Skip to main content
Top
Published in: Pediatric Radiology 4/2018

Open Access 01-04-2018 | Minisymposium: Fetal/neonatal imaging

How accurate are prenatal tractography results? A postnatal in vivo follow-up study using diffusion tensor imaging

Authors: Jae W. Song, Gerlinde M. Gruber, Janina M. Patsch, Rainer Seidl, Daniela Prayer, Gregor Kasprian

Published in: Pediatric Radiology | Issue 4/2018

Login to get access

Abstract

Prenatal detection of abnormal white matter tracts might serve as a structural marker for altered neurodevelopment. As a result of many technical and patient-related challenges, the accuracy of prenatal tractography remains unknown. We hypothesized that characteristics of prenatal tractography of the corpus callosum and corticospinal tracts derived from fetal diffusion tensor imaging (DTI) data are accurate and predictive of the integrity of these tracts postnatally. We compared callosal and corticospinal tracts of 12 subjects with paired prenatal (age: 23–35 gestational weeks) and postnatal (age: 1 day to 2 years) DTI examinations (b values of 0 s/mm2 and 700 s/mm2, 16 gradient encoding directions) using deterministic tractography. Evaluation for the presence of callosal segments and corticospinal tracts showed moderate degrees of accuracy (67–75%) for the four segments of the corpus callosum and moderate to high degrees of accuracy (75–92%) for the corticospinal tracts. Positive predictive values for segments of the corpus callosum ranged from 50% to 100% and for the corticospinal tracts, 89% to 100%. Negative predictive values for segments of the corpus callosum ranged from 25% to 80% and for the corticospinal tracts, 33% to 50%. The results suggest that when the tracts are not well characterized on the fetal MR, predictions about the postnatal tracts are difficult to make. However, accounting for brain maturation, prenatal visualization of the main projection and commissural tracts can be clinically used as an important predictive tool in the context of image interpretation for the assessment of fetal brain malformations.
Literature
1.
go back to reference Cole MW, Yarkoni T, Repovs G et al (2012) Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J Neurosci 32:8988–8999CrossRefPubMedPubMedCentral Cole MW, Yarkoni T, Repovs G et al (2012) Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J Neurosci 32:8988–8999CrossRefPubMedPubMedCentral
2.
go back to reference Penke L, Maniega SM, Bastin ME et al (2012) Brain white matter tract integrity as a neural foundation for general intelligence. Mol Psychiatry 17:1026–1030CrossRefPubMed Penke L, Maniega SM, Bastin ME et al (2012) Brain white matter tract integrity as a neural foundation for general intelligence. Mol Psychiatry 17:1026–1030CrossRefPubMed
3.
go back to reference Griffiths PD, Bradburn M, Campbell MJ et al (2017) Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet 389:538–546CrossRefPubMed Griffiths PD, Bradburn M, Campbell MJ et al (2017) Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet 389:538–546CrossRefPubMed
4.
go back to reference Jakab A, Kasprian G, Schwartz E et al (2015) Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis. NeuroImage 111:277–288CrossRefPubMed Jakab A, Kasprian G, Schwartz E et al (2015) Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis. NeuroImage 111:277–288CrossRefPubMed
5.
go back to reference Mitter C, Jakab A, Brugger PC et al (2015) Validation of in utero tractography of human fetal commissural and internal capsule fibers with histological structure tensor analysis. Front Neuroanat 9:164CrossRefPubMedPubMedCentral Mitter C, Jakab A, Brugger PC et al (2015) Validation of in utero tractography of human fetal commissural and internal capsule fibers with histological structure tensor analysis. Front Neuroanat 9:164CrossRefPubMedPubMedCentral
7.
go back to reference Kasprian G, Langs G, Brugger PC et al (2011) The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex 21:1076–1083CrossRefPubMed Kasprian G, Langs G, Brugger PC et al (2011) The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex 21:1076–1083CrossRefPubMed
8.
go back to reference Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464CrossRefPubMed Takahashi E, Folkerth RD, Galaburda AM, Grant PE (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464CrossRefPubMed
9.
go back to reference Xu G, Takahashi E, Folkerth RD et al (2014) Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: neuroanatomic insights. Cereb Cortex 24:579–592CrossRefPubMed Xu G, Takahashi E, Folkerth RD et al (2014) Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: neuroanatomic insights. Cereb Cortex 24:579–592CrossRefPubMed
10.
go back to reference Kasprian G, Brugger PC, Weber M et al (2008) In utero tractography of fetal white matter development. NeuroImage 43:213–224CrossRefPubMed Kasprian G, Brugger PC, Weber M et al (2008) In utero tractography of fetal white matter development. NeuroImage 43:213–224CrossRefPubMed
11.
go back to reference Kasprian G, Brugger PC, Schopf V et al (2013) Assessing prenatal white matter connectivity in commissural agenesis. Brain 136:168–179CrossRefPubMed Kasprian G, Brugger PC, Schopf V et al (2013) Assessing prenatal white matter connectivity in commissural agenesis. Brain 136:168–179CrossRefPubMed
12.
go back to reference Kier EL, Truwit CL (1996) The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 17:1631–1641PubMed Kier EL, Truwit CL (1996) The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 17:1631–1641PubMed
13.
go back to reference Kier EL, Truwit CL (1997) The lamina rostralis: modification of concepts concerning the anatomy, embryology, and MR appearance of the rostrum of the corpus callosum. AJNR Am J Neuroradiol 18:715–722PubMed Kier EL, Truwit CL (1997) The lamina rostralis: modification of concepts concerning the anatomy, embryology, and MR appearance of the rostrum of the corpus callosum. AJNR Am J Neuroradiol 18:715–722PubMed
14.
go back to reference Garel C, Alberti C (2006) Coronal measurement of the fetal lateral ventricles: comparison between ultrasonography and magnetic resonance imaging. Ultrasound Obstet Gynecol 27:23–27CrossRefPubMed Garel C, Alberti C (2006) Coronal measurement of the fetal lateral ventricles: comparison between ultrasonography and magnetic resonance imaging. Ultrasound Obstet Gynecol 27:23–27CrossRefPubMed
15.
go back to reference Song JW, Mitchell PD, Kolasinski J et al (2015) Asymmetry of white matter pathways in developing human brains. Cereb Cortex 25:2883–2893CrossRefPubMed Song JW, Mitchell PD, Kolasinski J et al (2015) Asymmetry of white matter pathways in developing human brains. Cereb Cortex 25:2883–2893CrossRefPubMed
16.
go back to reference Miyazaki Y, Song JW, Takahashi E (2016) Asymmetry of radial and symmetry of tangential neuronal migration pathways in developing human fetal brains. Front Neuroanat 10:2CrossRefPubMedPubMedCentral Miyazaki Y, Song JW, Takahashi E (2016) Asymmetry of radial and symmetry of tangential neuronal migration pathways in developing human fetal brains. Front Neuroanat 10:2CrossRefPubMedPubMedCentral
17.
go back to reference Bradley KA, Juranek J, Romanowska-Pawliczek A et al (2016) Plasticity of interhemispheric temporal lobe white matter pathways due to early disruption of corpus callosum development in spina bifida. Brain Connect 6:238–248CrossRefPubMedPubMedCentral Bradley KA, Juranek J, Romanowska-Pawliczek A et al (2016) Plasticity of interhemispheric temporal lobe white matter pathways due to early disruption of corpus callosum development in spina bifida. Brain Connect 6:238–248CrossRefPubMedPubMedCentral
18.
go back to reference Pashaj S, Merz E, Wellek S (2013) Biometry of the fetal corpus callosum by three-dimensional ultrasound. Ultrasound Obstet Gynecol 42:691–698CrossRefPubMed Pashaj S, Merz E, Wellek S (2013) Biometry of the fetal corpus callosum by three-dimensional ultrasound. Ultrasound Obstet Gynecol 42:691–698CrossRefPubMed
19.
go back to reference Barkovich AJ, Kjos BO (1988) Normal postnatal development of the corpus callosum as demonstrated by MR imaging. AJNR Am J Neuroradiol 9:487–491PubMed Barkovich AJ, Kjos BO (1988) Normal postnatal development of the corpus callosum as demonstrated by MR imaging. AJNR Am J Neuroradiol 9:487–491PubMed
20.
go back to reference Liu F, Cao S, Liu J et al (2013) Ultrasound measurement of the corpus callosum and neural development of premature infants. Neural Regen Res 8:2432–2440PubMedPubMedCentral Liu F, Cao S, Liu J et al (2013) Ultrasound measurement of the corpus callosum and neural development of premature infants. Neural Regen Res 8:2432–2440PubMedPubMedCentral
21.
go back to reference Gilles FH, Leviton A, Dooling EC (1983) The developing human brain: growth and epidemiologic neuropathology. John Wright & Sons, Boston Gilles FH, Leviton A, Dooling EC (1983) The developing human brain: growth and epidemiologic neuropathology. John Wright & Sons, Boston
22.
go back to reference Gilles FH, Dooling E, Fulchiero A (1976) Sequence of myelination in the human fetus. Trans Am Neurol Assoc 101:244–246PubMed Gilles FH, Dooling E, Fulchiero A (1976) Sequence of myelination in the human fetus. Trans Am Neurol Assoc 101:244–246PubMed
23.
go back to reference Braga RM, Roze E, Ball G et al (2015) Development of the corticospinal and callosal tracts from extremely premature birth up to 2 years of age. PLoS One 10:e0125681CrossRefPubMedPubMedCentral Braga RM, Roze E, Ball G et al (2015) Development of the corticospinal and callosal tracts from extremely premature birth up to 2 years of age. PLoS One 10:e0125681CrossRefPubMedPubMedCentral
25.
go back to reference Victoria T, Johnson AM, Edgar JC et al (2016) Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 206:195–201CrossRefPubMed Victoria T, Johnson AM, Edgar JC et al (2016) Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 206:195–201CrossRefPubMed
Metadata
Title
How accurate are prenatal tractography results? A postnatal in vivo follow-up study using diffusion tensor imaging
Authors
Jae W. Song
Gerlinde M. Gruber
Janina M. Patsch
Rainer Seidl
Daniela Prayer
Gregor Kasprian
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 4/2018
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-017-3982-y

Other articles of this Issue 4/2018

Pediatric Radiology 4/2018 Go to the issue

Minisymposium: Fetal/neonatal imaging

Fetal/neonatal minisymposium — 2017 executive summary

Minisymposium: Fetal/neonatal imaging

Imaging of congenital central nervous system infections