Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2017

Open Access 01-12-2017 | Research

Arcyriaflavin a, a cyclin D1–cyclin-dependent kinase4 inhibitor, induces apoptosis and inhibits proliferation of human endometriotic stromal cells: a potential therapeutic agent in endometriosis

Authors: Tomoko Hirakawa, Kaei Nasu, Yoko Aoyagi, Kanetoshi Takebayashi, Hisashi Narahara

Published in: Reproductive Biology and Endocrinology | Issue 1/2017

Login to get access

Abstract

Background

We previously showed that microRNA-503 (miR-503) transfection into endometriotic cyst stromal cells (ECSCs) induced cell cycle arrest at the G0/G1 phase by suppressing cyclin D1. This finding prompted us to evaluate the potential therapeutic effects of cyclin D1 inhibitors in endometriotic cells. This study aimed to determine whether arcyriaflavin A, a representative inhibitor of cyclin D1–cyclin-dependent kinase 4 (CDK4), is beneficial in the treatment of endometriosis.

Methods

ECSCs were isolated from the ovarian endometriotic tissues of 32 women. The effects of arcyriaflavin A on cell viability and proliferation, vascular endothelial growth factor A expression, apoptosis, and cell cycle progression were evaluated using a modified methylthiazoletetrazolium assay, enzyme-linked immunosorbent assay (ELISA), Caspase-Glo® 3/7 assay, and flow cytometry.

Results

Arcyriaflavin A significantly inhibited cell viability, proliferation, and angiogenesis of ECSCs as assessed using the 5-bromo-2-deoxyuridine (BrdU) and methylthiazoletetrazolium bromide (MTT) assays, and vascular endothelial growth factor (VEGF) ELISA. Arcyriaflavin A induced apoptosis as shown in the Caspase-Glo® 3/7 assay and cell death detection ELISA whilethe cell cycle was arrested at the G0/G1 phase.

Conclusion

The findings indicate that cyclin D1–CDK4 inhibitors may be promising candidates for the treatment of endometriosis. This is the first study to demonstrate the potential usefulness of arcyriaflavin A as a therapeutic agent for endometriosis. Further studies of the effects of cyclin D1–CDK4 inhibitors on endometriosis may provide useful information on pathogenesis and treatment.
Literature
2.
go back to reference Nasu K, Yuge A, Tsuno A, Narahara H. Mevalonate-Ras homology (rho)/rho-associated coiled-coil-forming protein kinase (ROCK)-mediated signaling pathway as a therapeutic target for the treatment of endometriosis-associated fibrosis. Curr Signal Transduct Ther. 2010;5:141–8.CrossRef Nasu K, Yuge A, Tsuno A, Narahara H. Mevalonate-Ras homology (rho)/rho-associated coiled-coil-forming protein kinase (ROCK)-mediated signaling pathway as a therapeutic target for the treatment of endometriosis-associated fibrosis. Curr Signal Transduct Ther. 2010;5:141–8.CrossRef
3.
go back to reference Nasu K, Nishida M, Kawano Y, Tsuno A, Abe W, Yuge A, et al. Aberrant expression of apoptosis-related molecules in endometriosis: a possible mechanism underlying the pathogenesis of endometriosis. Reprod Sci. 2011;18:206–18.CrossRefPubMed Nasu K, Nishida M, Kawano Y, Tsuno A, Abe W, Yuge A, et al. Aberrant expression of apoptosis-related molecules in endometriosis: a possible mechanism underlying the pathogenesis of endometriosis. Reprod Sci. 2011;18:206–18.CrossRefPubMed
4.
go back to reference Okamoto M, Nasu K, Abe W, Aoyagi Y, Kawano Y, Kai K, et al. Enhanced miR-210 expression promotes the pathogenesis of endometriosis through activation of signal transducer and activator of transcription 3. Hum Reprod. 2015;30:632–41.CrossRefPubMed Okamoto M, Nasu K, Abe W, Aoyagi Y, Kawano Y, Kai K, et al. Enhanced miR-210 expression promotes the pathogenesis of endometriosis through activation of signal transducer and activator of transcription 3. Hum Reprod. 2015;30:632–41.CrossRefPubMed
5.
go back to reference Hirakawa T, Nasu K, Abe W, Aoyagi Y, Okamoto M, Kai K, et al. miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum Reprod. 2016;31:2587–97.CrossRefPubMed Hirakawa T, Nasu K, Abe W, Aoyagi Y, Okamoto M, Kai K, et al. miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum Reprod. 2016;31:2587–97.CrossRefPubMed
6.
go back to reference Abe W, Nasu K, Nakada C, Kawano Y, Moriyama M, Narahara H. miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod. 2013;28:750–61.CrossRefPubMed Abe W, Nasu K, Nakada C, Kawano Y, Moriyama M, Narahara H. miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod. 2013;28:750–61.CrossRefPubMed
7.
go back to reference Engler TA, Furness K, Malhotra S, Sanchez-Martinez C, Shih C, Xie W, et al. Novel, potent and selective cyclin D1/CDK4 inhibitors: indolo[6,7-a] pyrrolo[3,4-c]carbazoles. Bioorg Med Chem Lett. 2003;13:2261–7.CrossRefPubMed Engler TA, Furness K, Malhotra S, Sanchez-Martinez C, Shih C, Xie W, et al. Novel, potent and selective cyclin D1/CDK4 inhibitors: indolo[6,7-a] pyrrolo[3,4-c]carbazoles. Bioorg Med Chem Lett. 2003;13:2261–7.CrossRefPubMed
8.
go back to reference Sanchez-Martinez C, Shih C, Faul MM, Zhu G, Paal M, Somoza C, et al. Aryl[a]pyrrolo[3,4-c]carbazoles as selective cyclin D1-CDK4 inhibitors. Bioorg Med Chem Lett. 2003;13:3835–9.CrossRefPubMed Sanchez-Martinez C, Shih C, Faul MM, Zhu G, Paal M, Somoza C, et al. Aryl[a]pyrrolo[3,4-c]carbazoles as selective cyclin D1-CDK4 inhibitors. Bioorg Med Chem Lett. 2003;13:3835–9.CrossRefPubMed
9.
go back to reference Slater MJ, Cockerill S, Baxter R, Bonser RW, Gohil K, Gowrie C, et al. Indolocarbazoles: potent, selective inhibitors of human cytomegalovirus replication. Bioorg Med Chem. 1999;6:1067–74.CrossRef Slater MJ, Cockerill S, Baxter R, Bonser RW, Gohil K, Gowrie C, et al. Indolocarbazoles: potent, selective inhibitors of human cytomegalovirus replication. Bioorg Med Chem. 1999;6:1067–74.CrossRef
10.
go back to reference Liu R, Zhu T, Li D, Gu J, Xia W, Fang Y, et al. Two indolocarbazole alkaloids with apoptosis activity from a marine-derived actinomycete Z(2)039-2. Arch Pharm Res. 2007;30:270–4.CrossRefPubMed Liu R, Zhu T, Li D, Gu J, Xia W, Fang Y, et al. Two indolocarbazole alkaloids with apoptosis activity from a marine-derived actinomycete Z(2)039-2. Arch Pharm Res. 2007;30:270–4.CrossRefPubMed
11.
go back to reference Nishida M, Nasu K, Fukuda J, Kawano Y, Narahara H, Miyakawa I. Down regulation of interleukin-1 receptor expression causes the dysregulated expression of CXC chemokines in endometriotic stromal cells: a possible mechanism for the altered immunological functions in endometriosis. J Clin Endocrinol Metab. 2004;89:5094–100.CrossRefPubMed Nishida M, Nasu K, Fukuda J, Kawano Y, Narahara H, Miyakawa I. Down regulation of interleukin-1 receptor expression causes the dysregulated expression of CXC chemokines in endometriotic stromal cells: a possible mechanism for the altered immunological functions in endometriosis. J Clin Endocrinol Metab. 2004;89:5094–100.CrossRefPubMed
12.
go back to reference Kawano Y, Nasu K, Li H, Tsuno A, Abe W, Takai N, Narahara H. Application of the histone deacetylase inhibitors for the treatment of endometriosis: histone modifications as pathogenesis and novel therapeutic target. Hum Reprod. 2011;26:2486–98.CrossRefPubMed Kawano Y, Nasu K, Li H, Tsuno A, Abe W, Takai N, Narahara H. Application of the histone deacetylase inhibitors for the treatment of endometriosis: histone modifications as pathogenesis and novel therapeutic target. Hum Reprod. 2011;26:2486–98.CrossRefPubMed
13.
go back to reference Nishida M, Nasu K, Ueda T, Fukuda J, Takai N, Miyakawa I. Endometriotic cells are resistant to interferon-gamma-induced cell growth inhibition and apoptosis: a possible mechanism involved in the pathogenesis of endometriosis. Mol Hum Reprod. 2005;11:29–34.CrossRefPubMed Nishida M, Nasu K, Ueda T, Fukuda J, Takai N, Miyakawa I. Endometriotic cells are resistant to interferon-gamma-induced cell growth inhibition and apoptosis: a possible mechanism involved in the pathogenesis of endometriosis. Mol Hum Reprod. 2005;11:29–34.CrossRefPubMed
15.
go back to reference Aggarwal BB, Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle. 2005;4:1201–15.CrossRefPubMed Aggarwal BB, Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle. 2005;4:1201–15.CrossRefPubMed
16.
go back to reference DePinto W, Chu XJ, Yin X, Smith M, Packman K, Goelzer P, et al. In vitro and in vivo activity of R547: a potent and selective cyclin-dependent kinase inhibitor currently in phase I clinical trials. Mol Cancer Ther. 2006;5:2644–58.CrossRefPubMed DePinto W, Chu XJ, Yin X, Smith M, Packman K, Goelzer P, et al. In vitro and in vivo activity of R547: a potent and selective cyclin-dependent kinase inhibitor currently in phase I clinical trials. Mol Cancer Ther. 2006;5:2644–58.CrossRefPubMed
17.
go back to reference Dukelow T, Kishan D, Khasraw M, Murphy CG. CDK4/6 inhibitors in breast cancer. Anti-Cancer Drugs. 2015;26:797–806.CrossRefPubMed Dukelow T, Kishan D, Khasraw M, Murphy CG. CDK4/6 inhibitors in breast cancer. Anti-Cancer Drugs. 2015;26:797–806.CrossRefPubMed
18.
go back to reference Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11:R77.CrossRefPubMedPubMedCentral Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11:R77.CrossRefPubMedPubMedCentral
19.
go back to reference Michel L, Ley J, Wildes TM, Schaffer A, Robinson A, Chun SE, et al. Phase I trial of palbociclib, a selective cyclin-dependent kinase 4/6 inhibitor, in combination with cetuximab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. 2016;58:41–8.CrossRefPubMedPubMedCentral Michel L, Ley J, Wildes TM, Schaffer A, Robinson A, Chun SE, et al. Phase I trial of palbociclib, a selective cyclin-dependent kinase 4/6 inhibitor, in combination with cetuximab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. 2016;58:41–8.CrossRefPubMedPubMedCentral
Metadata
Title
Arcyriaflavin a, a cyclin D1–cyclin-dependent kinase4 inhibitor, induces apoptosis and inhibits proliferation of human endometriotic stromal cells: a potential therapeutic agent in endometriosis
Authors
Tomoko Hirakawa
Kaei Nasu
Yoko Aoyagi
Kanetoshi Takebayashi
Hisashi Narahara
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2017
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-017-0272-3

Other articles of this Issue 1/2017

Reproductive Biology and Endocrinology 1/2017 Go to the issue