Skip to main content
Top
Published in: Head & Face Medicine 1/2019

Open Access 01-12-2019 | Apicectomy | Methodology

Accuracy and clinical safety of guided root end resection with a trephine: a case series

Authors: Márk Antal, Eszter Nagy, Gábor Braunitzer, Márk Fráter, József Piffkó

Published in: Head & Face Medicine | Issue 1/2019

Login to get access

Abstract

Background

Root-end resection is an endodontic surgical intervention that requires high precision so that all ramifications and lateral canals so as infected tissues are eliminated. An exploratory study was conducted to justify the clinical safety and accuracy of guided root-end resection with a trephine.

Methods

Fourteen root-end resections were performed in 11 patients. With the aid of computer tomography and rapid prototyping a stereolithographically fabricated, tooth-supported surgical template was used to guide trephinations. Surgery was performed using the printed surgical stent and a trephine was used not only for the osteotomy but for the root end resection as well.

Results

The root end was successfully and completely resected by the trephine in all cases. No intraoperative complications were observed in any of the cases, and the patients were free of symptoms indicating recurrence or complications at the 6-month follow-up. The median angular deviation of the trephination was 3.95° (95% CI: 2.1–5.9), comparable to the angular deviation of guided implant surgery. The mean apex removal error (ARE) was 0.19 mm (95% CI: 0.03–0.07). The mean osteotomy depth error (ODE) was 0.37 mm (95% CI: 0.15–1.35). Overpenetration was a characteristic finding, which indicates the necessity of a stop-trephine.

Conclusions

Within the limitations of this study, we conclude that our results support the use of guided trephination for root-end resection.
Literature
1.
go back to reference Setzer FC, Kohli MR, Shah SB, Karabucak B, Kim S. Outcome of endodontic surgery: a meta-analysis of the literature--part 2: comparison of endodontic microsurgical techniques with and without the use of higher magnification. J Endod. 2012;38(1):1–10.CrossRef Setzer FC, Kohli MR, Shah SB, Karabucak B, Kim S. Outcome of endodontic surgery: a meta-analysis of the literature--part 2: comparison of endodontic microsurgical techniques with and without the use of higher magnification. J Endod. 2012;38(1):1–10.CrossRef
2.
go back to reference Rahbaran S, Gilthorpe MS, Harrison SD, Gulabivala K. Comparison of clinical outcome of periapical surgery in endodontic and oral surgery units of a teaching dental hospital: a retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(6):700–9.CrossRef Rahbaran S, Gilthorpe MS, Harrison SD, Gulabivala K. Comparison of clinical outcome of periapical surgery in endodontic and oral surgery units of a teaching dental hospital: a retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(6):700–9.CrossRef
3.
go back to reference Rubinstein R, Kim S. Short-term observation of the results of endodontic surgery with the use of a surgical operation microscope and super-EBA as root-end filling material. J Endod. 1999;25:43–8.CrossRef Rubinstein R, Kim S. Short-term observation of the results of endodontic surgery with the use of a surgical operation microscope and super-EBA as root-end filling material. J Endod. 1999;25:43–8.CrossRef
4.
go back to reference Kohli MR, Berenji H, Setzer FC, Lee SM, Karabucak B. Outcome of endodontic surgery: a meta-analysis of the literature-part 3: comparison of endodontic microsurgical techniques with 2 different root-end filling materials. J Endod. 2018;44(6):923–31.CrossRef Kohli MR, Berenji H, Setzer FC, Lee SM, Karabucak B. Outcome of endodontic surgery: a meta-analysis of the literature-part 3: comparison of endodontic microsurgical techniques with 2 different root-end filling materials. J Endod. 2018;44(6):923–31.CrossRef
5.
go back to reference Degerness R, Bowles W. Anatomic determination of the mesiobuccal root resection level in maxillary molars. J Endod. 2008;34(10):1182–6.CrossRef Degerness R, Bowles W. Anatomic determination of the mesiobuccal root resection level in maxillary molars. J Endod. 2008;34(10):1182–6.CrossRef
6.
go back to reference European Society of E, Patel S, Durack C, Abella F, Roig M, Shemesh H, et al. European Society of Endodontology position statement: the use of CBCT in endodontics. Int Endod J. 2014;47(6):502–4.CrossRef European Society of E, Patel S, Durack C, Abella F, Roig M, Shemesh H, et al. European Society of Endodontology position statement: the use of CBCT in endodontics. Int Endod J. 2014;47(6):502–4.CrossRef
7.
go back to reference Pinsky HM, Champleboux G, Sarment DP. Periapical surgery using CAD/CAM guidance: preclinical results. J Endod. 2007;33(2):148–51.CrossRef Pinsky HM, Champleboux G, Sarment DP. Periapical surgery using CAD/CAM guidance: preclinical results. J Endod. 2007;33(2):148–51.CrossRef
8.
go back to reference Popowicz W, Palatynska-Ulatowska A, Kohli MR. Targeted endodontic microsurgery: computed tomography-based guided stent approach with platelet-rich fibrin graft: a report of 2 cases. J Endod. 2019;45(12):1535–42.CrossRef Popowicz W, Palatynska-Ulatowska A, Kohli MR. Targeted endodontic microsurgery: computed tomography-based guided stent approach with platelet-rich fibrin graft: a report of 2 cases. J Endod. 2019;45(12):1535–42.CrossRef
9.
go back to reference Connert T, Zehnder MS, Weiger R, Kuhl S, Krastl G. Microguided Endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth. J Endod. 2017;43(5):787–90.CrossRef Connert T, Zehnder MS, Weiger R, Kuhl S, Krastl G. Microguided Endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth. J Endod. 2017;43(5):787–90.CrossRef
10.
go back to reference Zehnder MS, Connert T, Weiger R, Krastl G, Kuhl S. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. Int Endod J. 2016;49(10):966–72.CrossRef Zehnder MS, Connert T, Weiger R, Krastl G, Kuhl S. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. Int Endod J. 2016;49(10):966–72.CrossRef
11.
go back to reference Patel S, Aldowaisan A, Dawood A. A novel method for soft tissue retraction during periapical surgery using 3D technology: a case report. Int Endod J. 2017;50(8):813–22.CrossRef Patel S, Aldowaisan A, Dawood A. A novel method for soft tissue retraction during periapical surgery using 3D technology: a case report. Int Endod J. 2017;50(8):813–22.CrossRef
12.
go back to reference Strbac GD, Schnappauf A, Giannis K, Moritz A, Ulm C. Guided modern endodontic surgery: a novel approach for guided osteotomy and root resection. J Endod. 2017;43(3):496–501.CrossRef Strbac GD, Schnappauf A, Giannis K, Moritz A, Ulm C. Guided modern endodontic surgery: a novel approach for guided osteotomy and root resection. J Endod. 2017;43(3):496–501.CrossRef
13.
go back to reference Tallarico M, Meloni SM. Retrospective analysis on survival rate, template-related complications, and prevalence of Peri-implantitis of 694 anodized implants placed using computer-guided surgery: results between 1 and 10 years of follow-up. Int J Oral Maxillofac Implants. 2017;32(5):1162–71.CrossRef Tallarico M, Meloni SM. Retrospective analysis on survival rate, template-related complications, and prevalence of Peri-implantitis of 694 anodized implants placed using computer-guided surgery: results between 1 and 10 years of follow-up. Int J Oral Maxillofac Implants. 2017;32(5):1162–71.CrossRef
14.
go back to reference Behneke A, Burwinkel M, Behneke N. Factors influencing transfer accuracy of cone beam CT-derived template-based implant placement. Clin Oral Implants Res. 2012;23(4):416–23.CrossRef Behneke A, Burwinkel M, Behneke N. Factors influencing transfer accuracy of cone beam CT-derived template-based implant placement. Clin Oral Implants Res. 2012;23(4):416–23.CrossRef
15.
go back to reference Younes F, Cosyn J, De Bruyckere T, Cleymaet R, Bouckaert E, Eghbali A. A randomized controlled study on the accuracy of free-handed, pilot-drill guided and fully guided implant surgery in partially edentulous patients. J Clin Periodontol. 2018;45(6):721–32.CrossRef Younes F, Cosyn J, De Bruyckere T, Cleymaet R, Bouckaert E, Eghbali A. A randomized controlled study on the accuracy of free-handed, pilot-drill guided and fully guided implant surgery in partially edentulous patients. J Clin Periodontol. 2018;45(6):721–32.CrossRef
16.
go back to reference Giacomino CM, Ray JJ, Wealleans JA. Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-a report of 3 cases. J Endod. 2018;44(4):671–7.CrossRef Giacomino CM, Ray JJ, Wealleans JA. Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-a report of 3 cases. J Endod. 2018;44(4):671–7.CrossRef
17.
go back to reference Ye S, Zhao S, Wang W, Jiang Q, Yang X. A novel method for periapical microsurgery with the aid of 3D technology: a case report. BMC Oral Health. 2018;18(1):85.CrossRef Ye S, Zhao S, Wang W, Jiang Q, Yang X. A novel method for periapical microsurgery with the aid of 3D technology: a case report. BMC Oral Health. 2018;18(1):85.CrossRef
18.
go back to reference Ahn SY, Kim NH, Kim S, Karabucak B, Kim E. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick Buccal bone plate. J Endod. 2018;44(4):665–70.CrossRef Ahn SY, Kim NH, Kim S, Karabucak B, Kim E. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick Buccal bone plate. J Endod. 2018;44(4):665–70.CrossRef
19.
go back to reference Kim D, Ku H, Nam T, Yoon TC, Lee CY, Kim E. Influence of size and volume of Periapical lesions on the outcome of endodontic microsurgery: 3-dimensional analysis using cone-beam computed tomography. J Endod. 2016;42(8):1196–201.CrossRef Kim D, Ku H, Nam T, Yoon TC, Lee CY, Kim E. Influence of size and volume of Periapical lesions on the outcome of endodontic microsurgery: 3-dimensional analysis using cone-beam computed tomography. J Endod. 2016;42(8):1196–201.CrossRef
20.
go back to reference Nur BG, Ok E, Altunsoy M, Aglarci OS, Colak M, Gungor E. Evaluation of technical quality and periapical health of root-filled teeth by using cone-beam CT. J Appl Oral Sci. 2014;22(6):502–8.CrossRef Nur BG, Ok E, Altunsoy M, Aglarci OS, Colak M, Gungor E. Evaluation of technical quality and periapical health of root-filled teeth by using cone-beam CT. J Appl Oral Sci. 2014;22(6):502–8.CrossRef
21.
go back to reference Tsesis I, Rosen E, Schwartz-Arad D, Fuss Z. Retrospective evaluation of surgical endodontic treatment: traditional versus modern technique. J Endod. 2006;32(5):412–6.CrossRef Tsesis I, Rosen E, Schwartz-Arad D, Fuss Z. Retrospective evaluation of surgical endodontic treatment: traditional versus modern technique. J Endod. 2006;32(5):412–6.CrossRef
22.
go back to reference Tortorici S, Difalco P, Caradonna L, Tete S. Traditional endodontic surgery versus modern technique: a 5-year controlled clinical trial. J Craniofac Surg. 2014;25(3):804–7.CrossRef Tortorici S, Difalco P, Caradonna L, Tete S. Traditional endodontic surgery versus modern technique: a 5-year controlled clinical trial. J Craniofac Surg. 2014;25(3):804–7.CrossRef
23.
go back to reference Ackerman S, Aguilera FC, Buie JM, Glickman GN, Umorin M, Wang Q, et al. Accuracy of 3-dimensional-printed endodontic surgical guide: a human cadaver study. J Endod. 2019;45(5):615–18.CrossRef Ackerman S, Aguilera FC, Buie JM, Glickman GN, Umorin M, Wang Q, et al. Accuracy of 3-dimensional-printed endodontic surgical guide: a human cadaver study. J Endod. 2019;45(5):615–18.CrossRef
24.
go back to reference Fan Y, Glickman GN, Umorin M, Nair MK, Jalali P. A Novel Prefabricated Grid for Guided Endodontic Microsurgery. J Endod. 2019;45(5):606–10.CrossRef Fan Y, Glickman GN, Umorin M, Nair MK, Jalali P. A Novel Prefabricated Grid for Guided Endodontic Microsurgery. J Endod. 2019;45(5):606–10.CrossRef
25.
go back to reference Tahmaseb A, Wu V, Wismeijer D, Coucke W, Evans C. The accuracy of static computer-aided implant surgery: a systematic review and meta-analysis. Clin Oral Implants Res. 2018;29(Suppl 16):416–35.CrossRef Tahmaseb A, Wu V, Wismeijer D, Coucke W, Evans C. The accuracy of static computer-aided implant surgery: a systematic review and meta-analysis. Clin Oral Implants Res. 2018;29(Suppl 16):416–35.CrossRef
26.
go back to reference Ozan O, Turkyilmaz I, Ersoy AE, McGlumphy EA, Rosenstiel SF. Clinical accuracy of 3 different types of computed tomography-derived stereolithographic surgical guides in implant placement. J Oral Maxillofac Surg. 2009;67(2):394–401.CrossRef Ozan O, Turkyilmaz I, Ersoy AE, McGlumphy EA, Rosenstiel SF. Clinical accuracy of 3 different types of computed tomography-derived stereolithographic surgical guides in implant placement. J Oral Maxillofac Surg. 2009;67(2):394–401.CrossRef
Metadata
Title
Accuracy and clinical safety of guided root end resection with a trephine: a case series
Authors
Márk Antal
Eszter Nagy
Gábor Braunitzer
Márk Fráter
József Piffkó
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Apicectomy
Published in
Head & Face Medicine / Issue 1/2019
Electronic ISSN: 1746-160X
DOI
https://doi.org/10.1186/s13005-019-0214-8

Other articles of this Issue 1/2019

Head & Face Medicine 1/2019 Go to the issue