Skip to main content
Top
Published in: Medical Gas Research 1/2014

Open Access 01-12-2014 | Review

Argon gas: a potential neuroprotectant and promising medical therapy

Authors: Derek S Nowrangi, Jiping Tang, John H Zhang

Published in: Medical Gas Research | Issue 1/2014

Login to get access

Abstract

Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential.
Appendix
Available only for authorised users
Literature
1.
go back to reference De Keyser J, Sulter G, Luiten PG: Clinical trials with neuroprotective drugs in acute ischaemic stroke: are we doing the right thing?. Trends Neurosci. 1999, 22 (12): 535-540. 10.1016/S0166-2236(99)01463-0.CrossRefPubMed De Keyser J, Sulter G, Luiten PG: Clinical trials with neuroprotective drugs in acute ischaemic stroke: are we doing the right thing?. Trends Neurosci. 1999, 22 (12): 535-540. 10.1016/S0166-2236(99)01463-0.CrossRefPubMed
2.
go back to reference Ito H, et al: Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand. 1999, 43 (2): 153-162. 10.1034/j.1399-6576.1999.430206.x.CrossRefPubMed Ito H, et al: Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand. 1999, 43 (2): 153-162. 10.1034/j.1399-6576.1999.430206.x.CrossRefPubMed
3.
go back to reference Bilotta F, et al: Pharmacological perioperative brain neuroprotection: a qualitative review of randomized clinical trials. Br J Anaesth. 2013, 110 (Suppl 1): i113-i120. 10.1093/bja/aet059.CrossRefPubMed Bilotta F, et al: Pharmacological perioperative brain neuroprotection: a qualitative review of randomized clinical trials. Br J Anaesth. 2013, 110 (Suppl 1): i113-i120. 10.1093/bja/aet059.CrossRefPubMed
4.
go back to reference Tator CH, et al: Translational potential of preclinical trials of neuroprotection through pharmacotherapy for spinal cord injury. J Neurosurg Spine. 2012, 17 (1 Suppl): 157-229.CrossRefPubMed Tator CH, et al: Translational potential of preclinical trials of neuroprotection through pharmacotherapy for spinal cord injury. J Neurosurg Spine. 2012, 17 (1 Suppl): 157-229.CrossRefPubMed
5.
go back to reference Cavendish H: Experiments on Air. By Henry Cavendish, Esq. F. R. S. & S. A. Philos Trans R Soc Lond. 1784, 74: 119-153. 10.1098/rstl.1784.0014.CrossRef Cavendish H: Experiments on Air. By Henry Cavendish, Esq. F. R. S. & S. A. Philos Trans R Soc Lond. 1784, 74: 119-153. 10.1098/rstl.1784.0014.CrossRef
6.
go back to reference Rayleigh L, Ramsay W: Argon, a new constituent of the atmosphere. Proc R Soc Lond. 1894, 57 (340–346): 265-287.CrossRef Rayleigh L, Ramsay W: Argon, a new constituent of the atmosphere. Proc R Soc Lond. 1894, 57 (340–346): 265-287.CrossRef
7.
go back to reference Christe KO: Bartlett’s discovery of noble gas fluorides, a milestone in chemical history. Chem Commun (Camb). 2013, 49 (41): 4588-4590. 10.1039/c3cc41387j.CrossRef Christe KO: Bartlett’s discovery of noble gas fluorides, a milestone in chemical history. Chem Commun (Camb). 2013, 49 (41): 4588-4590. 10.1039/c3cc41387j.CrossRef
8.
go back to reference Ruzicka J, et al: Biological effects of noble gases. Physiol Res. 2007, 56 (Suppl 1): S39-S44.PubMed Ruzicka J, et al: Biological effects of noble gases. Physiol Res. 2007, 56 (Suppl 1): S39-S44.PubMed
9.
go back to reference Trudell JR, Koblin DD, Eger EI: A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesth Analg. 1998, 87 (2): 411-418.PubMed Trudell JR, Koblin DD, Eger EI: A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesth Analg. 1998, 87 (2): 411-418.PubMed
10.
go back to reference Quillin ML, et al: Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme. J Mol Biol. 2000, 302 (4): 955-977. 10.1006/jmbi.2000.4063.CrossRefPubMed Quillin ML, et al: Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme. J Mol Biol. 2000, 302 (4): 955-977. 10.1006/jmbi.2000.4063.CrossRefPubMed
11.
go back to reference Gudmundsson JT, Lieberman MA: Ar + and Xe + velocities near the presheath-sheath boundary in an Ar/Xe discharge. Phys Rev Lett. 2011, 107 (4): 045002-CrossRefPubMed Gudmundsson JT, Lieberman MA: Ar + and Xe + velocities near the presheath-sheath boundary in an Ar/Xe discharge. Phys Rev Lett. 2011, 107 (4): 045002-CrossRefPubMed
12.
go back to reference Schiwietz G, et al: Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions. Phys Rev Lett. 2010, 105 (18): 187603-CrossRefPubMed Schiwietz G, et al: Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions. Phys Rev Lett. 2010, 105 (18): 187603-CrossRefPubMed
13.
go back to reference Kyrychenko A, Waluk J: Molecular dynamics simulations of matrix deposition. III. Site structure analysis for porphycene in argon and xenon. J Chem Phys. 2005, 123 (6): 64706-10.1063/1.1997128.CrossRefPubMed Kyrychenko A, Waluk J: Molecular dynamics simulations of matrix deposition. III. Site structure analysis for porphycene in argon and xenon. J Chem Phys. 2005, 123 (6): 64706-10.1063/1.1997128.CrossRefPubMed
14.
go back to reference Ma D, et al: Neuroprotective and neurotoxic properties of the ‘inert’ gas, xenon. Br J Anaesth. 2002, 89 (5): 739-746. 10.1093/bja/89.5.739.CrossRefPubMed Ma D, et al: Neuroprotective and neurotoxic properties of the ‘inert’ gas, xenon. Br J Anaesth. 2002, 89 (5): 739-746. 10.1093/bja/89.5.739.CrossRefPubMed
15.
go back to reference Preckel B, et al: Molecular mechanisms transducing the anesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology. 2006, 105 (1): 187-197. 10.1097/00000542-200607000-00029.CrossRefPubMed Preckel B, et al: Molecular mechanisms transducing the anesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology. 2006, 105 (1): 187-197. 10.1097/00000542-200607000-00029.CrossRefPubMed
16.
go back to reference Derwall M, et al: Xenon: recent developments and future perspectives. Minerva Anestesiol. 2009, 75 (1–2): 37-45.PubMed Derwall M, et al: Xenon: recent developments and future perspectives. Minerva Anestesiol. 2009, 75 (1–2): 37-45.PubMed
17.
go back to reference Franks NP, et al: How does xenon produce anaesthesia?. Nature. 1998, 396 (6709): 324-10.1038/24525.CrossRefPubMed Franks NP, et al: How does xenon produce anaesthesia?. Nature. 1998, 396 (6709): 324-10.1038/24525.CrossRefPubMed
18.
go back to reference Jawad N, et al: Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett. 2009, 460 (3): 232-236. 10.1016/j.neulet.2009.05.069.CrossRefPubMed Jawad N, et al: Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett. 2009, 460 (3): 232-236. 10.1016/j.neulet.2009.05.069.CrossRefPubMed
19.
go back to reference Behnke AR, Thompson RM, Motley EP: The psychologic effects from breathing air at 4 atmospheres pressure. Am J Physiol Legacy Content. 1935, 112 (3): 554-558. Behnke AR, Thompson RM, Motley EP: The psychologic effects from breathing air at 4 atmospheres pressure. Am J Physiol Legacy Content. 1935, 112 (3): 554-558.
20.
go back to reference Dudley SF: Some atmospheric hazards encountered in naval life: (united services section). Proc R Soc Med. 1935, 28 (9): 1283-1292.PubMedCentralPubMed Dudley SF: Some atmospheric hazards encountered in naval life: (united services section). Proc R Soc Med. 1935, 28 (9): 1283-1292.PubMedCentralPubMed
21.
go back to reference Haldane JBS: Human life and death at high pressures. Nature. 1941, 148: 458-460. 10.1038/148458a0.CrossRef Haldane JBS: Human life and death at high pressures. Nature. 1941, 148: 458-460. 10.1038/148458a0.CrossRef
22.
go back to reference Lawrence JH, et al: Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1946, 105 (3): 197-204.PubMedCentralCrossRef Lawrence JH, et al: Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1946, 105 (3): 197-204.PubMedCentralCrossRef
23.
go back to reference Behnke AR, Yarbrough OD: Respiratory resistance, oil–water solubility, and mental effects of argon, compared with helium and nitrogen. Am J Physiol Legacy Content. 1939, 126 (2): 409-415. Behnke AR, Yarbrough OD: Respiratory resistance, oil–water solubility, and mental effects of argon, compared with helium and nitrogen. Am J Physiol Legacy Content. 1939, 126 (2): 409-415.
24.
go back to reference Abraini JH, et al: Gamma-aminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth Analg. 2003, 96 (3): 746-749. table of contentsCrossRefPubMed Abraini JH, et al: Gamma-aminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth Analg. 2003, 96 (3): 746-749. table of contentsCrossRefPubMed
25.
go back to reference Rostain JC, Balon N: Recent neurochemical basis of inert gas narcosis and pressure effects. Undersea Hyperb Med. 2006, 33 (3): 197-204.PubMed Rostain JC, Balon N: Recent neurochemical basis of inert gas narcosis and pressure effects. Undersea Hyperb Med. 2006, 33 (3): 197-204.PubMed
26.
go back to reference Franks NP, Lieb WR: Molecular and cellular mechanisms of general anaesthesia. Nature. 1994, 367 (6464): 607-614. 10.1038/367607a0.CrossRefPubMed Franks NP, Lieb WR: Molecular and cellular mechanisms of general anaesthesia. Nature. 1994, 367 (6464): 607-614. 10.1038/367607a0.CrossRefPubMed
27.
go back to reference Jevtovic-Todorovic V, et al: Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med. 1998, 4 (4): 460-463. 10.1038/nm0498-460.CrossRefPubMed Jevtovic-Todorovic V, et al: Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med. 1998, 4 (4): 460-463. 10.1038/nm0498-460.CrossRefPubMed
28.
go back to reference Luo R, Partridge JG, Vicini S: Distinct roles of synaptic and extrasynaptic GABAAreceptors in striatal inhibition dynamics. Front Neural Circuits. 2013, 7: 186-PubMedCentralCrossRefPubMed Luo R, Partridge JG, Vicini S: Distinct roles of synaptic and extrasynaptic GABAAreceptors in striatal inhibition dynamics. Front Neural Circuits. 2013, 7: 186-PubMedCentralCrossRefPubMed
29.
go back to reference Ladepeche L, Dupuis JP, Groc L: Surface trafficking of NMDA receptors: Gathering from a partner to another. Semin Cell Dev Biol. 2013, doi: 10.1016/j.semcdb.2013.10.005 Ladepeche L, Dupuis JP, Groc L: Surface trafficking of NMDA receptors: Gathering from a partner to another. Semin Cell Dev Biol. 2013, doi: 10.1016/j.semcdb.2013.10.005
30.
go back to reference Balon N, et al: Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats. Brain Res. 2002, 947 (2): 218-24. 10.1016/S0006-8993(02)02928-1.CrossRefPubMed Balon N, et al: Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats. Brain Res. 2002, 947 (2): 218-24. 10.1016/S0006-8993(02)02928-1.CrossRefPubMed
31.
go back to reference Koblin DD, et al: Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics). Anesth Analg. 1998, 87 (2): 419-24.PubMed Koblin DD, et al: Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics). Anesth Analg. 1998, 87 (2): 419-24.PubMed
32.
go back to reference Fowler B, Ackles KN, Porlier G: Effects of inert gas narcosis on behavior–a critical review. Undersea Biomed Res. 1985, 12 (4): 369-402.PubMed Fowler B, Ackles KN, Porlier G: Effects of inert gas narcosis on behavior–a critical review. Undersea Biomed Res. 1985, 12 (4): 369-402.PubMed
33.
go back to reference McConeghy KW, et al: A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs. 2012, 26 (7): 613-36. 10.2165/11634020-000000000-00000.CrossRefPubMed McConeghy KW, et al: A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs. 2012, 26 (7): 613-36. 10.2165/11634020-000000000-00000.CrossRefPubMed
34.
go back to reference Liu R, et al: Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res. 2012, 34 (4): 331-7. 10.1179/1743132812Y.0000000020.CrossRefPubMed Liu R, et al: Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res. 2012, 34 (4): 331-7. 10.1179/1743132812Y.0000000020.CrossRefPubMed
35.
go back to reference Russo R, et al: In search of new targets for retinal neuroprotection: is there a role for autophagy?. Curr Opin Pharmacol. 2013, 13 (1): 72-7. 10.1016/j.coph.2012.09.004.CrossRefPubMed Russo R, et al: In search of new targets for retinal neuroprotection: is there a role for autophagy?. Curr Opin Pharmacol. 2013, 13 (1): 72-7. 10.1016/j.coph.2012.09.004.CrossRefPubMed
37.
go back to reference Neal JW, Gasque P: How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis?. J Neuropathol Exp Neurol. 2013, 72 (5): 370-85. 10.1097/NEN.0b013e3182909f2f.CrossRefPubMed Neal JW, Gasque P: How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis?. J Neuropathol Exp Neurol. 2013, 72 (5): 370-85. 10.1097/NEN.0b013e3182909f2f.CrossRefPubMed
38.
go back to reference Lee JM, Zipfel GJ, Choi DW: The changing landscape of ischaemic brain injury mechanisms. Nature. 1999, 399 (6738 Suppl): A7-14.CrossRefPubMed Lee JM, Zipfel GJ, Choi DW: The changing landscape of ischaemic brain injury mechanisms. Nature. 1999, 399 (6738 Suppl): A7-14.CrossRefPubMed
39.
go back to reference Durukan A, Tatlisumak T: Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007, 87 (1): 179-97. 10.1016/j.pbb.2007.04.015.CrossRefPubMed Durukan A, Tatlisumak T: Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007, 87 (1): 179-97. 10.1016/j.pbb.2007.04.015.CrossRefPubMed
40.
go back to reference Strasser U, Fischer G: Protection from neuronal damage induced by combined oxygen and glucose deprivation in organotypic hippocampal cultures by glutamate receptor antagonists. Brain Res. 1995, 687 (1–2): 167-74.CrossRefPubMed Strasser U, Fischer G: Protection from neuronal damage induced by combined oxygen and glucose deprivation in organotypic hippocampal cultures by glutamate receptor antagonists. Brain Res. 1995, 687 (1–2): 167-74.CrossRefPubMed
42.
go back to reference Namjoshi DR, et al: Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective. Dis Model Mech. 2013, 6 (6): 1325-1338. 10.1242/dmm.011320.PubMedCentralCrossRefPubMed Namjoshi DR, et al: Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective. Dis Model Mech. 2013, 6 (6): 1325-1338. 10.1242/dmm.011320.PubMedCentralCrossRefPubMed
43.
go back to reference Liu F, McCullough LD: Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol. 2011, 2011: 464701-PubMedCentralPubMed Liu F, McCullough LD: Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol. 2011, 2011: 464701-PubMedCentralPubMed
44.
go back to reference Loetscher PD, et al: Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care. 2009, 13 (6): R206-10.1186/cc8214.PubMedCentralCrossRefPubMed Loetscher PD, et al: Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care. 2009, 13 (6): R206-10.1186/cc8214.PubMedCentralCrossRefPubMed
45.
go back to reference Harris K, et al: Neuroprotection against Traumatic Brain Injury by Xenon, but Not Argon, Is Mediated by Inhibition at the N-Methyl-D-Aspartate Receptor Glycine Site. Anesthesiology. 2013, 119 (5): 1137-1148. 10.1097/ALN.0b013e3182a2a265.CrossRefPubMed Harris K, et al: Neuroprotection against Traumatic Brain Injury by Xenon, but Not Argon, Is Mediated by Inhibition at the N-Methyl-D-Aspartate Receptor Glycine Site. Anesthesiology. 2013, 119 (5): 1137-1148. 10.1097/ALN.0b013e3182a2a265.CrossRefPubMed
46.
go back to reference Ryang YM, et al: Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med. 2011, 39 (6): 1448-53. 10.1097/CCM.0b013e31821209be.CrossRefPubMed Ryang YM, et al: Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med. 2011, 39 (6): 1448-53. 10.1097/CCM.0b013e31821209be.CrossRefPubMed
47.
go back to reference Zhuang L, et al: The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med. 2012, 40 (6): 1724-30. 10.1097/CCM.0b013e3182452164.CrossRefPubMed Zhuang L, et al: The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med. 2012, 40 (6): 1724-30. 10.1097/CCM.0b013e3182452164.CrossRefPubMed
48.
go back to reference Neumar RW, et al: Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008, 118 (23): 2452-83. 10.1161/CIRCULATIONAHA.108.190652.CrossRefPubMed Neumar RW, et al: Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008, 118 (23): 2452-83. 10.1161/CIRCULATIONAHA.108.190652.CrossRefPubMed
49.
go back to reference Brucken A, et al: Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth. 2013, 110 (suppl 1): i106-i112. 10.1093/bja/aes509.CrossRefPubMed Brucken A, et al: Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth. 2013, 110 (suppl 1): i106-i112. 10.1093/bja/aes509.CrossRefPubMed
50.
go back to reference Ristagno G, et al: Post-resuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest. Shock. 2013, 41 (1): 72-78.CrossRef Ristagno G, et al: Post-resuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest. Shock. 2013, 41 (1): 72-78.CrossRef
51.
go back to reference David HN, et al: Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult. PLoS One. 2012, 7 (2): e30934-10.1371/journal.pone.0030934.PubMedCentralCrossRefPubMed David HN, et al: Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult. PLoS One. 2012, 7 (2): e30934-10.1371/journal.pone.0030934.PubMedCentralCrossRefPubMed
52.
go back to reference Yang XR, et al: Involvement of MAPK pathways in NMDA-induced apoptosis of rat cortical neurons. Sheng Li Xue Bao. 2012, 64 (6): 609-16.PubMed Yang XR, et al: Involvement of MAPK pathways in NMDA-induced apoptosis of rat cortical neurons. Sheng Li Xue Bao. 2012, 64 (6): 609-16.PubMed
53.
54.
go back to reference Ali Shah S, et al: Anthocyanins protect against ethanol-induced neuronal apoptosis via GABA receptors intracellular signaling in prenatal Rat hippocampal neurons. Mol Neurobiol. 2013, 48 (1): 257-269. 10.1007/s12035-013-8458-y.CrossRefPubMed Ali Shah S, et al: Anthocyanins protect against ethanol-induced neuronal apoptosis via GABA receptors intracellular signaling in prenatal Rat hippocampal neurons. Mol Neurobiol. 2013, 48 (1): 257-269. 10.1007/s12035-013-8458-y.CrossRefPubMed
55.
go back to reference Yang L, Sonner JM: Anesthetic-like modulation of receptor function by surfactants: a test of the interfacial theory of anesthesia. Anesth Analg. 2008, 107 (3): 868-74. 10.1213/ane.0b013e31817ee500.PubMedCentralCrossRefPubMed Yang L, Sonner JM: Anesthetic-like modulation of receptor function by surfactants: a test of the interfacial theory of anesthesia. Anesth Analg. 2008, 107 (3): 868-74. 10.1213/ane.0b013e31817ee500.PubMedCentralCrossRefPubMed
56.
go back to reference Mihic SJ, et al: Sites of alcohol and volatile anaesthetic action on GABA (A) and glycine receptors. Nature. 1997, 389 (6649): 385-9. 10.1038/38738.CrossRefPubMed Mihic SJ, et al: Sites of alcohol and volatile anaesthetic action on GABA (A) and glycine receptors. Nature. 1997, 389 (6649): 385-9. 10.1038/38738.CrossRefPubMed
57.
go back to reference Randall RD, Thayer SA: Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci. 1992, 12 (5): 1882-95.PubMed Randall RD, Thayer SA: Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci. 1992, 12 (5): 1882-95.PubMed
58.
go back to reference Choi DW, Koh JY, Peters S: Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988, 8 (1): 185-96.PubMed Choi DW, Koh JY, Peters S: Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988, 8 (1): 185-96.PubMed
59.
go back to reference Yeganeh F, et al: Neuroprotective effects of NMDA and group I metabotropic glutamate receptor antagonists against neurodegeneration induced by homocysteine in rat hippocampus: in vivo study. J Mol Neurosci. 2013, 50 (3): 551-7. 10.1007/s12031-013-9996-5.CrossRefPubMed Yeganeh F, et al: Neuroprotective effects of NMDA and group I metabotropic glutamate receptor antagonists against neurodegeneration induced by homocysteine in rat hippocampus: in vivo study. J Mol Neurosci. 2013, 50 (3): 551-7. 10.1007/s12031-013-9996-5.CrossRefPubMed
60.
go back to reference Lipton P: Ischemic cell death in brain neurons. Physiol Rev. 1999, 79 (4): 1431-568.PubMed Lipton P: Ischemic cell death in brain neurons. Physiol Rev. 1999, 79 (4): 1431-568.PubMed
61.
go back to reference Dirnagl U, Iadecola C, Moskowitz MA: Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999, 22 (9): 391-7. 10.1016/S0166-2236(99)01401-0.CrossRefPubMed Dirnagl U, Iadecola C, Moskowitz MA: Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999, 22 (9): 391-7. 10.1016/S0166-2236(99)01401-0.CrossRefPubMed
62.
go back to reference Panaretakis T, et al: Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Biol Chem. 2002, 277 (46): 44317-26. 10.1074/jbc.M205273200.CrossRefPubMed Panaretakis T, et al: Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Biol Chem. 2002, 277 (46): 44317-26. 10.1074/jbc.M205273200.CrossRefPubMed
63.
go back to reference Li Y, Han F, Shi Y: Increased neuronal apoptosis in medial prefrontal cortex is accompanied with changes of Bcl-2 and bax in a rat model of post-traumatic stress disorder. J Mol Neurosci. 2013, 51 (1): 127-137. 10.1007/s12031-013-9965-z.CrossRefPubMed Li Y, Han F, Shi Y: Increased neuronal apoptosis in medial prefrontal cortex is accompanied with changes of Bcl-2 and bax in a rat model of post-traumatic stress disorder. J Mol Neurosci. 2013, 51 (1): 127-137. 10.1007/s12031-013-9965-z.CrossRefPubMed
64.
go back to reference Costa C, et al: Coactivation of GABA (A) and GABA (B) receptor results in neuroprotection during in vitro ischemia. Stroke. 2004, 35 (2): 596-600. 10.1161/01.STR.0000113691.32026.06.CrossRefPubMed Costa C, et al: Coactivation of GABA (A) and GABA (B) receptor results in neuroprotection during in vitro ischemia. Stroke. 2004, 35 (2): 596-600. 10.1161/01.STR.0000113691.32026.06.CrossRefPubMed
65.
go back to reference Wei XW, et al: Neuroprotection of co-activation of GABA receptors by preventing caspase-3 denitrosylation in KA-induced seizures. Brain Res Bull. 2012, 88 (6): 617-23. 10.1016/j.brainresbull.2012.05.008.CrossRefPubMed Wei XW, et al: Neuroprotection of co-activation of GABA receptors by preventing caspase-3 denitrosylation in KA-induced seizures. Brain Res Bull. 2012, 88 (6): 617-23. 10.1016/j.brainresbull.2012.05.008.CrossRefPubMed
66.
go back to reference Dai J, et al: Activations of GABAergic signaling, HSP70 and MAPK cascades are involved in baicalin’s neuroprotection against gerbil global ischemia/reperfusion injury. Brain Res Bull. 2013, 90: 1-9.CrossRefPubMed Dai J, et al: Activations of GABAergic signaling, HSP70 and MAPK cascades are involved in baicalin’s neuroprotection against gerbil global ischemia/reperfusion injury. Brain Res Bull. 2013, 90: 1-9.CrossRefPubMed
67.
go back to reference Subramaniam S, Unsicker K: ERK and cell death: ERK1/2 in neuronal death. FEBS J. 2010, 277 (1): 22-29. 10.1111/j.1742-4658.2009.07367.x.CrossRefPubMed Subramaniam S, Unsicker K: ERK and cell death: ERK1/2 in neuronal death. FEBS J. 2010, 277 (1): 22-29. 10.1111/j.1742-4658.2009.07367.x.CrossRefPubMed
68.
go back to reference Fahlenkamp AV, et al: The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells. Eur J Pharmacol. 2012, 674 (2–3): 104-11.CrossRefPubMed Fahlenkamp AV, et al: The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells. Eur J Pharmacol. 2012, 674 (2–3): 104-11.CrossRefPubMed
69.
go back to reference David HN, et al: Modulation by the noble gas argon of the catalytic and thrombolytic efficiency of tissue plasminogen activator. Naunyn Schmiedebergs Arch Pharmacol. 2013, 386 (1): 91-5. 10.1007/s00210-012-0809-0.CrossRefPubMed David HN, et al: Modulation by the noble gas argon of the catalytic and thrombolytic efficiency of tissue plasminogen activator. Naunyn Schmiedebergs Arch Pharmacol. 2013, 386 (1): 91-5. 10.1007/s00210-012-0809-0.CrossRefPubMed
70.
go back to reference Irani Y, et al: Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra. 2011, 1 (1): 272-82. 10.1159/000335197.PubMedCentralCrossRefPubMed Irani Y, et al: Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra. 2011, 1 (1): 272-82. 10.1159/000335197.PubMedCentralCrossRefPubMed
71.
go back to reference Pagel PS, et al: Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth Analg. 2007, 105 (3): 562-9. 10.1213/01.ane.0000278083.31991.36.CrossRefPubMed Pagel PS, et al: Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth Analg. 2007, 105 (3): 562-9. 10.1213/01.ane.0000278083.31991.36.CrossRefPubMed
73.
go back to reference Miyazawa T, et al: Early experiences of haemostasis on brain tumour surgery with Argon Plasma Coagulation (APC). Acta Neurochir (Wien). 2000, 142 (11): 1247-51. 10.1007/s007010070021.CrossRef Miyazawa T, et al: Early experiences of haemostasis on brain tumour surgery with Argon Plasma Coagulation (APC). Acta Neurochir (Wien). 2000, 142 (11): 1247-51. 10.1007/s007010070021.CrossRef
74.
go back to reference Smythe A, et al: The effect of argon plasma coagulation ablation on esophageal motility and chemoreceptor sensitivity in Barrett’s esophagus patients. Dis Esophagus. 2010, 23 (6): 445-50. 10.1111/j.1442-2050.2010.01047.x.CrossRefPubMed Smythe A, et al: The effect of argon plasma coagulation ablation on esophageal motility and chemoreceptor sensitivity in Barrett’s esophagus patients. Dis Esophagus. 2010, 23 (6): 445-50. 10.1111/j.1442-2050.2010.01047.x.CrossRefPubMed
75.
go back to reference Goulet CJ, et al: In vivo evaluation of argon plasma coagulation in a porcine model. Gastrointest Endosc. 2007, 65 (3): 457-62. 10.1016/j.gie.2006.09.005.CrossRefPubMed Goulet CJ, et al: In vivo evaluation of argon plasma coagulation in a porcine model. Gastrointest Endosc. 2007, 65 (3): 457-62. 10.1016/j.gie.2006.09.005.CrossRefPubMed
76.
go back to reference Min BH, et al: Feasibility and efficacy of argon plasma coagulation for early esophageal squamous cell neoplasia. Endoscopy. 2013, 45 (7): 575-8.CrossRefPubMed Min BH, et al: Feasibility and efficacy of argon plasma coagulation for early esophageal squamous cell neoplasia. Endoscopy. 2013, 45 (7): 575-8.CrossRefPubMed
77.
go back to reference Ahn JY, et al: Clinical outcomes of argon plasma coagulation for the treatment of gastric neoplasm. Surg Endosc. 2013, 27 (9): 3146-3152. 10.1007/s00464-013-2868-9.CrossRefPubMed Ahn JY, et al: Clinical outcomes of argon plasma coagulation for the treatment of gastric neoplasm. Surg Endosc. 2013, 27 (9): 3146-3152. 10.1007/s00464-013-2868-9.CrossRefPubMed
78.
go back to reference Riegel T, et al: Comparative experimental study of argon plasma and bipolar coagulation techniques. Acta Neurochir (Wien). 2006, 148 (7): 757-62. 10.1007/s00701-006-0770-0. discussion 762–3CrossRef Riegel T, et al: Comparative experimental study of argon plasma and bipolar coagulation techniques. Acta Neurochir (Wien). 2006, 148 (7): 757-62. 10.1007/s00701-006-0770-0. discussion 762–3CrossRef
Metadata
Title
Argon gas: a potential neuroprotectant and promising medical therapy
Authors
Derek S Nowrangi
Jiping Tang
John H Zhang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Medical Gas Research / Issue 1/2014
Electronic ISSN: 2045-9912
DOI
https://doi.org/10.1186/2045-9912-4-3

Other articles of this Issue 1/2014

Medical Gas Research 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine