Skip to main content
Top
Published in: Medical Gas Research 1/2014

Open Access 01-12-2014 | Review

Progress in the study of biological effects of hydrogen on higher plants and its promising application in agriculture

Authors: Jiqing Zeng, Zhouheng Ye, Xuejun Sun

Published in: Medical Gas Research | Issue 1/2014

Login to get access

Abstract

While the medical effects of hydrogen have been broadly analyzed, research into the effects of hydrogen on higher plants has often been of lesser concern. Recent studies on the botanical effects of hydrogen have shown that it is involved in signal transduction pathways of plant hormones and can improve the resistance of plants to stressors, such as drought, salinity, cold and heavy metals. In addition, hydrogen could delay postharvest ripening and senescence of fruits. Observational evidence has also shown that hydrogen can regulate the flowering time of plants. These results indicate that hydrogen may have great potential applications within agricultural production, indicating that there may be a new ‘hydrogen agricultural era’ to come.
Literature
1.
go back to reference Gaffron H: Reduction of carbon dioxide with molecular hydrogen in green algae. Nature. 1939, 143: 204-205. 10.1038/143204a0.CrossRef Gaffron H: Reduction of carbon dioxide with molecular hydrogen in green algae. Nature. 1939, 143: 204-205. 10.1038/143204a0.CrossRef
3.
go back to reference Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, et al: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13 (6): 688-694. 10.1038/nm1577.CrossRefPubMed Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, et al: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13 (6): 688-694. 10.1038/nm1577.CrossRefPubMed
4.
go back to reference Stephenson M, Stickland LH: Hydrogenase: a bacterial enzyme activating molecular hydrogen: The properties of the enzyme. Biochem J. 1931, 25 (1): 205-214.PubMedCentralCrossRefPubMed Stephenson M, Stickland LH: Hydrogenase: a bacterial enzyme activating molecular hydrogen: The properties of the enzyme. Biochem J. 1931, 25 (1): 205-214.PubMedCentralCrossRefPubMed
5.
go back to reference Melis A, Melnicki MR: Integrated biological hydrogen production. Int J Hydrogen Energy. 2006, 31 (11): 1563-1573. 10.1016/j.ijhydene.2006.06.038.CrossRef Melis A, Melnicki MR: Integrated biological hydrogen production. Int J Hydrogen Energy. 2006, 31 (11): 1563-1573. 10.1016/j.ijhydene.2006.06.038.CrossRef
6.
go back to reference Maione TE, Gibbs M: Hydrogenase-mediated activities in isolated chloroplasts of Chlamydomonas reinhardii. Plant Physiol. 1986, 80 (2): 360-363. 10.1104/pp.80.2.360.PubMedCentralCrossRefPubMed Maione TE, Gibbs M: Hydrogenase-mediated activities in isolated chloroplasts of Chlamydomonas reinhardii. Plant Physiol. 1986, 80 (2): 360-363. 10.1104/pp.80.2.360.PubMedCentralCrossRefPubMed
7.
go back to reference Sanadze GA: Absorption of molecular hydrogen by green leaves in light. Fiziol Rast. 1961, 8: 555-559. Sanadze GA: Absorption of molecular hydrogen by green leaves in light. Fiziol Rast. 1961, 8: 555-559.
9.
go back to reference Torres V, Ballesteros A, Fernández VM: Expression of hydrogenase activity in barley roots (Hordeum vulgare L.) after anaerobic stress. Arch Biochem Biophys. 1986, 245: 174-178. 10.1016/0003-9861(86)90202-X.CrossRefPubMed Torres V, Ballesteros A, Fernández VM: Expression of hydrogenase activity in barley roots (Hordeum vulgare L.) after anaerobic stress. Arch Biochem Biophys. 1986, 245: 174-178. 10.1016/0003-9861(86)90202-X.CrossRefPubMed
10.
go back to reference Zeng J, Zhang M, Sun X: Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS One. 2013, 8 (8): e71038-10.1371/journal.pone.0071038.PubMedCentralCrossRefPubMed Zeng J, Zhang M, Sun X: Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS One. 2013, 8 (8): e71038-10.1371/journal.pone.0071038.PubMedCentralCrossRefPubMed
11.
go back to reference Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W: Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ. 2013, 36 (5): 956-969. 10.1111/pce.12029.CrossRefPubMed Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W: Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ. 2013, 36 (5): 956-969. 10.1111/pce.12029.CrossRefPubMed
12.
go back to reference Xie Y, Mao Y, Lai D, Zhang W, Shen W: H2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One. 2012, 7 (11): e49800-10.1371/journal.pone.0049800.PubMedCentralCrossRefPubMed Xie Y, Mao Y, Lai D, Zhang W, Shen W: H2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One. 2012, 7 (11): e49800-10.1371/journal.pone.0049800.PubMedCentralCrossRefPubMed
13.
go back to reference Chen M, Cui W, Zhu K, Xie Y, Zhang C, Shen W: Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J Hazard Mater. 2014, 267: 40-47.CrossRefPubMed Chen M, Cui W, Zhu K, Xie Y, Zhang C, Shen W: Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J Hazard Mater. 2014, 267: 40-47.CrossRefPubMed
14.
go back to reference Cui W, Gao C, Fang P, Lin G, Shen W: Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. J Hazard Mater. 2013, 260: 715-724.CrossRefPubMed Cui W, Gao C, Fang P, Lin G, Shen W: Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. J Hazard Mater. 2013, 260: 715-724.CrossRefPubMed
15.
go back to reference Hu H, Li P, Wang Y, Gu R: Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem. 2014, 156: 100-109.CrossRefPubMed Hu H, Li P, Wang Y, Gu R: Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem. 2014, 156: 100-109.CrossRefPubMed
Metadata
Title
Progress in the study of biological effects of hydrogen on higher plants and its promising application in agriculture
Authors
Jiqing Zeng
Zhouheng Ye
Xuejun Sun
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Medical Gas Research / Issue 1/2014
Electronic ISSN: 2045-9912
DOI
https://doi.org/10.1186/2045-9912-4-15

Other articles of this Issue 1/2014

Medical Gas Research 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine