Skip to main content
Top
Published in: Virology Journal 1/2012

Open Access 01-12-2012 | Short report

Antiviral activity of the EB peptide against zoonotic poxviruses

Authors: Sharon E Altmann, Curtis R Brandt, Peter B Jahrling, Joseph E Blaney

Published in: Virology Journal | Issue 1/2012

Login to get access

Abstract

Background

The EB peptide is a 20-mer that was previously shown to have broad spectrum in vitro activity against several unrelated viruses, including highly pathogenic avian influenza, herpes simplex virus type I, and vaccinia, the prototypic orthopoxvirus. To expand on this work, we evaluated EB for in vitro activity against the zoonotic orthopoxviruses cowpox and monkeypox and for in vivo activity in mice against vaccinia and cowpox.

Findings

In yield reduction assays, EB had an EC50 of 26.7 μM against cowpox and 4.4 μM against monkeypox. The EC50 for plaque reduction was 26.3 μM against cowpox and 48.6 μM against monkeypox. A scrambled peptide had no inhibitory activity against either virus. EB inhibited cowpox in vitro by disrupting virus entry, as evidenced by a reduction of the release of virus cores into the cytoplasm. Monkeypox was also inhibited in vitro by EB, but at the attachment stage of infection. EB showed protective activity in mice infected intranasally with vaccinia when co-administered with the virus, but had no effect when administered prophylactically one day prior to infection or therapeutically one day post-infection. EB had no in vivo activity against cowpox in mice.

Conclusions

While EB did demonstrate some in vivo efficacy against vaccinia in mice, the limited conditions under which it was effective against vaccinia and lack of activity against cowpox suggest EB may be more useful for studying orthopoxvirus entry and attachment in vitro than as a therapeutic against orthopoxviruses in vivo.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lin Y-Z, Yao S, Veach RA, Torgerson TR, Hawiger J: Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 1995, 270: 14255-14258. 10.1074/jbc.270.24.14255PubMedCrossRef Lin Y-Z, Yao S, Veach RA, Torgerson TR, Hawiger J: Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 1995, 270: 14255-14258. 10.1074/jbc.270.24.14255PubMedCrossRef
2.
go back to reference Bultmann H, Busse JS, Brandt CR: Modified FGF4 signal peptide inhibits entry of herpes simplex virus type 1. J Virol 2001, 75: 2634-2645. 10.1128/JVI.75.6.2634-2645.2001PubMedPubMedCentralCrossRef Bultmann H, Busse JS, Brandt CR: Modified FGF4 signal peptide inhibits entry of herpes simplex virus type 1. J Virol 2001, 75: 2634-2645. 10.1128/JVI.75.6.2634-2645.2001PubMedPubMedCentralCrossRef
3.
go back to reference Jones JC, Turpin EA, Bultmann H, Brandt CR, Schultz-Cherry S: Inhibition of influenza virus infection by a novel antiviral peptide that targets attachment to cells. J Virol 2006, 80: 11960-11967. 10.1128/JVI.01678-06PubMedPubMedCentralCrossRef Jones JC, Turpin EA, Bultmann H, Brandt CR, Schultz-Cherry S: Inhibition of influenza virus infection by a novel antiviral peptide that targets attachment to cells. J Virol 2006, 80: 11960-11967. 10.1128/JVI.01678-06PubMedPubMedCentralCrossRef
4.
go back to reference Jones JC, Settles EW, Brandt CR, Schultz-Cherry S: Identification of the minimal active sequence of an anti-influenza virus peptide. Antimicrob Agents Chemother 2011, 55: 1810-1813. 10.1128/AAC.01428-10PubMedPubMedCentralCrossRef Jones JC, Settles EW, Brandt CR, Schultz-Cherry S: Identification of the minimal active sequence of an anti-influenza virus peptide. Antimicrob Agents Chemother 2011, 55: 1810-1813. 10.1128/AAC.01428-10PubMedPubMedCentralCrossRef
5.
go back to reference Altmann SE, Jones JC, Schultz-Cherry S, Brandt CR: Inhibition of vaccinia virus entry by a broad spectrum antiviral peptide. Virology 2009, 388: 248-259. 10.1016/j.virol.2009.03.023PubMedPubMedCentralCrossRef Altmann SE, Jones JC, Schultz-Cherry S, Brandt CR: Inhibition of vaccinia virus entry by a broad spectrum antiviral peptide. Virology 2009, 388: 248-259. 10.1016/j.virol.2009.03.023PubMedPubMedCentralCrossRef
6.
go back to reference Akkarawongsa R, Cullinan AE, Zinkel A, Clarin J, Brandt CR: Corneal toxicity of cell-penetrating peptides that inhibit herpes simplex virus entry. J Ocul Pharmacol Ther 2006, 22: 279-289. 10.1089/jop.2006.22.279PubMedCrossRef Akkarawongsa R, Cullinan AE, Zinkel A, Clarin J, Brandt CR: Corneal toxicity of cell-penetrating peptides that inhibit herpes simplex virus entry. J Ocul Pharmacol Ther 2006, 22: 279-289. 10.1089/jop.2006.22.279PubMedCrossRef
7.
go back to reference WHO: Declaration of global eradication of smallpox. Weekly Epidemiol Rec 1980, 55: 148. WHO: Declaration of global eradication of smallpox. Weekly Epidemiol Rec 1980, 55: 148.
8.
go back to reference Essbauer S, Pfeffer M, Meyer H: Zoonotic poxviruses. Vet Microbiol 2010, 140: 229-236. 10.1016/j.vetmic.2009.08.026PubMedCrossRef Essbauer S, Pfeffer M, Meyer H: Zoonotic poxviruses. Vet Microbiol 2010, 140: 229-236. 10.1016/j.vetmic.2009.08.026PubMedCrossRef
9.
go back to reference Rimoin AW, Mulembakani PM, Johnston SC, Lloyd Smith JO, Kisalu NK, Kinkela TL, Blumberg S, Thomassen HA, Pike BL, Fair JN, et al.: Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the democratic republic of Congo. Proc Natl Acad Sci USA 2010, 107: 16262-16267. 10.1073/pnas.1005769107PubMedPubMedCentralCrossRef Rimoin AW, Mulembakani PM, Johnston SC, Lloyd Smith JO, Kisalu NK, Kinkela TL, Blumberg S, Thomassen HA, Pike BL, Fair JN, et al.: Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the democratic republic of Congo. Proc Natl Acad Sci USA 2010, 107: 16262-16267. 10.1073/pnas.1005769107PubMedPubMedCentralCrossRef
10.
go back to reference Ježek Z, Fenner F: Human Monkeypox. New York: Karger; 1988. Ježek Z, Fenner F: Human Monkeypox. New York: Karger; 1988.
11.
go back to reference Law M, Smith GL: Studying the binding and entry of the intracellular and extracellular enveloped forms of vaccinia virus. Methods Mol Biol 2004, 269: 187-204.PubMed Law M, Smith GL: Studying the binding and entry of the intracellular and extracellular enveloped forms of vaccinia virus. Methods Mol Biol 2004, 269: 187-204.PubMed
12.
go back to reference Bultmann H, Girdaukas G, Kwon GS, Brandt CR: The virucidal EB peptide protects host cells from herpes simplex virus type 1 infection in the presence of serum albumin and aggregates proteins in a detergent-like manner. Antimicrob Agents Chemother 2010, 54: 4275-4289. 10.1128/AAC.00495-10PubMedPubMedCentralCrossRef Bultmann H, Girdaukas G, Kwon GS, Brandt CR: The virucidal EB peptide protects host cells from herpes simplex virus type 1 infection in the presence of serum albumin and aggregates proteins in a detergent-like manner. Antimicrob Agents Chemother 2010, 54: 4275-4289. 10.1128/AAC.00495-10PubMedPubMedCentralCrossRef
13.
go back to reference Chung CS, Hsiao JC, Chang YS, Chang W: A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J Virol 1998, 72: 1577-1585.PubMedPubMedCentral Chung CS, Hsiao JC, Chang YS, Chang W: A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J Virol 1998, 72: 1577-1585.PubMedPubMedCentral
14.
go back to reference Hsiao JC, Chung CS, Chang W: Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 1999, 73: 8750-8761.PubMedPubMedCentral Hsiao JC, Chung CS, Chang W: Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 1999, 73: 8750-8761.PubMedPubMedCentral
15.
go back to reference Senkevich TG, Ward BM, Moss B: Vaccinia virus entry into cells is dependent on a virion surface protein encoded by the A28L gene. J Virol 2004, 78: 2357-2366. 10.1128/JVI.78.5.2357-2366.2004PubMedPubMedCentralCrossRef Senkevich TG, Ward BM, Moss B: Vaccinia virus entry into cells is dependent on a virion surface protein encoded by the A28L gene. J Virol 2004, 78: 2357-2366. 10.1128/JVI.78.5.2357-2366.2004PubMedPubMedCentralCrossRef
16.
go back to reference Senkevich TG, Moss B: Vaccinia virus H2 protein is an essential component of a complex involved in virus entry and cell-cell fusion. J Virol 2005, 79: 4744-4754. 10.1128/JVI.79.8.4744-4754.2005PubMedPubMedCentralCrossRef Senkevich TG, Moss B: Vaccinia virus H2 protein is an essential component of a complex involved in virus entry and cell-cell fusion. J Virol 2005, 79: 4744-4754. 10.1128/JVI.79.8.4744-4754.2005PubMedPubMedCentralCrossRef
17.
18.
go back to reference Townsley AC, Senkevich TG, Moss B: Vaccinia virus A21 virion membrane protein is required for cell entry and fusion. J Virol 2005, 79: 9458-9469. 10.1128/JVI.79.15.9458-9469.2005PubMedPubMedCentralCrossRef Townsley AC, Senkevich TG, Moss B: Vaccinia virus A21 virion membrane protein is required for cell entry and fusion. J Virol 2005, 79: 9458-9469. 10.1128/JVI.79.15.9458-9469.2005PubMedPubMedCentralCrossRef
19.
go back to reference Townsley AC, Senkevich TG, Moss B: The product of the vaccinia virus L5R gene is a fourth membrane protein encoded by all poxviruses that is required for cell entry and cell-cell fusion. J Virol 2005, 79: 10988-10998. 10.1128/JVI.79.17.10988-10998.2005PubMedPubMedCentralCrossRef Townsley AC, Senkevich TG, Moss B: The product of the vaccinia virus L5R gene is a fourth membrane protein encoded by all poxviruses that is required for cell entry and cell-cell fusion. J Virol 2005, 79: 10988-10998. 10.1128/JVI.79.17.10988-10998.2005PubMedPubMedCentralCrossRef
20.
go back to reference Brown E, Senkevich TG, Moss B: Vaccinia virus F9 virion membrane protein is required for entry but not virus assembly, in contrast to the related L1 protein. J Virol 2006, 80: 9455-9464. 10.1128/JVI.01149-06PubMedPubMedCentralCrossRef Brown E, Senkevich TG, Moss B: Vaccinia virus F9 virion membrane protein is required for entry but not virus assembly, in contrast to the related L1 protein. J Virol 2006, 80: 9455-9464. 10.1128/JVI.01149-06PubMedPubMedCentralCrossRef
21.
go back to reference Izmailyan RA, Huang CY, Mohammad S, Isaacs SN, Chang W: The envelope G3L protein is essential for entry of vaccinia virus into host cells. J Virol 2006, 80: 8402-8410. 10.1128/JVI.00624-06PubMedPubMedCentralCrossRef Izmailyan RA, Huang CY, Mohammad S, Isaacs SN, Chang W: The envelope G3L protein is essential for entry of vaccinia virus into host cells. J Virol 2006, 80: 8402-8410. 10.1128/JVI.00624-06PubMedPubMedCentralCrossRef
22.
go back to reference Ojeda S, Domi A, Moss B: Vaccinia virus G9 protein is an essential component of the poxvirus entry-fusion complex. J Virol 2006, 80: 9822-9830. 10.1128/JVI.00987-06PubMedPubMedCentralCrossRef Ojeda S, Domi A, Moss B: Vaccinia virus G9 protein is an essential component of the poxvirus entry-fusion complex. J Virol 2006, 80: 9822-9830. 10.1128/JVI.00987-06PubMedPubMedCentralCrossRef
23.
go back to reference Bisht H, Weisberg AS, Moss B: Vaccinia virus L1 protein is required for cell entry and membrane fusion. J Virol 2008, 82: 8687-8694. 10.1128/JVI.00852-08PubMedPubMedCentralCrossRef Bisht H, Weisberg AS, Moss B: Vaccinia virus L1 protein is required for cell entry and membrane fusion. J Virol 2008, 82: 8687-8694. 10.1128/JVI.00852-08PubMedPubMedCentralCrossRef
24.
go back to reference Nichols RJ, Stanitsa E, Unger B, Traktman P: The Vaccinia virus gene I2L encodes a membrane protein with an essential role in virion entry. J Virol 2008, 82: 10247-10261. 10.1128/JVI.01035-08PubMedPubMedCentralCrossRef Nichols RJ, Stanitsa E, Unger B, Traktman P: The Vaccinia virus gene I2L encodes a membrane protein with an essential role in virion entry. J Virol 2008, 82: 10247-10261. 10.1128/JVI.01035-08PubMedPubMedCentralCrossRef
25.
go back to reference Satheshkumar PS, Moss B: Characterization of a newly identified 35-amino-acid component of the vaccinia virus entry/fusion complex conserved in all chordopoxviruses. J Virol 2009, 83: 12822-12832. 10.1128/JVI.01744-09PubMedPubMedCentralCrossRef Satheshkumar PS, Moss B: Characterization of a newly identified 35-amino-acid component of the vaccinia virus entry/fusion complex conserved in all chordopoxviruses. J Virol 2009, 83: 12822-12832. 10.1128/JVI.01744-09PubMedPubMedCentralCrossRef
Metadata
Title
Antiviral activity of the EB peptide against zoonotic poxviruses
Authors
Sharon E Altmann
Curtis R Brandt
Peter B Jahrling
Joseph E Blaney
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2012
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-9-6

Other articles of this Issue 1/2012

Virology Journal 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine