Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2017

Open Access 01-12-2017 | Research

A novel method to demonstrate that pregnant women with polycystic ovary syndrome hyper-expose their fetus to androgens as a possible stepping stone for the developmental theory of PCOS. A pilot study

Authors: Roy Homburg, Anil Gudi, Amit Shah, Alison M. Layton

Published in: Reproductive Biology and Endocrinology | Issue 1/2017

Login to get access

Abstract

Background

Polycystic ovary syndrome (PCOS), whose aetiology is unknown, is predominately a familial syndrome but confirmation of candidate genes has proved elusive. The developmental hypothesis for the origin of PCOS suggests that exposure of the fetus to excess androgens influences imprinting, leading to altered genetic expression in adult life. The aim of this pilot study was to examine whether the female fetus of a mother with PCOS is indeed exposed to excess androgens.

Methods

Using sebum production in the newborn as a surrogate for exposure to excess androgens during pregnancy thisprospective case control studyexamined whether neonatal sebum excretion is greater in female infants born to PCOS mothers compared to non-PCOS. Women with known PCOS (all 3 Rotterdam criteria) (n = 9) and non-PCOS controls (n = 12), with a female fetus, were recruited at 24 weeks pregnancy and serum testosterone estimated. Sebum was measured using Sebutape® for 30 and 60 min within 24 h of birth, at 1 week, 4–6 weeks and 6 months after birth in both mother and child. Sebum excretion was measured in mother and child in the same site at each time frame and consistently. All semi-quantitative sebum excretion estimations were compared (t-test) between the two groups and correlated with testosterone concentrations during pregnancy.

Results

In this pilot study, 21 women completed the 6 month examination period (PCOS group (n = 9) and controls (n = 12). Mean testosterone was 6.2 nmol/L (normal <3.1 nmol/L) in PCOS mothers and 2.75 nmol/L in controls at 24 weeks pregnancy. At all time frames, the results of sebum excretion at 30 and 60 min were consistent. The sebum excretion of mothers in both groups was fairly constant from birth throughout 6 months. All babies were born between 37 and 41 weeks gestational age. Six of nine newborns had detectable sebum excretion at birth in the PCOS mothers group compared to 1 of 12 in the controls (P = 0.01).

Conclusions

These results suggest that women with PCOS could hyper-expose their fetus to androgens in-utero and that this may be detected using a simple novel test within 24 h of birth to predict development of PCOS in adult life and induce research to eliminate its symptoms.

Trial registration

NCT 02654548.Clinical Trials UK.Retrospectively registered 11/1/16.
Literature
1.
go back to reference Barker DJ. The fetal and infant origins of adult disease. Br Med J. 1990;301:1111.CrossRef Barker DJ. The fetal and infant origins of adult disease. Br Med J. 1990;301:1111.CrossRef
2.
go back to reference Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update. 2005;11:357–74.CrossRefPubMed Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update. 2005;11:357–74.CrossRefPubMed
3.
go back to reference Hines M, Golombok S, Rust J, Johnston KJ, Golding J. Testosterone during pregnancy and gender role behavior of pre-school children: a longitudinal, population study. Child Dev. 2002;73:1678–87.CrossRefPubMed Hines M, Golombok S, Rust J, Johnston KJ, Golding J. Testosterone during pregnancy and gender role behavior of pre-school children: a longitudinal, population study. Child Dev. 2002;73:1678–87.CrossRefPubMed
4.
go back to reference Kosidou K, Dalman C, Widman L, Arver S, Lee BK, Magnusson C, Gardner RM. Maternal polycystic ovary syndrome and the risk of autism spectrum disorders in the offspring: a population-based nationwide study in Sweden. Mol Psychiatry. 2016;21:1441–8.CrossRefPubMed Kosidou K, Dalman C, Widman L, Arver S, Lee BK, Magnusson C, Gardner RM. Maternal polycystic ovary syndrome and the risk of autism spectrum disorders in the offspring: a population-based nationwide study in Sweden. Mol Psychiatry. 2016;21:1441–8.CrossRefPubMed
5.
go back to reference Abbott DH, Zhou R, Bird IM, Dumesic DA, Conley AJ. Fetal programming of adrenal androgen excess: lessons from a nonhuman primate model of polycystic ovary syndrome. Endocr Dev. 2008;13:145–58.CrossRefPubMedPubMedCentral Abbott DH, Zhou R, Bird IM, Dumesic DA, Conley AJ. Fetal programming of adrenal androgen excess: lessons from a nonhuman primate model of polycystic ovary syndrome. Endocr Dev. 2008;13:145–58.CrossRefPubMedPubMedCentral
6.
go back to reference WuXY LZL, WuCY LYM, Lin H, Wang SH, Xiao WF. Endocrine traits of polycystic ovary syndrome in prenatally androgenized female Sprague-Dawley rats. Endocr J. 2010;57:201–9.CrossRef WuXY LZL, WuCY LYM, Lin H, Wang SH, Xiao WF. Endocrine traits of polycystic ovary syndrome in prenatally androgenized female Sprague-Dawley rats. Endocr J. 2010;57:201–9.CrossRef
7.
go back to reference Padmanabhan V, Veiga-Lopez A. Sheep models of polycystic ovary syndrome phenotype. Mol Cell Endocrinol. 2013;373:8–20.CrossRefPubMed Padmanabhan V, Veiga-Lopez A. Sheep models of polycystic ovary syndrome phenotype. Mol Cell Endocrinol. 2013;373:8–20.CrossRefPubMed
8.
go back to reference Maliqueo M, Lara HE, Sánchez F, Echiburú B, Crisosto N, Sir-Petermann T. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2013;166:151–5.CrossRefPubMed Maliqueo M, Lara HE, Sánchez F, Echiburú B, Crisosto N, Sir-Petermann T. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2013;166:151–5.CrossRefPubMed
10.
go back to reference Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.CrossRef Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.CrossRef
11.
go back to reference Sir-Petermann T, Maliqueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod. 2002;17:2573–9.CrossRefPubMed Sir-Petermann T, Maliqueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod. 2002;17:2573–9.CrossRefPubMed
12.
go back to reference Caanen MR, Kuijper EA, Hompes PG, Kushnir MM, Rockwood AL, Meikle WA, Homburg R, Lambalk CB. Mass spectrometry methods measured androgen and estrogen concentrations during pregnancy and in newborns of mothers with polycystic ovary syndrome. Eur J Endocrinol. 2016;174:25–32.CrossRefPubMed Caanen MR, Kuijper EA, Hompes PG, Kushnir MM, Rockwood AL, Meikle WA, Homburg R, Lambalk CB. Mass spectrometry methods measured androgen and estrogen concentrations during pregnancy and in newborns of mothers with polycystic ovary syndrome. Eur J Endocrinol. 2016;174:25–32.CrossRefPubMed
13.
go back to reference Palomba S, Marotta R, Di Cello A, Russo T, Falbo A, Orio F, Tolino A, Zullo F, Esposito R, La Sala GB. Pervasive developmental disorders in children of hyperandrogenic women with polycystic ovary syndrome: a longitudinal case-control study. Clin Endocrinol. 2012;77:898–904.CrossRef Palomba S, Marotta R, Di Cello A, Russo T, Falbo A, Orio F, Tolino A, Zullo F, Esposito R, La Sala GB. Pervasive developmental disorders in children of hyperandrogenic women with polycystic ovary syndrome: a longitudinal case-control study. Clin Endocrinol. 2012;77:898–904.CrossRef
14.
go back to reference Thompson EA Jr, Siiteri PK. The involvement of human placental microsomal cytochrome P-450 in aromatization. J Biol Chem. 1974;249:5373–8.PubMed Thompson EA Jr, Siiteri PK. The involvement of human placental microsomal cytochrome P-450 in aromatization. J Biol Chem. 1974;249:5373–8.PubMed
15.
go back to reference Palomba S, Russo T, Falbo A, Di Cello A, Tolino A, Tucci L, La Sala GB, Zullo F. Macroscopic and microscopic findings of the placenta in women with polycystic ovary syndrome. Hum Reprod. 2013;28:2838–47.CrossRefPubMed Palomba S, Russo T, Falbo A, Di Cello A, Tolino A, Tucci L, La Sala GB, Zullo F. Macroscopic and microscopic findings of the placenta in women with polycystic ovary syndrome. Hum Reprod. 2013;28:2838–47.CrossRefPubMed
16.
go back to reference Henderson CA, Taylor J, Cunliffe WJ. Sebum excretion rates in mothers and neonates. Br J Dermatol. 2000;142:110–1.CrossRefPubMed Henderson CA, Taylor J, Cunliffe WJ. Sebum excretion rates in mothers and neonates. Br J Dermatol. 2000;142:110–1.CrossRefPubMed
17.
go back to reference Agache P, Blanc D, Barrand C, Laurent R. Sebum levels during the first year of life. BrJ Dermatol. 1980;103:643–9.CrossRef Agache P, Blanc D, Barrand C, Laurent R. Sebum levels during the first year of life. BrJ Dermatol. 1980;103:643–9.CrossRef
Metadata
Title
A novel method to demonstrate that pregnant women with polycystic ovary syndrome hyper-expose their fetus to androgens as a possible stepping stone for the developmental theory of PCOS. A pilot study
Authors
Roy Homburg
Anil Gudi
Amit Shah
Alison M. Layton
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2017
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-017-0282-1

Other articles of this Issue 1/2017

Reproductive Biology and Endocrinology 1/2017 Go to the issue