Skip to main content
Top
Published in: Neurocritical Care 1/2023

Open Access 15-09-2022 | Apallic Syndrome | Original work

Classification of Level of Consciousness in a Neurological ICU Using Physiological Data

Authors: Louis A. Gomez, Qi Shen, Kevin Doyle, Athina Vrosgou, Angela Velazquez, Murad Megjhani, Shivani Ghoshal, David Roh, Sachin Agarwal, Soojin Park, Jan Claassen, Samantha Kleinberg

Published in: Neurocritical Care | Issue 1/2023

Login to get access

Abstract

Background

Impaired consciousness is common in intensive care unit (ICU) patients, and an individual’s degree of consciousness is crucial to determining their care and prognosis. However, there are no methods that continuously monitor consciousness and alert clinicians to changes. We investigated the use of physiological signals collected in the ICU to classify levels of consciousness in critically ill patients.

Methods

We studied 61 patients with subarachnoid hemorrhage (SAH) and 178 patients with intracerebral hemorrhage (ICH) from the neurological ICU at Columbia University Medical Center in a retrospective observational study of prospectively collected data. The level of consciousness was determined on the basis of neurological examination and mapped to comatose, vegetative state or unresponsive wakefulness syndrome (VS/UWS), minimally conscious minus state (MCS−), and command following. For each physiological signal, we extracted time-series features and performed classification using extreme gradient boosting on multiple clinically relevant tasks across subsets of physiological signals. We applied this approach independently on both SAH and ICH patient groups for three sets of variables: (1) a minimal set common to most hospital patients (e.g., heart rate), (2) variables available in most ICUs (e.g., body temperature), and (3) an extended set recorded mainly in neurological ICUs (absent for the ICH patient group; e.g., brain temperature).

Results

On the commonly performed classification task of VS/UWS versus MCS−, we achieved an area under the receiver operating characteristic curve (AUROC) in the SAH patient group of 0.72 (sensitivity 82%, specificity 57%; 95% confidence interval [CI] 0.63–0.81) using the extended set, 0.69 (sensitivity 83%, specificity 51%; 95% CI 0.59–0.78) on the variable set available in most ICUs, and 0.69 (sensitivity 56%, specificity 78%; 95% CI 0.60–0.78) on the minimal set. In the ICH patient group, AUROC was 0.64 (sensitivity 56%, specificity 65%; 95% CI 0.55–0.74) using the minimal set and 0.61 (sensitivity 50%, specificity 80%; 95% CI 0.51–0.71) using the variables available in most ICUs.

Conclusions

We find that physiological signals can be used to classify states of consciousness for patients in the ICU. Building on this with intraday assessments and increasing sensitivity and specificity may enable alarm systems that alert physicians to changes in consciousness and frequent monitoring of consciousness throughout the day, both of which may improve patient care and outcomes.
Appendix
Available only for authorised users
Footnotes
1
This relationship is defined as:
$$K= \frac{TP-FP-P{^{\prime}}(1-2N)}{P-P{^{\prime}}(1-2N)}$$
which outputs the kappa score \((K)\) for a specified true positive \((TP)\) and false positive, \((FP)\) value on the ROC curve (with the simplified representation: \(TP=f\left(FP\right)\)). Here \(P\) is the number of positive labels, \(N\) is the number of negative labels, \(P{^{\prime}}\) is the probability of being predicted as positive, and \(f\) is the function that outputs true positive values for each false positive.
 
Literature
1.
go back to reference Kannampallil TG, Schauer GF, Cohen T, Patel VL. Considering complexity in healthcare systems. J Biomed Inform. 2011;44(6):943–7.PubMedCrossRef Kannampallil TG, Schauer GF, Cohen T, Patel VL. Considering complexity in healthcare systems. J Biomed Inform. 2011;44(6):943–7.PubMedCrossRef
4.
go back to reference Theerawit P, Sutherasan Y, Ball L, Pelosi P. Respiratory monitoring in adult intensive care unit. Expert Rev Respir Med. 2017;11(6):453–68.PubMedCrossRef Theerawit P, Sutherasan Y, Ball L, Pelosi P. Respiratory monitoring in adult intensive care unit. Expert Rev Respir Med. 2017;11(6):453–68.PubMedCrossRef
5.
go back to reference Thiele RH, Bartels K, Gan TJ. Cardiac output monitoring: a contemporary assessment and review. Crit Care Med. 2015;43(1):177–85.PubMedCrossRef Thiele RH, Bartels K, Gan TJ. Cardiac output monitoring: a contemporary assessment and review. Crit Care Med. 2015;43(1):177–85.PubMedCrossRef
6.
go back to reference Saugel B, Cecconi M, Wagner JY, Reuter DA. Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. Br J Anaesth. 2015;114(4):562–75.PubMedCrossRef Saugel B, Cecconi M, Wagner JY, Reuter DA. Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. Br J Anaesth. 2015;114(4):562–75.PubMedCrossRef
8.
go back to reference Teasdale G, Jennett B. Assessment of coma and impaired consciousness. The Lancet. 1974;304(7872):81–4.CrossRef Teasdale G, Jennett B. Assessment of coma and impaired consciousness. The Lancet. 1974;304(7872):81–4.CrossRef
9.
go back to reference Wijdicks EFM, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: the FOUR score. Ann Neurol. 2005;58(4):585–93.PubMedCrossRef Wijdicks EFM, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: the FOUR score. Ann Neurol. 2005;58(4):585–93.PubMedCrossRef
10.
go back to reference Claassen J, Velazquez A, Meyers E, et al. Bedside quantitative electroencephalography improves assessment of consciousness in comatose subarachnoid hemorrhage patients. Ann Neurol. 2016;80(4):541–53.PubMedPubMedCentralCrossRef Claassen J, Velazquez A, Meyers E, et al. Bedside quantitative electroencephalography improves assessment of consciousness in comatose subarachnoid hemorrhage patients. Ann Neurol. 2016;80(4):541–53.PubMedPubMedCentralCrossRef
11.
go back to reference Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004;85(12):2020–9.PubMedCrossRef Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004;85(12):2020–9.PubMedCrossRef
12.
go back to reference Wannez S, Heine L, Thonnard M, Gosseries O, Laureys S, Coma Science Group collaborators. The repetition of behavioral assessments in diagnosis of disorders of consciousness: Repeated CRS-R Assessments for Diagnosis in DOC. Ann Neurol 2017;81(6):883–9. Wannez S, Heine L, Thonnard M, Gosseries O, Laureys S, Coma Science Group collaborators. The repetition of behavioral assessments in diagnosis of disorders of consciousness: Repeated CRS-R Assessments for Diagnosis in DOC. Ann Neurol 2017;81(6):883–9.
13.
go back to reference Seel RT, Sherer M, Whyte J, et al. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil. 2010;91(12):1795–813.PubMedCrossRef Seel RT, Sherer M, Whyte J, et al. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil. 2010;91(12):1795–813.PubMedCrossRef
14.
go back to reference Reznik ME, Mahta A, Schmidt JM, et al. Duration of agitation, fluctuations of consciousness, and associations with outcome in patients with subarachnoid hemorrhage. Neurocrit Care. 2018;29(1):33–9.PubMedPubMedCentralCrossRef Reznik ME, Mahta A, Schmidt JM, et al. Duration of agitation, fluctuations of consciousness, and associations with outcome in patients with subarachnoid hemorrhage. Neurocrit Care. 2018;29(1):33–9.PubMedPubMedCentralCrossRef
15.
go back to reference Rohaut B, Eliseyev A, Claassen J. Uncovering consciousness in unresponsive ICU patients: technical, medical and ethical considerations. Crit Care. 2019;23(1):78.PubMedPubMedCentralCrossRef Rohaut B, Eliseyev A, Claassen J. Uncovering consciousness in unresponsive ICU patients: technical, medical and ethical considerations. Crit Care. 2019;23(1):78.PubMedPubMedCentralCrossRef
16.
go back to reference Goldfine AM, Victor JD, Conte MM, Bardin JC, Schiff ND. Determination of awareness in patients with severe brain injury using EEG power spectral analysis. Clin Neurophysiol. 2011;122(11):2157–68.PubMedPubMedCentralCrossRef Goldfine AM, Victor JD, Conte MM, Bardin JC, Schiff ND. Determination of awareness in patients with severe brain injury using EEG power spectral analysis. Clin Neurophysiol. 2011;122(11):2157–68.PubMedPubMedCentralCrossRef
17.
go back to reference Cruse D, Chennu S, Chatelle C, et al. Bedside detection of awareness in the vegetative state: a cohort study. The Lancet. 2011;378(9809):2088–94.CrossRef Cruse D, Chennu S, Chatelle C, et al. Bedside detection of awareness in the vegetative state: a cohort study. The Lancet. 2011;378(9809):2088–94.CrossRef
18.
go back to reference Stender J, Gosseries O, Bruno M-A, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. The Lancet. 2014;384(9942):514–22.CrossRef Stender J, Gosseries O, Bruno M-A, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. The Lancet. 2014;384(9942):514–22.CrossRef
19.
go back to reference Fernández-Espejo D, Norton L, Owen AM. The clinical utility of fMRI for identifying covert awareness in the vegetative state: a comparison of sensitivity between 3T and 1.5T. PLoS ONE. 2014;9(4):e95082.PubMedPubMedCentralCrossRef Fernández-Espejo D, Norton L, Owen AM. The clinical utility of fMRI for identifying covert awareness in the vegetative state: a comparison of sensitivity between 3T and 1.5T. PLoS ONE. 2014;9(4):e95082.PubMedPubMedCentralCrossRef
20.
go back to reference Sitt JD, King J-R, El Karoui I, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014;137(8):2258–70.PubMedPubMedCentralCrossRef Sitt JD, King J-R, El Karoui I, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014;137(8):2258–70.PubMedPubMedCentralCrossRef
21.
go back to reference Engemann DA, Raimondo F, King J-R, et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain. 2018;141(11):3179–92.PubMedCrossRef Engemann DA, Raimondo F, King J-R, et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain. 2018;141(11):3179–92.PubMedCrossRef
22.
go back to reference Bhattacharyay S, Rattray J, Wang M, et al. Decoding accelerometry for classification and prediction of critically ill patients with severe brain injury. Sci Rep. 2021;11(1):23654.PubMedPubMedCentralCrossRef Bhattacharyay S, Rattray J, Wang M, et al. Decoding accelerometry for classification and prediction of critically ill patients with severe brain injury. Sci Rep. 2021;11(1):23654.PubMedPubMedCentralCrossRef
23.
go back to reference Yavuz TT, Claassen J, Kleinberg S. Lagged correlations among physiological variables as indicators of consciousness in stroke patients. AMIA Annu Symp Proc. 2019;2019:942–51.PubMed Yavuz TT, Claassen J, Kleinberg S. Lagged correlations among physiological variables as indicators of consciousness in stroke patients. AMIA Annu Symp Proc. 2019;2019:942–51.PubMed
24.
go back to reference Claassen J, Rahman SA, Huang Y, et al. Causal structure of brain physiology after brain injury from subarachnoid hemorrhage. PLoS ONE. 2016;11(4): e0149878.PubMedPubMedCentralCrossRef Claassen J, Rahman SA, Huang Y, et al. Causal structure of brain physiology after brain injury from subarachnoid hemorrhage. PLoS ONE. 2016;11(4): e0149878.PubMedPubMedCentralCrossRef
25.
go back to reference Claassen J, Perotte A, Albers D, et al. Nonconvulsive seizures after subarachnoid hemorrhage: multimodal detection and outcomes. Ann Neurol. 2013;74(1):53–64.PubMedPubMedCentralCrossRef Claassen J, Perotte A, Albers D, et al. Nonconvulsive seizures after subarachnoid hemorrhage: multimodal detection and outcomes. Ann Neurol. 2013;74(1):53–64.PubMedPubMedCentralCrossRef
26.
go back to reference Rahman SA, Huang Y, Claassen J, Heintzman N, Kleinberg S. Combining Fourier and lagged k-nearest neighbor imputation for biomedical time series data. J Biomed Inform. 2015;58:198–207.PubMedPubMedCentralCrossRef Rahman SA, Huang Y, Claassen J, Heintzman N, Kleinberg S. Combining Fourier and lagged k-nearest neighbor imputation for biomedical time series data. J Biomed Inform. 2015;58:198–207.PubMedPubMedCentralCrossRef
27.
go back to reference Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min 2016;785–94. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min 2016;785–94.
28.
go back to reference Sun Y, Wong AKC, Kamel MS. Classification of imbalanced data: a review. Int J Pattern Recognit Artif Intell. 2009;23(04):687–719.CrossRef Sun Y, Wong AKC, Kamel MS. Classification of imbalanced data: a review. Int J Pattern Recognit Artif Intell. 2009;23(04):687–719.CrossRef
29.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837.PubMedCrossRef DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837.PubMedCrossRef
30.
go back to reference Austin PC, Steyerberg EW. The integrated calibration index (ICI) and related metrics for quantifying the calibration of logistic regression models. Stat Med. 2019;38(21):4051–65.PubMedPubMedCentralCrossRef Austin PC, Steyerberg EW. The integrated calibration index (ICI) and related metrics for quantifying the calibration of logistic regression models. Stat Med. 2019;38(21):4051–65.PubMedPubMedCentralCrossRef
31.
go back to reference Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. New York, NY: Springer; 2009.CrossRef Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. New York, NY: Springer; 2009.CrossRef
32.
go back to reference Edlow BL, Chatelle C, Spencer CA, et al. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain. 2017;140(9):2399–414.PubMedPubMedCentralCrossRef Edlow BL, Chatelle C, Spencer CA, et al. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain. 2017;140(9):2399–414.PubMedPubMedCentralCrossRef
33.
go back to reference Claassen J, Doyle K, Matory A, et al. Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med. 2019;380(26):2497–505.PubMedCrossRef Claassen J, Doyle K, Matory A, et al. Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med. 2019;380(26):2497–505.PubMedCrossRef
34.
go back to reference Egbebike J, Shen Q, Doyle K, et al. Cognitive-motor dissociation and time to functional recovery in patients with acute brain injury in the USA: a prospective observational cohort study. Lancet Neurol. 2022;21(8):704–13.PubMedCrossRef Egbebike J, Shen Q, Doyle K, et al. Cognitive-motor dissociation and time to functional recovery in patients with acute brain injury in the USA: a prospective observational cohort study. Lancet Neurol. 2022;21(8):704–13.PubMedCrossRef
35.
go back to reference Demertzi A, Antonopoulos G, Heine L, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(9):2619–31.PubMedCrossRef Demertzi A, Antonopoulos G, Heine L, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(9):2619–31.PubMedCrossRef
36.
go back to reference Nagaraj SB, Biswal S, Boyle EJ, et al. Patient-specific classification of ICU sedation levels from heart rate variability. Crit Care Med. 2017;45(7):e683–90.PubMedPubMedCentralCrossRef Nagaraj SB, Biswal S, Boyle EJ, et al. Patient-specific classification of ICU sedation levels from heart rate variability. Crit Care Med. 2017;45(7):e683–90.PubMedPubMedCentralCrossRef
37.
go back to reference Nagaraj SB, McClain LM, Zhou DW, et al. Automatic classification of sedation levels in ICU patients using heart rate variability. Crit Care Med. 2016;44(9):e782–9.PubMedPubMedCentralCrossRef Nagaraj SB, McClain LM, Zhou DW, et al. Automatic classification of sedation levels in ICU patients using heart rate variability. Crit Care Med. 2016;44(9):e782–9.PubMedPubMedCentralCrossRef
38.
go back to reference Tonekaboni S, Mazwi M, Laussen P, et al. Prediction of cardiac arrest from physiological signals in the pediatric ICU. Proc 3rd Mach Learn Healthc Conf. 2018;85:534–50. Tonekaboni S, Mazwi M, Laussen P, et al. Prediction of cardiac arrest from physiological signals in the pediatric ICU. Proc 3rd Mach Learn Healthc Conf. 2018;85:534–50.
39.
go back to reference Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med. 2018;46(4):547–53.PubMedPubMedCentralCrossRef Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med. 2018;46(4):547–53.PubMedPubMedCentralCrossRef
40.
go back to reference Schlapbach LJ, MacLaren G, Festa M, et al. Prediction of pediatric sepsis mortality within 1 h of intensive care admission. Intensive Care Med. 2017;43(8):1085–96.PubMedCrossRef Schlapbach LJ, MacLaren G, Festa M, et al. Prediction of pediatric sepsis mortality within 1 h of intensive care admission. Intensive Care Med. 2017;43(8):1085–96.PubMedCrossRef
42.
go back to reference Pouromran F, Radhakrishnan S, Kamarthi S. Exploration of physiological sensors, features, and machine learning models for pain intensity estimation. PLoS ONE. 2021;16(7): e0254108.PubMedPubMedCentralCrossRef Pouromran F, Radhakrishnan S, Kamarthi S. Exploration of physiological sensors, features, and machine learning models for pain intensity estimation. PLoS ONE. 2021;16(7): e0254108.PubMedPubMedCentralCrossRef
43.
go back to reference Estévez-Báez M, Machado C, García-Sánchez B, et al. Autonomic impairment of patients in coma with different Glasgow coma score assessed with heart rate variability. Brain Inj. 2019;33(4):496–516.PubMedCrossRef Estévez-Báez M, Machado C, García-Sánchez B, et al. Autonomic impairment of patients in coma with different Glasgow coma score assessed with heart rate variability. Brain Inj. 2019;33(4):496–516.PubMedCrossRef
44.
go back to reference Riganello F, Larroque SK, Bahri MA, et al. A heartbeat away from consciousness: heart rate variability entropy can discriminate disorders of consciousness and is correlated with resting-state FMRI brain connectivity of the central autonomic network. Front Neurol. 2018;9:769.PubMedPubMedCentralCrossRef Riganello F, Larroque SK, Bahri MA, et al. A heartbeat away from consciousness: heart rate variability entropy can discriminate disorders of consciousness and is correlated with resting-state FMRI brain connectivity of the central autonomic network. Front Neurol. 2018;9:769.PubMedPubMedCentralCrossRef
45.
go back to reference Raimondo F, Rohaut B, Demertzi A, et al. Brain-heart interactions reveal consciousness in noncommunicating patients: brain-heart interactions. Ann Neurol. 2017;82(4):578–91.PubMedCrossRef Raimondo F, Rohaut B, Demertzi A, et al. Brain-heart interactions reveal consciousness in noncommunicating patients: brain-heart interactions. Ann Neurol. 2017;82(4):578–91.PubMedCrossRef
46.
go back to reference Binder M, Górska U, Wójcik-Krzemień A, Gociewicz K. A validation of the Polish version of the coma recovery scale-revised (CRS-R). Brain Inj. 2018;32(2):242–6.PubMedCrossRef Binder M, Górska U, Wójcik-Krzemień A, Gociewicz K. A validation of the Polish version of the coma recovery scale-revised (CRS-R). Brain Inj. 2018;32(2):242–6.PubMedCrossRef
47.
go back to reference Tamashiro M, Rivas ME, Ron M, Salierno F, Dalera M, Olmos L. A Spanish validation of the coma recovery scale-revised (CRS-R). Brain Inj. 2014;28(13–14):1744–7.PubMedCrossRef Tamashiro M, Rivas ME, Ron M, Salierno F, Dalera M, Olmos L. A Spanish validation of the coma recovery scale-revised (CRS-R). Brain Inj. 2014;28(13–14):1744–7.PubMedCrossRef
48.
go back to reference Sacco S, Altobelli E, Pistarini C, Cerone D, Cazzulani B, Carolei A. Validation of the Italian version of the coma recovery scale-revised (CRS-R). Brain Inj. 2011;25(5):488–95.PubMedCrossRef Sacco S, Altobelli E, Pistarini C, Cerone D, Cazzulani B, Carolei A. Validation of the Italian version of the coma recovery scale-revised (CRS-R). Brain Inj. 2011;25(5):488–95.PubMedCrossRef
49.
go back to reference Bruno M-A, Ledoux D, Lambermont B, et al. Comparison of the full outline of unresponsiveness and Glasgow Liege Scale/Glasgow Coma Scale in an intensive care unit population. Neurocrit Care. 2011;15(3):447–53.PubMedCrossRef Bruno M-A, Ledoux D, Lambermont B, et al. Comparison of the full outline of unresponsiveness and Glasgow Liege Scale/Glasgow Coma Scale in an intensive care unit population. Neurocrit Care. 2011;15(3):447–53.PubMedCrossRef
50.
go back to reference Wolf CA, Wijdicks EFM, Bamlet WR, McClelland RL. Further validation of the FOUR score coma scale by intensive care nurses. Mayo Clin Proc. 2007;82(4):435–8.PubMedCrossRef Wolf CA, Wijdicks EFM, Bamlet WR, McClelland RL. Further validation of the FOUR score coma scale by intensive care nurses. Mayo Clin Proc. 2007;82(4):435–8.PubMedCrossRef
51.
go back to reference Ben-David A. About the relationship between ROC curves and Cohen’s kappa. Eng Appl Artif Intell. 2008;21(6):874–82.CrossRef Ben-David A. About the relationship between ROC curves and Cohen’s kappa. Eng Appl Artif Intell. 2008;21(6):874–82.CrossRef
Metadata
Title
Classification of Level of Consciousness in a Neurological ICU Using Physiological Data
Authors
Louis A. Gomez
Qi Shen
Kevin Doyle
Athina Vrosgou
Angela Velazquez
Murad Megjhani
Shivani Ghoshal
David Roh
Sachin Agarwal
Soojin Park
Jan Claassen
Samantha Kleinberg
Publication date
15-09-2022
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2023
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-022-01586-0

Other articles of this Issue 1/2023

Neurocritical Care 1/2023 Go to the issue