leon AS, Piña IL, Rodney R. Exercise standards for testing and training a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104:1694–740.CrossRefPubMed Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, Froelicher VF, Leon AS, Piña IL, Rodney R. Exercise standards for testing and training a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104:1694–740.CrossRefPubMed
46.
go back to reference Åstrand P-O, Ryhming I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J Appl Physiol. 1954;7:218–21.PubMed Åstrand P-O, Ryhming I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J Appl Physiol. 1954;7:218–21.PubMed
47.
go back to reference Stel VS, Smit JH, Pluijm SM, Visser M, Deeg DJ, Lips P. Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. J Clin Epidemiol. 2004;57:252–8.CrossRefPubMed Stel VS, Smit JH, Pluijm SM, Visser M, Deeg DJ, Lips P. Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. J Clin Epidemiol. 2004;57:252–8.CrossRefPubMed
48.
go back to reference Smith S, Lamping D, Banerjee S, Harwood R, Foley B, Smith P, Cook J, Murray J, Prince M, Levin E. Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology. Health Technol Assess. 2005;9:1–93. Smith S, Lamping D, Banerjee S, Harwood R, Foley B, Smith P, Cook J, Murray J, Prince M, Levin E. Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology. Health Technol Assess. 2005;9:1–93.
49.
go back to reference Mhaoláin AMN, Gallagher D, Crosby L, Ryan D, Lacey L, Coen RF, Coakley D, Walsh JB, Cunningham C, Lawlor B. Frailty and quality of life for people with Alzheimer’s dementia and mild cognitive impairment. Am J Alzheimers Dis Other Demen. 2012;27:48–54.CrossRefPubMed Mhaoláin AMN, Gallagher D, Crosby L, Ryan D, Lacey L, Coen RF, Coakley D, Walsh JB, Cunningham C, Lawlor B. Frailty and quality of life for people with Alzheimer’s dementia and mild cognitive impairment. Am J Alzheimers Dis Other Demen. 2012;27:48–54.CrossRefPubMed
50.
go back to reference Radloff LS. The CES-D scale a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401.CrossRef Radloff LS. The CES-D scale a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401.CrossRef
51.
go back to reference Irwin M, Artin KH, Oxman MN. Screening for depression in the older adult: criterion validity of the 10-item Center for Epidemiological Studies Depression Scale (CES-D). Arch Intern Med. 1999;159:1701–4.CrossRefPubMed Irwin M, Artin KH, Oxman MN. Screening for depression in the older adult: criterion validity of the 10-item Center for Epidemiological Studies Depression Scale (CES-D). Arch Intern Med. 1999;159:1701–4.CrossRefPubMed
52.
go back to reference Barnes DE, Alexopoulos GS, Lopez OL, Williamson JD, Yaffe K. Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Arch Gen Psychiatry. 2006;63:273–9.CrossRefPubMed Barnes DE, Alexopoulos GS, Lopez OL, Williamson JD, Yaffe K. Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Arch Gen Psychiatry. 2006;63:273–9.CrossRefPubMed
53.
go back to reference Richard E, Reitz C, Honig LH, Schupf N, Tang MX, Manly JJ, Mayeux R, Devanand D, Luchsinger JA. Late-life depression, mild cognitive impairment, and dementia. JAMA Neurol. 2013;70:383–9.CrossRef Richard E, Reitz C, Honig LH, Schupf N, Tang MX, Manly JJ, Mayeux R, Devanand D, Luchsinger JA. Late-life depression, mild cognitive impairment, and dementia. JAMA Neurol. 2013;70:383–9.CrossRef
54.
go back to reference Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.CrossRefPubMed Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.CrossRefPubMed
55.
go back to reference Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, Sayer AA. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–9. doi:10.1093/ageing/afr051.CrossRefPubMed Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, Sayer AA. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–9. doi:10.​1093/​ageing/​afr051.CrossRefPubMed
56.
go back to reference Bohannon RW. Hand‐grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther. 2008;31:3–10.CrossRefPubMed Bohannon RW. Hand‐grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther. 2008;31:3–10.CrossRefPubMed
57.
go back to reference Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–9.CrossRefPubMed Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–9.CrossRefPubMed
58.
go back to reference Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63:168–74.CrossRefPubMed Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63:168–74.CrossRefPubMed
59.
go back to reference Montag C, Kunz L, Axmacher N, Sariyska R, Lachmann B, Reuter M. Common genetic variation of the APOE gene and personality. BMC Neurosci. 2014;15:1.CrossRef Montag C, Kunz L, Axmacher N, Sariyska R, Lachmann B, Reuter M. Common genetic variation of the APOE gene and personality. BMC Neurosci. 2014;15:1.CrossRef
60.
go back to reference Schutte NS, Malouff JM, Hall LE, Haggerty DJ, Cooper JT, Golden CJ, Dornheim L. Development and validation of a measure of emotional intelligence. Personal Individ Differ. 1998;25:167–77.CrossRef Schutte NS, Malouff JM, Hall LE, Haggerty DJ, Cooper JT, Golden CJ, Dornheim L. Development and validation of a measure of emotional intelligence. Personal Individ Differ. 1998;25:167–77.CrossRef
61.
go back to reference Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, Macchi C. Physical activity and risk of cognitive decline: a meta‐analysis of prospective studies. J Intern Med. 2011;269:107–17.CrossRefPubMed Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, Macchi C. Physical activity and risk of cognitive decline: a meta‐analysis of prospective studies. J Intern Med. 2011;269:107–17.CrossRefPubMed
62.
go back to reference Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, Almeida OP. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300:1027–37.CrossRefPubMed Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, Almeida OP. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300:1027–37.CrossRefPubMed
63.
go back to reference Suzuki T, Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, Anan Y, Uemura K, Lee S, Park H. Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol. 2012;12:1.CrossRef Suzuki T, Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, Anan Y, Uemura K, Lee S, Park H. Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol. 2012;12:1.CrossRef
64.
go back to reference Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res Rev. 2013;12:840–51.CrossRefPubMed Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res Rev. 2013;12:840–51.CrossRefPubMed
Metadata
Title
The effects of an extensive exercise programme on the progression of Mild Cognitive Impairment (MCI): study protocol for a randomised controlled trial
Authors
Kate E. Devenney
Marit L. Sanders
Brian Lawlor
Marcel G. M. Olde Rikkert
Stefan Schneider
on behalf of the NeuroExercise Study Group
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2017
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-017-0457-9

Other articles of this Issue 1/2017

BMC Geriatrics 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.