Skip to main content
Top
Published in: Immunity & Ageing 1/2020

Open Access 01-12-2020 | Research

ARID3a expression in human hematopoietic stem cells is associated with distinct gene patterns in aged individuals

Authors: Michelle L. Ratliff, Joshua Garton, Judith A. James, Carol F. Webb

Published in: Immunity & Ageing | Issue 1/2020

Login to get access

Abstract

Background

Immunologic aging leads to immune dysfunction, significantly reducing the quality of life of the elderly. Aged-related defects in early hematopoiesis result in reduced lymphoid cell development, functionally defective mature immune cells, and poor protective responses to vaccines and pathogens. Despite considerable progress understanding the underlying causes of decreased immunity in the elderly, the mechanisms by which these occur are still poorly understood. The DNA-binding protein ARID3a is expressed in a subset of human hematopoietic progenitors. Inhibition of ARID3a in bulk human cord blood CD34+ hematopoietic progenitors led to developmental skewing toward myeloid lineage at the expense of lymphoid lineage cells in vitro. Effects of ARID3a expression in adult-derived hematopoietic stem cells (HSCs) have not been analyzed, nor has ARID3a expression been assessed in relationship to age. We hypothesized that decreases in ARID3a could explain some of the defects observed in aging.

Results

Our data reveal decreased frequencies of ARID3a-expressing peripheral blood HSCs from aged healthy individuals compared with young donor HSCs. Inhibition of ARID3a in young donor-derived HSCs limits B lineage potential, suggesting a role for ARID3a in B lymphopoiesis in bone marrow-derived HSCs. Increasing ARID3a levels of HSCs from aged donors in vitro alters B lineage development and maturation. Finally, single cell analyses of ARID3a-expressing HSCs from young versus aged donors identify a number of differentially expressed genes in aged ARID3A-expressing cells versus young ARID3A-expressing HSCs, as well as between ARID3A-expressing and non-expressing cells in both young and aged donor HSCs.

Conclusions

These data suggest that ARID3a-expressing HSCs from aged individuals differ at both molecular and functional levels compared to ARID3a-expressing HSCs from young individuals.
Literature
1.
go back to reference Colby SL, Ortman JM. Projections of the Size and Composition of the U.S. Population: 2014 to 2060. Population Estimates and Projections. Current Population Reports. P25–1143. Numerical/Quantitative Data Report. Washington, DC: US Census Bureau; 2015. Tel: 800–923-8282; Tel: 301–763-4636; e-mail: Census.in.Schools@census.gov; Web site: http://www.census.gov/; Report No.: ED578934. Colby SL, Ortman JM. Projections of the Size and Composition of the U.S. Population: 2014 to 2060. Population Estimates and Projections. Current Population Reports. P25–1143. Numerical/Quantitative Data Report. Washington, DC: US Census Bureau; 2015. Tel: 800–923-8282; Tel: 301–763-4636; e-mail: Census.​in.​Schools@census.​gov; Web site: http://​www.​census.​gov/​; Report No.: ED578934.
2.
go back to reference Pang WW, Schrier SL, Weissman IL. Age-associated changes in human hematopoietic stem cells. Semin Hematol. 2017;54(1):39–42.PubMed Pang WW, Schrier SL, Weissman IL. Age-associated changes in human hematopoietic stem cells. Semin Hematol. 2017;54(1):39–42.PubMed
3.
go back to reference Laurenti E, Gottgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature. 2018;553(7689):418–26.PubMedPubMedCentral Laurenti E, Gottgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature. 2018;553(7689):418–26.PubMedPubMedCentral
4.
go back to reference Dykstra B, Olthof S, Schreuder J, Ritsema M, de Haan G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011;208(13):2691–703.PubMedPubMedCentral Dykstra B, Olthof S, Schreuder J, Ritsema M, de Haan G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011;208(13):2691–703.PubMedPubMedCentral
5.
go back to reference Kuranda K, Vargaftig J, de la Rochere P, Dosquet C, Charron D, Bardin F, et al. Age-related changes in human hematopoietic stem/progenitor cells. Aging Cell. 2011;10(3):542–6.PubMed Kuranda K, Vargaftig J, de la Rochere P, Dosquet C, Charron D, Bardin F, et al. Age-related changes in human hematopoietic stem/progenitor cells. Aging Cell. 2011;10(3):542–6.PubMed
6.
go back to reference Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A. 2011;108(50):20012–7.PubMedPubMedCentral Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A. 2011;108(50):20012–7.PubMedPubMedCentral
7.
go back to reference Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14(5):673–88.PubMedPubMedCentral Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14(5):673–88.PubMedPubMedCentral
8.
go back to reference Fali T, Fabre-Mersseman V, Yamamoto T, Bayard C, Papagno L, Fastenackels S, et al. Elderly human hematopoietic progenitor cells express cellular senescence markers and are more susceptible to pyroptosis. JCI Insight. 2018;3(13):e95319.PubMedCentral Fali T, Fabre-Mersseman V, Yamamoto T, Bayard C, Papagno L, Fastenackels S, et al. Elderly human hematopoietic progenitor cells express cellular senescence markers and are more susceptible to pyroptosis. JCI Insight. 2018;3(13):e95319.PubMedCentral
9.
go back to reference Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512(7513):198–202.PubMedPubMedCentral Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512(7513):198–202.PubMedPubMedCentral
10.
go back to reference Kortschak RD, Tucker PW, Saint R. ARID proteins come in from the desert. Trends Biochem Sci. 2000;25(6):294–9.PubMed Kortschak RD, Tucker PW, Saint R. ARID proteins come in from the desert. Trends Biochem Sci. 2000;25(6):294–9.PubMed
11.
go back to reference Patsialou A, Wilsker D, Moran E. DNA-binding properties of ARID family proteins. Nucleic Acids Res. 2005;33(1):66–80.PubMedPubMedCentral Patsialou A, Wilsker D, Moran E. DNA-binding properties of ARID family proteins. Nucleic Acids Res. 2005;33(1):66–80.PubMedPubMedCentral
12.
go back to reference Ratliff ML, Templeton TD, Ward JM, Webb CF. The bright side of hematopoiesis: regulatory roles of ARID3a/bright in human and mouse hematopoiesis. Front Immunol. 2014;5:113.PubMedPubMedCentral Ratliff ML, Templeton TD, Ward JM, Webb CF. The bright side of hematopoiesis: regulatory roles of ARID3a/bright in human and mouse hematopoiesis. Front Immunol. 2014;5:113.PubMedPubMedCentral
13.
go back to reference Popowski M, Templeton TD, Lee BK, Rhee C, Li H, Miner C, et al. Bright/Arid3A acts as a barrier to somatic cell reprogramming through direct regulation of Oct4, Sox2, and Nanog. Stem Cell Rep. 2014;2(1):26–35. Popowski M, Templeton TD, Lee BK, Rhee C, Li H, Miner C, et al. Bright/Arid3A acts as a barrier to somatic cell reprogramming through direct regulation of Oct4, Sox2, and Nanog. Stem Cell Rep. 2014;2(1):26–35.
14.
go back to reference Rajaiya J, Nixon JC, Ayers N, Desgranges ZP, Roy AL, Webb CF. Induction of immunoglobulin heavy-chain transcription through the transcription factor bright requires TFII-I. Mol Cell Biol. 2006;26(12):4758–68.PubMedPubMedCentral Rajaiya J, Nixon JC, Ayers N, Desgranges ZP, Roy AL, Webb CF. Induction of immunoglobulin heavy-chain transcription through the transcription factor bright requires TFII-I. Mol Cell Biol. 2006;26(12):4758–68.PubMedPubMedCentral
15.
go back to reference Rajaiya J, Hatfield M, Nixon JC, Rawlings DJ, Webb CF. Bruton’s tyrosine kinase regulates immunoglobulin promoter activation in association with the transcription factor bright. Mol Cell Biol. 2005;25(6):2073–84.PubMedPubMedCentral Rajaiya J, Hatfield M, Nixon JC, Rawlings DJ, Webb CF. Bruton’s tyrosine kinase regulates immunoglobulin promoter activation in association with the transcription factor bright. Mol Cell Biol. 2005;25(6):2073–84.PubMedPubMedCentral
16.
go back to reference Lin D, Ippolito GC, Zong RT, Bryant J, Koslovsky J, Tucker P. Bright/ARID3A contributes to chromatin accessibility of the immunoglobulin heavy chain enhancer. Mol Cancer. 2007;6:23.PubMedPubMedCentral Lin D, Ippolito GC, Zong RT, Bryant J, Koslovsky J, Tucker P. Bright/ARID3A contributes to chromatin accessibility of the immunoglobulin heavy chain enhancer. Mol Cancer. 2007;6:23.PubMedPubMedCentral
17.
go back to reference Ward JM, Ratliff ML, Dozmorov MG, Wiley G, Guthridge JM, Gaffney PM, et al. Expression and methylation data from SLE patient and healthy control blood samples subdivided with respect to ARID3a levels. Data Brief. 2016;9:213–9.PubMedPubMedCentral Ward JM, Ratliff ML, Dozmorov MG, Wiley G, Guthridge JM, Gaffney PM, et al. Expression and methylation data from SLE patient and healthy control blood samples subdivided with respect to ARID3a levels. Data Brief. 2016;9:213–9.PubMedPubMedCentral
18.
go back to reference Ward JM, Ratliff ML, Dozmorov MG, Wiley G, Guthridge JM, Gaffney PM, et al. Human effector B lymphocytes express ARID3a and secrete interferon alpha. J Autoimmun. 2016;75:130–40.PubMedPubMedCentral Ward JM, Ratliff ML, Dozmorov MG, Wiley G, Guthridge JM, Gaffney PM, et al. Human effector B lymphocytes express ARID3a and secrete interferon alpha. J Autoimmun. 2016;75:130–40.PubMedPubMedCentral
19.
go back to reference Webb CF, Bryant J, Popowski M, Allred L, Kim D, Harriss J, et al. The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development. Mol Cell Biol. 2011;31(5):1041–53.PubMedPubMedCentral Webb CF, Bryant J, Popowski M, Allred L, Kim D, Harriss J, et al. The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development. Mol Cell Biol. 2011;31(5):1041–53.PubMedPubMedCentral
20.
go back to reference Nixon JC, Ferrell S, Miner C, Oldham AL, Hochgeschwender U, Webb CF. Transgenic mice expressing dominant-negative bright exhibit defects in B1 B cells. J Immunol. 2008;181(10):6913–22.PubMedPubMedCentral Nixon JC, Ferrell S, Miner C, Oldham AL, Hochgeschwender U, Webb CF. Transgenic mice expressing dominant-negative bright exhibit defects in B1 B cells. J Immunol. 2008;181(10):6913–22.PubMedPubMedCentral
21.
go back to reference Hayakawa K, Li YS, Shinton SA, Bandi SR, Formica AM, Brill-Dashoff J, et al. Crucial role of increased Arid3a at the pre-B and immature B cell stages for B1a cell generation. Front Immunol. 2019;10:457.PubMedPubMedCentral Hayakawa K, Li YS, Shinton SA, Bandi SR, Formica AM, Brill-Dashoff J, et al. Crucial role of increased Arid3a at the pre-B and immature B cell stages for B1a cell generation. Front Immunol. 2019;10:457.PubMedPubMedCentral
22.
go back to reference Li YS, Zhou Y, Tang L, Shinton SA, Hayakawa K, Hardy RR. A developmental switch between fetal and adult B lymphopoiesis. Ann N Y Acad Sci. 2015;1362:8–15.PubMed Li YS, Zhou Y, Tang L, Shinton SA, Hayakawa K, Hardy RR. A developmental switch between fetal and adult B lymphopoiesis. Ann N Y Acad Sci. 2015;1362:8–15.PubMed
23.
go back to reference Zhou Y, Li YS, Bandi SR, Tang L, Shinton SA, Hayakawa K, et al. Lin28b promotes fetal B lymphopoiesis through the transcription factor Arid3a. J Exp Med. 2015;212(4):569–80.PubMedPubMedCentral Zhou Y, Li YS, Bandi SR, Tang L, Shinton SA, Hayakawa K, et al. Lin28b promotes fetal B lymphopoiesis through the transcription factor Arid3a. J Exp Med. 2015;212(4):569–80.PubMedPubMedCentral
24.
go back to reference Simell B, Vuorela A, Ekstrom N, Palmu A, Reunanen A, Meri S, et al. Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine. 2011;29(10):1929–34.PubMed Simell B, Vuorela A, Ekstrom N, Palmu A, Reunanen A, Meri S, et al. Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine. 2011;29(10):1929–34.PubMed
25.
go back to reference Brooks LRK, Mias GI. Streptococcus pneumoniae’s virulence and host immunity: aging, diagnostics, and prevention. Front Immunol. 2018;9:1366.PubMedPubMedCentral Brooks LRK, Mias GI. Streptococcus pneumoniae’s virulence and host immunity: aging, diagnostics, and prevention. Front Immunol. 2018;9:1366.PubMedPubMedCentral
26.
go back to reference Oldham AL, Miner CA, Wang HC, Webb CF. The transcription factor bright plays a role in marginal zone B lymphocyte development and autoantibody production. Mol Immunol. 2011;49(1–2):367–79.PubMedPubMedCentral Oldham AL, Miner CA, Wang HC, Webb CF. The transcription factor bright plays a role in marginal zone B lymphocyte development and autoantibody production. Mol Immunol. 2011;49(1–2):367–79.PubMedPubMedCentral
28.
go back to reference Sanz I, Wei C, Jenks SA, Cashman KS, Tipton C, Woodruff MC, et al. Challenges and opportunities for consistent classification of human B cell and plasma cell populations. Front Immunol. 2019;10:2458.PubMedPubMedCentral Sanz I, Wei C, Jenks SA, Cashman KS, Tipton C, Woodruff MC, et al. Challenges and opportunities for consistent classification of human B cell and plasma cell populations. Front Immunol. 2019;10:2458.PubMedPubMedCentral
29.
go back to reference Ratliff ML, Ward JM, Merrill JT, James JA, Webb CF. Differential expression of the transcription factor ARID3a in lupus patient hematopoietic progenitor cells. J Immunol. 2015;194(3):940–9.PubMed Ratliff ML, Ward JM, Merrill JT, James JA, Webb CF. Differential expression of the transcription factor ARID3a in lupus patient hematopoietic progenitor cells. J Immunol. 2015;194(3):940–9.PubMed
30.
go back to reference Ratliff ML, Mishra M, Frank MB, Guthridge JM, Webb CF. The transcription factor ARID3a is important for in vitro differentiation of human hematopoietic progenitors. J Immunol. 2016;196(2):614–23.PubMed Ratliff ML, Mishra M, Frank MB, Guthridge JM, Webb CF. The transcription factor ARID3a is important for in vitro differentiation of human hematopoietic progenitors. J Immunol. 2016;196(2):614–23.PubMed
31.
go back to reference Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005;102(26):9194–9.PubMedPubMedCentral Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005;102(26):9194–9.PubMedPubMedCentral
32.
go back to reference Wahlestedt M, Norddahl GL, Sten G, Ugale A, Frisk MA, Mattsson R, et al. An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood. 2013;121(21):4257–64.PubMed Wahlestedt M, Norddahl GL, Sten G, Ugale A, Frisk MA, Mattsson R, et al. An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood. 2013;121(21):4257–64.PubMed
33.
go back to reference Zhang WG, Zhu SY, Bai XJ, Zhao DL, Jian SM, Li J, et al. Select aging biomarkers based on telomere length and chronological age to build a biological age equation. Age (Dordr). 2014;36(3):9639. Zhang WG, Zhu SY, Bai XJ, Zhao DL, Jian SM, Li J, et al. Select aging biomarkers based on telomere length and chronological age to build a biological age equation. Age (Dordr). 2014;36(3):9639.
34.
go back to reference Lee Y, Sun D, Ori APS, Lu AT, Seeboth A, Harris SE, et al. Epigenome-wide association study of leukocyte telomere length. Aging (Albany NY). 2019;11(16):5876–94. Lee Y, Sun D, Ori APS, Lu AT, Seeboth A, Harris SE, et al. Epigenome-wide association study of leukocyte telomere length. Aging (Albany NY). 2019;11(16):5876–94.
35.
go back to reference de Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood. 2018;131(5):479–87.PubMed de Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood. 2018;131(5):479–87.PubMed
36.
go back to reference van Galen P, Kreso A, Wienholds E, Laurenti E, Eppert K, Lechman ER, et al. Reduced lymphoid lineage priming promotes human hematopoietic stem cell expansion. Cell Stem Cell. 2014;14(1):94–106.PubMed van Galen P, Kreso A, Wienholds E, Laurenti E, Eppert K, Lechman ER, et al. Reduced lymphoid lineage priming promotes human hematopoietic stem cell expansion. Cell Stem Cell. 2014;14(1):94–106.PubMed
37.
go back to reference Camous X, Pera A, Solana R, Larbi A. NK cells in healthy aging and age-associated diseases. J Biomed Biotechnol. 2012;2012:195956.PubMedPubMedCentral Camous X, Pera A, Solana R, Larbi A. NK cells in healthy aging and age-associated diseases. J Biomed Biotechnol. 2012;2012:195956.PubMedPubMedCentral
38.
39.
go back to reference Sanz E, Munoz AN, Monserrat J, Van-Den-Rym A, Escoll P, Ranz I, et al. Ordering human CD34+CD10-CD19+ pre/pro-B-cell and CD19- common lymphoid progenitor stages in two pro-B-cell development pathways. Proc Natl Acad Sci U S A. 2010;107(13):5925–30.PubMedPubMedCentral Sanz E, Munoz AN, Monserrat J, Van-Den-Rym A, Escoll P, Ranz I, et al. Ordering human CD34+CD10-CD19+ pre/pro-B-cell and CD19- common lymphoid progenitor stages in two pro-B-cell development pathways. Proc Natl Acad Sci U S A. 2010;107(13):5925–30.PubMedPubMedCentral
40.
go back to reference Dmytrus J, Matthes-Martin S, Pichler H, Worel N, Geyeregger R, Frank N, et al. Multi-color immune-phenotyping of CD34 subsets reveals unexpected differences between various stem cell sources. Bone Marrow Transplant. 2016;51(8):1093–100.PubMed Dmytrus J, Matthes-Martin S, Pichler H, Worel N, Geyeregger R, Frank N, et al. Multi-color immune-phenotyping of CD34 subsets reveals unexpected differences between various stem cell sources. Bone Marrow Transplant. 2016;51(8):1093–100.PubMed
41.
42.
go back to reference Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10(2):120–36.PubMed Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10(2):120–36.PubMed
43.
go back to reference Przemska-Kosicka A, Childs CE, Maidens C, Dong H, Todd S, Gosney MA, et al. Age-related changes in the natural killer cell response to seasonal influenza vaccination are not influenced by a Synbiotic: a randomised controlled trial. Front Immunol. 2018;9:591.PubMedPubMedCentral Przemska-Kosicka A, Childs CE, Maidens C, Dong H, Todd S, Gosney MA, et al. Age-related changes in the natural killer cell response to seasonal influenza vaccination are not influenced by a Synbiotic: a randomised controlled trial. Front Immunol. 2018;9:591.PubMedPubMedCentral
44.
go back to reference Ichii M, Oritani K, Yokota T, Schultz DC, Holter JL, Kanakura Y, et al. Stromal cell-free conditions favorable for human B lymphopoiesis in culture. J Immunol Methods. 2010;359(1–2):47–55.PubMedPubMedCentral Ichii M, Oritani K, Yokota T, Schultz DC, Holter JL, Kanakura Y, et al. Stromal cell-free conditions favorable for human B lymphopoiesis in culture. J Immunol Methods. 2010;359(1–2):47–55.PubMedPubMedCentral
45.
go back to reference Ichii M, Oritani K, Yokota T, Zhang Q, Garrett KP, Kanakura Y, et al. The density of CD10 corresponds to commitment and progression in the human B lymphoid lineage. PLoS One. 2010;5(9):e12954.PubMedPubMedCentral Ichii M, Oritani K, Yokota T, Zhang Q, Garrett KP, Kanakura Y, et al. The density of CD10 corresponds to commitment and progression in the human B lymphoid lineage. PLoS One. 2010;5(9):e12954.PubMedPubMedCentral
46.
go back to reference Mejia-Ramirez E, Florian MC. Understanding intrinsic hematopoietic stem cell aging. Haematologica. 2020;105(1):22–37.PubMedPubMedCentral Mejia-Ramirez E, Florian MC. Understanding intrinsic hematopoietic stem cell aging. Haematologica. 2020;105(1):22–37.PubMedPubMedCentral
47.
go back to reference Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J, et al. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac−/−, Balb/c-Rag1−/−gammac−/−, and C.B-17-scid/bg immunodeficient mice. Hum Immunol. 2009;70(10):790–802.PubMedPubMedCentral Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J, et al. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac−/−, Balb/c-Rag1−/−gammac−/−, and C.B-17-scid/bg immunodeficient mice. Hum Immunol. 2009;70(10):790–802.PubMedPubMedCentral
48.
go back to reference Harrison DE, Astle CM. Short- and long-term multilineage repopulating hematopoietic stem cells in late fetal and newborn mice: models for human umbilical cord blood. Blood. 1997;90(1):174–81.PubMed Harrison DE, Astle CM. Short- and long-term multilineage repopulating hematopoietic stem cells in late fetal and newborn mice: models for human umbilical cord blood. Blood. 1997;90(1):174–81.PubMed
49.
go back to reference Holodick NE, Rothstein TL. B cells in the aging immune system: time to consider B-1 cells. Ann N Y Acad Sci. 2015;1362(1):176–87.PubMedPubMedCentral Holodick NE, Rothstein TL. B cells in the aging immune system: time to consider B-1 cells. Ann N Y Acad Sci. 2015;1362(1):176–87.PubMedPubMedCentral
50.
go back to reference Cancro MP. Age-associated B Cells. Annu Rev Immunol. 2020;38:315–40.PubMed Cancro MP. Age-associated B Cells. Annu Rev Immunol. 2020;38:315–40.PubMed
51.
go back to reference Hao Y, O'Neill P, Naradikian MS, Scholz JL, Cancro MP. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood. 2011;118(5):1294–304.PubMedPubMedCentral Hao Y, O'Neill P, Naradikian MS, Scholz JL, Cancro MP. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood. 2011;118(5):1294–304.PubMedPubMedCentral
52.
go back to reference Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c(+) B-cell population is important for the development of autoimmunity. Blood. 2011;118(5):1305–15.PubMedPubMedCentral Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c(+) B-cell population is important for the development of autoimmunity. Blood. 2011;118(5):1305–15.PubMedPubMedCentral
53.
go back to reference Rundberg Nilsson A, Soneji S, Adolfsson S, Bryder D, Pronk CJ. Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/Erythroid bias. PLoS One. 2016;11(7):e0158369.PubMedPubMedCentral Rundberg Nilsson A, Soneji S, Adolfsson S, Bryder D, Pronk CJ. Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/Erythroid bias. PLoS One. 2016;11(7):e0158369.PubMedPubMedCentral
54.
go back to reference Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science (New York, NY). 2011;333(6039):218–21. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science (New York, NY). 2011;333(6039):218–21.
55.
go back to reference Nixon JC, Rajaiya JB, Ayers N, Evetts S, Webb CF. The transcription factor, bright, is not expressed in all human B lymphocyte subpopulations. Cell Immunol. 2004;228(1):42–53.PubMed Nixon JC, Rajaiya JB, Ayers N, Evetts S, Webb CF. The transcription factor, bright, is not expressed in all human B lymphocyte subpopulations. Cell Immunol. 2004;228(1):42–53.PubMed
56.
go back to reference Tomellini E, Fares I, Lehnertz B, Chagraoui J, Mayotte N, MacRae T, et al. Integrin-alpha3 Is a Functional Marker of Ex Vivo Expanded Human Long-Term Hematopoietic Stem Cells. Cell Rep. 2019;28(4):1063–73.e5.PubMed Tomellini E, Fares I, Lehnertz B, Chagraoui J, Mayotte N, MacRae T, et al. Integrin-alpha3 Is a Functional Marker of Ex Vivo Expanded Human Long-Term Hematopoietic Stem Cells. Cell Rep. 2019;28(4):1063–73.e5.PubMed
Metadata
Title
ARID3a expression in human hematopoietic stem cells is associated with distinct gene patterns in aged individuals
Authors
Michelle L. Ratliff
Joshua Garton
Judith A. James
Carol F. Webb
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2020
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-020-00198-6

Other articles of this Issue 1/2020

Immunity & Ageing 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine