Skip to main content
Top
Published in: Investigational New Drugs 2/2015

01-04-2015 | REVIEW

Aptamers as a novel tool for diagnostics and therapy

Authors: Onat Kadioglu, Anna Helena Malczyk, Henry Johannes Greten, Thomas Efferth

Published in: Investigational New Drugs | Issue 2/2015

Login to get access

Summary

Aptamers are short single-stranded DNA or RNA oligonucleotides that are capable of binding small molecules, proteins, or nucleotides with high specificity. They show a stable conformation and high binding affinity for their target molecules. There are numerous applications for aptamers in biotechnology, molecular diagnostics and targeted therapy of diseases. Their production is cheap, and they generally display lower immunogenicity than monoclonal antibodies. In the present review, we give an introduction to the preparation of aptamers and provide examples for their use in biotechnology, diagnostics and therapy of diseases.
Literature
1.
go back to reference Förstermann U, Kleinert H (2009) Medizinische Gentechnologie und Gentherapie. In: Aktories K, Förstermann U, Hofmann FB, Starke K (eds) Allgemeine und spezielle Pharmakologie und Toxikologie. Elsevier GmbH, 10. Auflage, München, pp 24–35 Förstermann U, Kleinert H (2009) Medizinische Gentechnologie und Gentherapie. In: Aktories K, Förstermann U, Hofmann FB, Starke K (eds) Allgemeine und spezielle Pharmakologie und Toxikologie. Elsevier GmbH, 10. Auflage, München, pp 24–35
2.
go back to reference Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48:2672–2689CrossRef Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48:2672–2689CrossRef
3.
go back to reference Rehm H, Letzel T (2010) Der Experimentator – Proteinbiochemie/ Proteomics, 6th edn. Auflage, Heidelberg, p 314CrossRef Rehm H, Letzel T (2010) Der Experimentator – Proteinbiochemie/ Proteomics, 6th edn. Auflage, Heidelberg, p 314CrossRef
4.
go back to reference Collett JR, Cho EJ, Ellington AD (2005) Production and processing of aptamer microarrays. Methods 37:4–15CrossRefPubMed Collett JR, Cho EJ, Ellington AD (2005) Production and processing of aptamer microarrays. Methods 37:4–15CrossRefPubMed
6.
go back to reference Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 62:592–605CrossRefPubMedCentralPubMed Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 62:592–605CrossRefPubMedCentralPubMed
7.
go back to reference Langer R (1998) Drug delivery and targeting. Nature 392(6679):5–10PubMed Langer R (1998) Drug delivery and targeting. Nature 392(6679):5–10PubMed
8.
go back to reference Wilson C, Szostak JW (1998) Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem Biol 5:609–617CrossRefPubMed Wilson C, Szostak JW (1998) Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem Biol 5:609–617CrossRefPubMed
9.
go back to reference Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320CrossRefPubMedCentralPubMed Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320CrossRefPubMedCentralPubMed
10.
go back to reference Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495CrossRefPubMed Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495CrossRefPubMed
11.
go back to reference Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46:459–477PubMedCentralPubMed Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46:459–477PubMedCentralPubMed
13.
go back to reference Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847CrossRefPubMed Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847CrossRefPubMed
14.
go back to reference Suess B, Fink B, Berens C, Stentz R, Hillen W (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614CrossRefPubMedCentralPubMed Suess B, Fink B, Berens C, Stentz R, Hillen W (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614CrossRefPubMedCentralPubMed
15.
go back to reference Laserson U, Gan HH, Schlick T (2005) Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs. Nucleic Acids Res 33:6057–6069CrossRefPubMedCentralPubMed Laserson U, Gan HH, Schlick T (2005) Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs. Nucleic Acids Res 33:6057–6069CrossRefPubMedCentralPubMed
16.
go back to reference Lee JH, Wernette DP, Yigit MV, Liu J, Wang Z, Lu Y (2008) Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew Chem Int Ed 46:9006–9010CrossRef Lee JH, Wernette DP, Yigit MV, Liu J, Wang Z, Lu Y (2008) Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew Chem Int Ed 46:9006–9010CrossRef
17.
go back to reference Ulrich H, Wrenger C (2009) Disease-specific biomarker discovery by aptamers. Cytometry A 75:727–733CrossRefPubMed Ulrich H, Wrenger C (2009) Disease-specific biomarker discovery by aptamers. Cytometry A 75:727–733CrossRefPubMed
18.
go back to reference Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743CrossRefPubMed Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743CrossRefPubMed
19.
go back to reference Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO 2nd, Giangrande PH (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849CrossRefPubMedCentralPubMed Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO 2nd, Giangrande PH (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849CrossRefPubMedCentralPubMed
20.
go back to reference Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797CrossRefPubMed Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797CrossRefPubMed
21.
go back to reference Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, McCauley TG, Kurz JC, Epstein DM, Wilson C, Keefe AD (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12:25–33CrossRefPubMed Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, McCauley TG, Kurz JC, Epstein DM, Wilson C, Keefe AD (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12:25–33CrossRefPubMed
22.
go back to reference Dausse E, Da Rocha GS, Toulmé JJ (2009) Aptamers: a new class of oligonucleotides in the drug discovery pipeline? Curr Opin Pharmacol 9:602–607CrossRefPubMed Dausse E, Da Rocha GS, Toulmé JJ (2009) Aptamers: a new class of oligonucleotides in the drug discovery pipeline? Curr Opin Pharmacol 9:602–607CrossRefPubMed
23.
go back to reference Thiel KW, Giangrande PH (2009) Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19:209–222CrossRefPubMed Thiel KW, Giangrande PH (2009) Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19:209–222CrossRefPubMed
24.
go back to reference Leva S, Lichte A, Burmeister J, Muhn P, Jahnke B, Fesser D, Jeannette E, Burgstaller P, Klussmann S (2002) GnRH binding RNA and DNA spiegelmers: a novel approach toward GnRH antagonism. Chem Biol 9:351–359CrossRefPubMed Leva S, Lichte A, Burmeister J, Muhn P, Jahnke B, Fesser D, Jeannette E, Burgstaller P, Klussmann S (2002) GnRH binding RNA and DNA spiegelmers: a novel approach toward GnRH antagonism. Chem Biol 9:351–359CrossRefPubMed
25.
26.
go back to reference Vater A (2004) Entwicklung eines Verfahrens zur Identifizierung kurzer hochaffiner RNA-Oligonukleotide am Beispiel von CGRP-antagonisierenden Spiegelmeren. Tenea Verlag, Berlin, pp 13–15 Vater A (2004) Entwicklung eines Verfahrens zur Identifizierung kurzer hochaffiner RNA-Oligonukleotide am Beispiel von CGRP-antagonisierenden Spiegelmeren. Tenea Verlag, Berlin, pp 13–15
27.
go back to reference Jarosch F (2005) Automatisierte Verfahren zur Selektion kurzer RNA- und DNA-Spiegelmere. Tenea Verlag, Berlin, pp 12–16 Jarosch F (2005) Automatisierte Verfahren zur Selektion kurzer RNA- und DNA-Spiegelmere. Tenea Verlag, Berlin, pp 12–16
28.
go back to reference Grisanti S (2008) Pegabtanib Macugen®. In: Bartz-Schmidt KU, Ziemssen F (eds) Intravitreale Pharmakotherapie-Moderne Medikamente und ihre Anwendung am Auge. Schattauer GmbH, Stuttgart, p 75 Grisanti S (2008) Pegabtanib Macugen®. In: Bartz-Schmidt KU, Ziemssen F (eds) Intravitreale Pharmakotherapie-Moderne Medikamente und ihre Anwendung am Auge. Schattauer GmbH, Stuttgart, p 75
29.
go back to reference Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852CrossRefPubMed Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852CrossRefPubMed
30.
go back to reference Wlotzka B, Leva S, Eschgfäller B, Burmeister J, Kleinjung F, Kaduk C, Muhn P, Hess-Stumpp H, Klussmann S (2002) In vivo properties of an Anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci U S A 99:8898–8902CrossRefPubMedCentralPubMed Wlotzka B, Leva S, Eschgfäller B, Burmeister J, Kleinjung F, Kaduk C, Muhn P, Hess-Stumpp H, Klussmann S (2002) In vivo properties of an Anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci U S A 99:8898–8902CrossRefPubMedCentralPubMed
32.
go back to reference Habermehl GG, Krebs HC, Hammann PE, Ternes W (2008) Naturstoffchemie, 3rd edn. Springer, Berlin, p 458 Habermehl GG, Krebs HC, Hammann PE, Ternes W (2008) Naturstoffchemie, 3rd edn. Springer, Berlin, p 458
33.
go back to reference Eulberg D, Buchner K, Maasch C, Klussmann S (2005) Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 33:e45CrossRefPubMedCentralPubMed Eulberg D, Buchner K, Maasch C, Klussmann S (2005) Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 33:e45CrossRefPubMedCentralPubMed
34.
go back to reference Gold L, Walker JJ, Wilcox SK, Williams S (2012) Advances in human proteomics at high scale with the SOMAscan proteomics platform. Nat Biotechnol 29:543–539 Gold L, Walker JJ, Wilcox SK, Williams S (2012) Advances in human proteomics at high scale with the SOMAscan proteomics platform. Nat Biotechnol 29:543–539
36.
go back to reference Ilyas A, Asghar W, Allen PB, Duhon H, Ellington AD, Igbal SM (2012) Electrical detection of cancer biomarkers using aptamers with nanogap break junctions. Nanotechnology 23:275502CrossRefPubMedCentralPubMed Ilyas A, Asghar W, Allen PB, Duhon H, Ellington AD, Igbal SM (2012) Electrical detection of cancer biomarkers using aptamers with nanogap break junctions. Nanotechnology 23:275502CrossRefPubMedCentralPubMed
37.
go back to reference Heintz A, Reinhardt GA (1996) Chemie und Umwelt, 4th edn. Aktualisierte und erweiterte Auflage, Braunschweig, p 217CrossRef Heintz A, Reinhardt GA (1996) Chemie und Umwelt, 4th edn. Aktualisierte und erweiterte Auflage, Braunschweig, p 217CrossRef
38.
go back to reference Schachat AP (2005) New treatments for age-related macular degeneration. Ophthalmology 112:531–532CrossRefPubMed Schachat AP (2005) New treatments for age-related macular degeneration. Ophthalmology 112:531–532CrossRefPubMed
39.
go back to reference Lee JH, Canny MD, De Erkenez A, Krilleke D, Ng YS, Shima DT, Pardi A, Jucker F (2005) A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Natl Acad Sci USA 102:18902–18907CrossRefPubMedCentralPubMed Lee JH, Canny MD, De Erkenez A, Krilleke D, Ng YS, Shima DT, Pardi A, Jucker F (2005) A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Natl Acad Sci USA 102:18902–18907CrossRefPubMedCentralPubMed
40.
go back to reference Clark DP, Pazdernik NJ (2009) Molekulare Biotechnologie-Grundlagen und Anwendungen. Spektrum Akademischer Verlag, Heidelberg, p 472CrossRef Clark DP, Pazdernik NJ (2009) Molekulare Biotechnologie-Grundlagen und Anwendungen. Spektrum Akademischer Verlag, Heidelberg, p 472CrossRef
41.
go back to reference Do DV, Haller JA, Adamis AP, Striata C, Nguyen QD, Shah SM, Joussen AM (2008) Anti-VEGF therapy as an emerging treatment for diabetic retinopathy. In: Duh, E. (Eds.) Diabetic retinopathy. Human Press, Springer Verlag, 406–407 Do DV, Haller JA, Adamis AP, Striata C, Nguyen QD, Shah SM, Joussen AM (2008) Anti-VEGF therapy as an emerging treatment for diabetic retinopathy. In: Duh, E. (Eds.) Diabetic retinopathy. Human Press, Springer Verlag, 406–407
42.
go back to reference Ng EWM, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132CrossRefPubMed Ng EWM, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132CrossRefPubMed
43.
go back to reference Moshfeghi AA, Puliafito CA (2005) Pegaptanib sodium for the treatment of neovascular age-related macular degeneration. Exp Opin Investig Drugs 14:671–682CrossRef Moshfeghi AA, Puliafito CA (2005) Pegaptanib sodium for the treatment of neovascular age-related macular degeneration. Exp Opin Investig Drugs 14:671–682CrossRef
46.
go back to reference Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033PubMed Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033PubMed
47.
go back to reference Chu TC, Marks JW 3rd, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD (2006) Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–5992CrossRefPubMed Chu TC, Marks JW 3rd, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD (2006) Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–5992CrossRefPubMed
48.
go back to reference Stecker JR, Savage AA, Bruno JG, Garcia DM, Koke JR (2012) Dynamics and visualization of MCF7 adenocarcinoma cell death by aptamer-C1q-mediated membrane attack. Nucleic Acid Ther 22:275–282PubMedCentralPubMed Stecker JR, Savage AA, Bruno JG, Garcia DM, Koke JR (2012) Dynamics and visualization of MCF7 adenocarcinoma cell death by aptamer-C1q-mediated membrane attack. Nucleic Acid Ther 22:275–282PubMedCentralPubMed
49.
go back to reference Liu Z, Duan JH, Song YM, Ma J, Wang FD, Lu X, Yang XD (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148CrossRefPubMedCentralPubMed Liu Z, Duan JH, Song YM, Ma J, Wang FD, Lu X, Yang XD (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148CrossRefPubMedCentralPubMed
50.
go back to reference Cao ZH, Tong R, Mishra A, Xu W, Wong GC, Cheng J, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498CrossRef Cao ZH, Tong R, Mishra A, Xu W, Wong GC, Cheng J, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498CrossRef
51.
go back to reference Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46:459–477PubMedCentralPubMed Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46:459–477PubMedCentralPubMed
52.
go back to reference Aulbert E, Disselhoff W, Sörje H, Schulz E, Gericke D (1980) Lysosomal accumulation of 67Ga-transferrin in malignant tumors in relation to their growth rate. Eur J Cancer 16:1217–1232CrossRefPubMed Aulbert E, Disselhoff W, Sörje H, Schulz E, Gericke D (1980) Lysosomal accumulation of 67Ga-transferrin in malignant tumors in relation to their growth rate. Eur J Cancer 16:1217–1232CrossRefPubMed
53.
go back to reference McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, Sullenger B, Gilboa E (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 118:376–386CrossRefPubMedCentralPubMed McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, Sullenger B, Gilboa E (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 118:376–386CrossRefPubMedCentralPubMed
55.
go back to reference Dobrovolsky AB, Titaeva EV, Khaspekova SG, Spiridonova VA, Kopylov AM, Mazurov AV (2009) Inhibition of thrombin activity with DNA-aptamers. Bull Exp Biol Med 148:33–36CrossRefPubMed Dobrovolsky AB, Titaeva EV, Khaspekova SG, Spiridonova VA, Kopylov AM, Mazurov AV (2009) Inhibition of thrombin activity with DNA-aptamers. Bull Exp Biol Med 148:33–36CrossRefPubMed
56.
go back to reference Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94CrossRefPubMed Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94CrossRefPubMed
57.
go back to reference Hwang B, Cho JS, Yeo HJ, Kim JH, Chung KM, Han K, Jang SK, Lee SW (2004) Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10:1277–1290CrossRefPubMedCentralPubMed Hwang B, Cho JS, Yeo HJ, Kim JH, Chung KM, Han K, Jang SK, Lee SW (2004) Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10:1277–1290CrossRefPubMedCentralPubMed
58.
go back to reference Nishikawa F, Funaji K, Fukuda K, Nishikawa S (2004) In vitro selection of RNA aptamers against the HCVNS3 helicase domain. Oligonucleotides 14:114–129CrossRefPubMed Nishikawa F, Funaji K, Fukuda K, Nishikawa S (2004) In vitro selection of RNA aptamers against the HCVNS3 helicase domain. Oligonucleotides 14:114–129CrossRefPubMed
59.
go back to reference Fukuda K, Umehara T, Sekiya S, Kunio K, Hasegawa T, Nishikawa S (2004) An RNA ligand inhibits hepatitis C virus NS3 protease and helicase activities. Biochem Biophys Res Commun 325:670–675CrossRefPubMed Fukuda K, Umehara T, Sekiya S, Kunio K, Hasegawa T, Nishikawa S (2004) An RNA ligand inhibits hepatitis C virus NS3 protease and helicase activities. Biochem Biophys Res Commun 325:670–675CrossRefPubMed
60.
go back to reference Zhan LS, Zhuo HL, Wang HZ, Peng JC, Wang QL. Screening and characterization of aptamers of hepatitis C virus NS3 helicase. Prog Biochem Biophys 32: 245–250 Zhan LS, Zhuo HL, Wang HZ, Peng JC, Wang QL. Screening and characterization of aptamers of hepatitis C virus NS3 helicase. Prog Biochem Biophys 32: 245–250
61.
go back to reference Hwang B, Lee SW (2005) Analysis of in vivo interaction of HCVNS3 protein and specific RNA aptamer with yeast three-hybrid system. J Microbiol Biotechnol 15:660–664 Hwang B, Lee SW (2005) Analysis of in vivo interaction of HCVNS3 protein and specific RNA aptamer with yeast three-hybrid system. J Microbiol Biotechnol 15:660–664
62.
go back to reference Romero-Lopez C, Barroso-del Jesus A, Puerta-Fernandez E, Berzal-Herranz A (2005) Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biol Chem 386:183–190CrossRefPubMed Romero-Lopez C, Barroso-del Jesus A, Puerta-Fernandez E, Berzal-Herranz A (2005) Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biol Chem 386:183–190CrossRefPubMed
63.
go back to reference Kikuchi K, Umehara T, Fukuda K, Kuno A, Hasegawa T, Nishikawa S (2005) A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III-IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res 33:683–692CrossRefPubMedCentralPubMed Kikuchi K, Umehara T, Fukuda K, Kuno A, Hasegawa T, Nishikawa S (2005) A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III-IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res 33:683–692CrossRefPubMedCentralPubMed
64.
go back to reference Bellecave P, Andreola ML, Ventura M, Tarrago-Litvak L, Litvak S, Astier-Gin T (2003) Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides 13:455–463CrossRefPubMed Bellecave P, Andreola ML, Ventura M, Tarrago-Litvak L, Litvak S, Astier-Gin T (2003) Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides 13:455–463CrossRefPubMed
65.
go back to reference Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefPubMed Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefPubMed
66.
67.
go back to reference Held DM, Kissel JD, Patterson JT, Nickens DG, Burke DH (2006) HIV-1 inactivation by nucleic acid aptamers. Front Biosci 11:89–112CrossRefPubMed Held DM, Kissel JD, Patterson JT, Nickens DG, Burke DH (2006) HIV-1 inactivation by nucleic acid aptamers. Front Biosci 11:89–112CrossRefPubMed
68.
69.
70.
go back to reference Ylera F, Lurz R, Erdmann VA, Furste JP (2002) Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun 290:1583–1588CrossRefPubMed Ylera F, Lurz R, Erdmann VA, Furste JP (2002) Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun 290:1583–1588CrossRefPubMed
Metadata
Title
Aptamers as a novel tool for diagnostics and therapy
Authors
Onat Kadioglu
Anna Helena Malczyk
Henry Johannes Greten
Thomas Efferth
Publication date
01-04-2015
Publisher
Springer US
Published in
Investigational New Drugs / Issue 2/2015
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-015-0213-y

Other articles of this Issue 2/2015

Investigational New Drugs 2/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine