Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 1/2014

01-11-2014 | Review

Antipsychotic treatment modulates glutamate transport and NMDA receptor expression

Authors: Mathias Zink, Susanne Englisch, Andrea Schmitt

Published in: European Archives of Psychiatry and Clinical Neuroscience | Special Issue 1/2014

Login to get access

Abstract

Schizophrenia patients often suffer from treatment-resistant cognitive and negative symptoms, both of which are influenced by glutamate neurotransmission. Innovative therapeutic strategies such as agonists at metabotropic glutamate receptors or glycin reuptake inhibitors try to modulate the brain’s glutamate network. Interactions of amino acids with monoamines have been described on several levels, and first- and second-generation antipsychotic agents (FGAs, SGAs) are known to exert modulatory effects on the glutamatergic system. This review summarizes the current knowledge on effects of FGAs and SGAs on glutamate transport and receptor expression derived from pharmacological studies. Such studies serve as a control for molecular findings in schizophrenia brain tissue and are clinically relevant. Moreover, they may validate animal models for psychosis, foster basic research on antipsychotic substances and finally lead to a better understanding of how monoaminergic and amino acid neurotransmissions are intertwined. In the light of these results, important differences dependent on antipsychotic substances, dosage and duration of treatment became obvious. While some post-mortem findings might be confounded with multifold drug effects, others are unlikely to be influenced by antipsychotic treatment and could represent important markers of schizophrenia pathophysiology. In similarity to the convergence of toxic and psychotomimetic effects of dopaminergic, serotonergic and anti-glutamatergic substances, the therapeutic mechanisms of SGAs might merge on a yet to be defined molecular level. In particular, serotonergic effects of SGAs, such as an agonism at 5HT1A receptors, represent important targets for further clinical research.
Literature
1.
2.
go back to reference Zink M, Englisch S, Meyer-Lindenberg A (2010) Polypharmacy in schizophrenia. Curr Opin Psychiatry 23:103–111PubMed Zink M, Englisch S, Meyer-Lindenberg A (2010) Polypharmacy in schizophrenia. Curr Opin Psychiatry 23:103–111PubMed
3.
go back to reference Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF et al (2012) World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 2: update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects. World J Biol Psychiatry 14:2–44PubMed Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF et al (2012) World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 2: update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects. World J Biol Psychiatry 14:2–44PubMed
4.
go back to reference Sally H (2003) NICE guidelines address social aspect of schizophrenia. BMJ 326:679 Sally H (2003) NICE guidelines address social aspect of schizophrenia. BMJ 326:679
5.
go back to reference Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM et al (2014) Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatr 75(5):e11–e13 Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM et al (2014) Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatr 75(5):e11–e13
6.
go back to reference Kantrowitz J, Javitt DC (2013) Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr Opin Psychiatry 25:96–102 Kantrowitz J, Javitt DC (2013) Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr Opin Psychiatry 25:96–102
7.
go back to reference Stan A, Lewis D (2012) Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies. Curr Pharm Biotechnol 13:1557–1562PubMedPubMedCentral Stan A, Lewis D (2012) Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies. Curr Pharm Biotechnol 13:1557–1562PubMedPubMedCentral
8.
go back to reference Hashimoto K, Malchow B, Falkai P, Schmitt A (2013) Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263:367–377PubMed Hashimoto K, Malchow B, Falkai P, Schmitt A (2013) Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263:367–377PubMed
9.
go back to reference Papanastasiou E, Stone JM, Shergill S (2013) When the drugs do not work: the potential of glutamatergic antipsychotics in schizophrenia. Br J Psychiatry 202:91–93PubMed Papanastasiou E, Stone JM, Shergill S (2013) When the drugs do not work: the potential of glutamatergic antipsychotics in schizophrenia. Br J Psychiatry 202:91–93PubMed
10.
go back to reference Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreeev BV et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107PubMed Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreeev BV et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107PubMed
11.
go back to reference Stauffer VL, Millen BA, Andersen S, Kinon BJ, LaGrandeur L, Lindenmayer JP et al (2013) Pomaglumetad methionil: no significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophr Res 150:434–441PubMed Stauffer VL, Millen BA, Andersen S, Kinon BJ, LaGrandeur L, Lindenmayer JP et al (2013) Pomaglumetad methionil: no significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophr Res 150:434–441PubMed
12.
go back to reference Kinon BJ, Zhang L, Millen BA, Osuntokun OO, Williams JE, Kollack-Walker S et al (2011) A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharmacol 31:349–355PubMed Kinon BJ, Zhang L, Millen BA, Osuntokun OO, Williams JE, Kollack-Walker S et al (2011) A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharmacol 31:349–355PubMed
13.
go back to reference Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM (2012) d-serine and schizophrenia: an update. Expert Rev Neurother 12:801–812PubMed Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM (2012) d-serine and schizophrenia: an update. Expert Rev Neurother 12:801–812PubMed
14.
go back to reference Tsai GE, Lin PY (2010) Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16:522–537PubMed Tsai GE, Lin PY (2010) Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16:522–537PubMed
15.
go back to reference Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M (2012) Clozapine, but not haloperidol, enhances glial d-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br J Pharmacol 165:1543–1555PubMedPubMedCentral Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M (2012) Clozapine, but not haloperidol, enhances glial d-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br J Pharmacol 165:1543–1555PubMedPubMedCentral
16.
go back to reference D’Souza DC, Singh N, Elander J, Carbuto M, Pittman B, de Haes JU et al (2012) Glycine transporter inhibitor attenuates the psychotomimetic effects of ketamine in healthy males: preliminary evidence. Neuropsychopharmacology 37:1036–1046PubMedPubMedCentral D’Souza DC, Singh N, Elander J, Carbuto M, Pittman B, de Haes JU et al (2012) Glycine transporter inhibitor attenuates the psychotomimetic effects of ketamine in healthy males: preliminary evidence. Neuropsychopharmacology 37:1036–1046PubMedPubMedCentral
17.
go back to reference Patel DD, Laws KR, Padhi A, Farrow JM, Mukhopadhaya K, Krishnaiah R et al (2010) The neuropsychology of the schizo-obsessive subtype of schizophrenia: a new analysis. Psychol Med 40:921–933PubMed Patel DD, Laws KR, Padhi A, Farrow JM, Mukhopadhaya K, Krishnaiah R et al (2010) The neuropsychology of the schizo-obsessive subtype of schizophrenia: a new analysis. Psychol Med 40:921–933PubMed
18.
go back to reference Stone JM, Morrison PD, Pilowsky LS (2007) Review: glutamate and dopamine dysregulation in schizophrenia a synthesis and selective review. J Psychopharmacol 21:440–452PubMed Stone JM, Morrison PD, Pilowsky LS (2007) Review: glutamate and dopamine dysregulation in schizophrenia a synthesis and selective review. J Psychopharmacol 21:440–452PubMed
19.
go back to reference Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68PubMed Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68PubMed
20.
go back to reference Tan HY, Chen Q, Sust S, Buckholtz JW, Meyers JD, Egan MF et al (2007) Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc Natl Acad Sci USA 104:12536–12541PubMedPubMedCentral Tan HY, Chen Q, Sust S, Buckholtz JW, Meyers JD, Egan MF et al (2007) Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc Natl Acad Sci USA 104:12536–12541PubMedPubMedCentral
21.
go back to reference Gordon JA (2010) Testing the glutamate hypothesis of schizophrenia. Nat Neurosci 13:2–4PubMed Gordon JA (2010) Testing the glutamate hypothesis of schizophrenia. Nat Neurosci 13:2–4PubMed
22.
go back to reference Benes FM (2009) Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else? Biol Psychiatry 65:1003–1005PubMed Benes FM (2009) Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else? Biol Psychiatry 65:1003–1005PubMed
23.
go back to reference Snigdha S, Horiguchi M, Huang M, Li Z, Shahid M, Neill JC et al (2010) Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 332:622–631PubMed Snigdha S, Horiguchi M, Huang M, Li Z, Shahid M, Neill JC et al (2010) Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 332:622–631PubMed
24.
go back to reference Lopez-Gil X, Artigas F, Adell A (2010) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des 16:502–515PubMed Lopez-Gil X, Artigas F, Adell A (2010) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des 16:502–515PubMed
25.
go back to reference Leucht S, Tardy M, Komossa K, Heres S, Kissling W, Salanti G et al (2012) Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: a systematic review and meta-analysis. Lancet 379:2063–2071PubMed Leucht S, Tardy M, Komossa K, Heres S, Kissling W, Salanti G et al (2012) Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: a systematic review and meta-analysis. Lancet 379:2063–2071PubMed
26.
go back to reference Correll CU (2011) What are we looking for in new antipsychotics? J Clin Psychiatry 72:9–13PubMed Correll CU (2011) What are we looking for in new antipsychotics? J Clin Psychiatry 72:9–13PubMed
27.
go back to reference Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA (2012) Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 17:1206–1227PubMed Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA (2012) Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 17:1206–1227PubMed
28.
go back to reference Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868PubMed Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868PubMed
29.
go back to reference Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D et al (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19:4449–4461PubMed Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D et al (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19:4449–4461PubMed
30.
go back to reference Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the Neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774PubMedPubMedCentral Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the Neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774PubMedPubMedCentral
31.
go back to reference Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 45:250–265PubMed Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 45:250–265PubMed
32.
go back to reference Nemeroff CB, Vale WW (2005) The neurobiology of depression: inroads to treatment and new drug discovery. J Clin Psychiatry 66:5–13PubMed Nemeroff CB, Vale WW (2005) The neurobiology of depression: inroads to treatment and new drug discovery. J Clin Psychiatry 66:5–13PubMed
33.
go back to reference Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98–103PubMed Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98–103PubMed
34.
go back to reference Corlew R, Brasier DJ, Feldman DE, Philpot BD (2008) Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity. Neuroscientist 14:609–625PubMedPubMedCentral Corlew R, Brasier DJ, Feldman DE, Philpot BD (2008) Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity. Neuroscientist 14:609–625PubMedPubMedCentral
35.
go back to reference Chavez-Noriega LE, Schaffhauser H, Campbell UC (2002) Metabotropic glutamate receptors: potential drug targets for the treatment of schizophrenia. Curr Drug Targets CNS Neurol Disord 1:261–281PubMed Chavez-Noriega LE, Schaffhauser H, Campbell UC (2002) Metabotropic glutamate receptors: potential drug targets for the treatment of schizophrenia. Curr Drug Targets CNS Neurol Disord 1:261–281PubMed
36.
go back to reference Matosin N, Newell KA (2013) Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev 37:256–268PubMed Matosin N, Newell KA (2013) Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev 37:256–268PubMed
37.
go back to reference Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47PubMed Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47PubMed
38.
go back to reference Zhou Q, Sheng M (2013) NMDA receptors in nervous system diseases. Neuropharmacology 74:69–75PubMed Zhou Q, Sheng M (2013) NMDA receptors in nervous system diseases. Neuropharmacology 74:69–75PubMed
39.
go back to reference Lin CH, Lane HY, Tsai GE (2012) Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 100:665–677PubMed Lin CH, Lane HY, Tsai GE (2012) Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 100:665–677PubMed
40.
go back to reference Pirotte B, Francotte P, Goffin E, de Tullio P (2013) AMPA receptor positive allosteric modulators: a patent review. Expert Opin Ther Pat 23:615–628PubMed Pirotte B, Francotte P, Goffin E, de Tullio P (2013) AMPA receptor positive allosteric modulators: a patent review. Expert Opin Ther Pat 23:615–628PubMed
41.
go back to reference Lerma J, Marques J (2013) Kainate receptors in health and disease. Neuron 80:292–311PubMed Lerma J, Marques J (2013) Kainate receptors in health and disease. Neuron 80:292–311PubMed
42.
go back to reference Gielen M, Retchless BS, Mony L, Johnson JW, Paoletti P (2009) Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459:703–707PubMedPubMedCentral Gielen M, Retchless BS, Mony L, Johnson JW, Paoletti P (2009) Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459:703–707PubMedPubMedCentral
43.
go back to reference Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69(2):164–170PubMed Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69(2):164–170PubMed
44.
go back to reference Seal RP, Daniels GM, Wolfgang WJ, Forte MA, Amara SG (1998) Identification and characterization of a cDNA encoding a neuronal glutamate transporter from Drosophila melanogaster. Receptors Channels 6:51–64PubMed Seal RP, Daniels GM, Wolfgang WJ, Forte MA, Amara SG (1998) Identification and characterization of a cDNA encoding a neuronal glutamate transporter from Drosophila melanogaster. Receptors Channels 6:51–64PubMed
45.
46.
go back to reference Torp R, Danbolt NC, Babaie E, Bjoras M, Seeberg E, Storm-Mathisen J et al (1994) Differential expression of two glial glutamate transporters in the rat brain: an in situ hybridization study. Eur J Neurosci 6:936–942PubMed Torp R, Danbolt NC, Babaie E, Bjoras M, Seeberg E, Storm-Mathisen J et al (1994) Differential expression of two glial glutamate transporters in the rat brain: an in situ hybridization study. Eur J Neurosci 6:936–942PubMed
47.
go back to reference Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. [Review] [119 refs]. J Neurosci Res 63:453–460PubMed Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. [Review] [119 refs]. J Neurosci Res 63:453–460PubMed
48.
49.
go back to reference Paz RD, Tardito S, Atzori M, Tseng KY (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 18:773–786PubMedPubMedCentral Paz RD, Tardito S, Atzori M, Tseng KY (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 18:773–786PubMedPubMedCentral
50.
go back to reference Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. [Review] [95 refs]. Nat Rev Neurosci 7:818–827PubMed Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. [Review] [95 refs]. Nat Rev Neurosci 7:818–827PubMed
51.
go back to reference Deng X, Shibata H, Takeuchi N, Rachi S, Sakai M, Ninomiya H et al (2007) Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 144B(3):271–278 Deng X, Shibata H, Takeuchi N, Rachi S, Sakai M, Ninomiya H et al (2007) Association study of polymorphisms in the glutamate transporter genes SLC1A1, SLC1A3, and SLC1A6 with schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 144B(3):271–278
52.
go back to reference Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543PubMed Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543PubMed
53.
go back to reference Harrison PJ, Law AJ, Eastwood SL (2003) Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann NY Acad Sci 1003:94–101PubMed Harrison PJ, Law AJ, Eastwood SL (2003) Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann NY Acad Sci 1003:94–101PubMed
54.
go back to reference Potvin S, Stip E, Roy J-Y (2005) Toxic psychoses as pharmacological models of schizophrenia. Curr Psychiatry Rev 1:23–32 Potvin S, Stip E, Roy J-Y (2005) Toxic psychoses as pharmacological models of schizophrenia. Curr Psychiatry Rev 1:23–32
55.
go back to reference Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. [Review] [31 refs]. Ann NY Acad Sci 1003:131–137PubMed Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. [Review] [31 refs]. Ann NY Acad Sci 1003:131–137PubMed
56.
57.
go back to reference Readler TJ, Knable MB, Weinberger DR (1998) Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 8:157–161 Readler TJ, Knable MB, Weinberger DR (1998) Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 8:157–161
58.
go back to reference Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326PubMed Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326PubMed
59.
go back to reference Jakob H, Beckmann H (1989) Gross and histological criteria for developmental disorders in brains of schizophrenics. J R Soc Med 82:466–469PubMedPubMedCentral Jakob H, Beckmann H (1989) Gross and histological criteria for developmental disorders in brains of schizophrenics. J R Soc Med 82:466–469PubMedPubMedCentral
60.
go back to reference Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261:150–154PubMedCentral Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261:150–154PubMedCentral
61.
go back to reference Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319PubMedPubMedCentral Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319PubMedPubMedCentral
62.
63.
go back to reference Schmitt A, Falkai P (2013) Therapeutic targets in major psychiatric disorders revisited. Eur Arch Psychiatry Clin Neurosci 263:619–620PubMed Schmitt A, Falkai P (2013) Therapeutic targets in major psychiatric disorders revisited. Eur Arch Psychiatry Clin Neurosci 263:619–620PubMed
64.
go back to reference Meltzer HY (1994) An overview of the mechanism of action of clozapine. J Clin Psychiatr 55(Suppl B):47–52 Meltzer HY (1994) An overview of the mechanism of action of clozapine. J Clin Psychiatr 55(Suppl B):47–52
65.
go back to reference Meltzer HY (2012) Clozapine. Clin Schizophr Relat Psychoses 6:134–144PubMed Meltzer HY (2012) Clozapine. Clin Schizophr Relat Psychoses 6:134–144PubMed
67.
go back to reference Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P, Inta D et al (2010) Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci Biobehav Rev 34:285–294PubMed Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P, Inta D et al (2010) Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci Biobehav Rev 34:285–294PubMed
68.
go back to reference Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. [Miscellaneous Article]. Curr Opin Neurol 22:331–339PubMed Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. [Miscellaneous Article]. Curr Opin Neurol 22:331–339PubMed
69.
go back to reference Bickel S, Javitt DC (2009) Neurophysiological and neurochemical animal models of schizophrenia: focus on glutamate. Behav Brain Res 204:352–362PubMed Bickel S, Javitt DC (2009) Neurophysiological and neurochemical animal models of schizophrenia: focus on glutamate. Behav Brain Res 204:352–362PubMed
70.
go back to reference Pietraszek M, Golembiowska K, Bijak M, Ossowaka K, Wolfarth S (2002) Differential effects of chronic haloperidol and clozapine administration on glutamatergic transmission in the fronto-parietal cortex in rats: microdialysis and electrophysiological studies. Naunyn Schmiedeberg’s Arch Pharmacol 366:417–424 Pietraszek M, Golembiowska K, Bijak M, Ossowaka K, Wolfarth S (2002) Differential effects of chronic haloperidol and clozapine administration on glutamatergic transmission in the fronto-parietal cortex in rats: microdialysis and electrophysiological studies. Naunyn Schmiedeberg’s Arch Pharmacol 366:417–424
71.
go back to reference Sokoloff P, Leriche L, Diaz J, Louvel J, Pumain R (2014) Direct and indirect interactions of the dopamine D3 receptor with glutamate pathways: implications for the treatment of schizophrenia. Naunyn Schmiedeberg’s Arch Pharmacol 386:107–124 Sokoloff P, Leriche L, Diaz J, Louvel J, Pumain R (2014) Direct and indirect interactions of the dopamine D3 receptor with glutamate pathways: implications for the treatment of schizophrenia. Naunyn Schmiedeberg’s Arch Pharmacol 386:107–124
72.
go back to reference Choi YK, Snigdha S, Shahid M, Neill JC, Tarazi FI (2009) Subchronic effects of phencyclidine on dopamine and serotonin receptors: implications for schizophrenia. J Mol Neurosci 38:227–235PubMed Choi YK, Snigdha S, Shahid M, Neill JC, Tarazi FI (2009) Subchronic effects of phencyclidine on dopamine and serotonin receptors: implications for schizophrenia. J Mol Neurosci 38:227–235PubMed
73.
go back to reference McLean SL, Idris NF, Woolley ML, Neill JC (2009) D1-like receptor activation improves PCP-induced cognitive deficits in animal models: implications for mechanisms of improved cognitive function in schizophrenia. Eur Neuropsychopharmacol 19:440–450PubMed McLean SL, Idris NF, Woolley ML, Neill JC (2009) D1-like receptor activation improves PCP-induced cognitive deficits in animal models: implications for mechanisms of improved cognitive function in schizophrenia. Eur Neuropsychopharmacol 19:440–450PubMed
74.
go back to reference Snigdha S, Neill JC (2008) Improvement of phencyclidine-induced social behaviour deficits in rats: involvement of 5-HT1A receptors. Behav Brain Res 191:26–31PubMed Snigdha S, Neill JC (2008) Improvement of phencyclidine-induced social behaviour deficits in rats: involvement of 5-HT1A receptors. Behav Brain Res 191:26–31PubMed
75.
go back to reference Fuente-Sandoval C, León-Ortiz P, Azcárraga M (2013) Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiatry 70:1057–1066PubMedPubMedCentral Fuente-Sandoval C, León-Ortiz P, Azcárraga M (2013) Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiatry 70:1057–1066PubMedPubMedCentral
76.
go back to reference Eastwood SL, Harrison PJ (2005) Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 73:159–172PubMed Eastwood SL, Harrison PJ (2005) Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 73:159–172PubMed
77.
go back to reference Oni-Orisan A, Kristiansen LV, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2008) Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia. Biol Psychiatry 63:766–775PubMedPubMedCentral Oni-Orisan A, Kristiansen LV, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2008) Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia. Biol Psychiatry 63:766–775PubMedPubMedCentral
78.
go back to reference Nudmamud-Thanoi S, Piyabhan P, Harte MK, Cahir M, Reynolds GP (2007) Deficits of neuronal glutamatergic markers in the caudate nucleus in schizophrenia. J Neural Transm 72(Suppl):281–285 Nudmamud-Thanoi S, Piyabhan P, Harte MK, Cahir M, Reynolds GP (2007) Deficits of neuronal glutamatergic markers in the caudate nucleus in schizophrenia. J Neural Transm 72(Suppl):281–285
79.
go back to reference Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399PubMed Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399PubMed
80.
go back to reference Matute C, Melone M, Vallejo-Illarramendi A, Conti F (2005) Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49:451–455PubMed Matute C, Melone M, Vallejo-Illarramendi A, Conti F (2005) Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49:451–455PubMed
81.
go back to reference Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC (1998) Expression of the human excitatory amino acid transporter 2 and matabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Mol Brain Res 56:207–217PubMed Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC (1998) Expression of the human excitatory amino acid transporter 2 and matabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Mol Brain Res 56:207–217PubMed
82.
go back to reference Ohnuma T, Tessler S, Arai H, Faull RL, McKenna PJ, Emson PC (2000) Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Mol Brain Res 85:24–31PubMed Ohnuma T, Tessler S, Arai H, Faull RL, McKenna PJ, Emson PC (2000) Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Mol Brain Res 85:24–31PubMed
83.
go back to reference Shan D, Lucas EK, Drummond JB, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2013) Abnormal expression of glutamate transporters in temporal lobe areas in elderly patients with schizophrenia. Schizophr Res 144:1–8PubMedPubMedCentral Shan D, Lucas EK, Drummond JB, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2013) Abnormal expression of glutamate transporters in temporal lobe areas in elderly patients with schizophrenia. Schizophr Res 144:1–8PubMedPubMedCentral
84.
go back to reference McCullumsmith RE, Meador-Woodruff JH (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depression. Neuropsychopharmacology 26:368–375PubMed McCullumsmith RE, Meador-Woodruff JH (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depression. Neuropsychopharmacology 26:368–375PubMed
85.
go back to reference Simpson MD, Slater P, Deakin JF (1998) Comparison of glutamate and gamma-aminobutyric acid uptake binding sites in frontal and temporal lobes in schizophrenia. Biol Psychiatry 44:423–427PubMed Simpson MD, Slater P, Deakin JF (1998) Comparison of glutamate and gamma-aminobutyric acid uptake binding sites in frontal and temporal lobes in schizophrenia. Biol Psychiatry 44:423–427PubMed
86.
go back to reference Deakin JF, Slater P, Simpson MD, Gilchrist AC, Skan WJ, Royston MC et al (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 52:1781–1786PubMed Deakin JF, Slater P, Simpson MD, Gilchrist AC, Skan WJ, Royston MC et al (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 52:1781–1786PubMed
87.
go back to reference Simpson MD, Slater P, Royston MC, Deakin JF (1992) Regionally selective deficits in uptake sites for glutamate and gamma-aminobutyric acid in the basal ganglia in schizophrenia. Psychiatry Res 42:273–282PubMed Simpson MD, Slater P, Royston MC, Deakin JF (1992) Regionally selective deficits in uptake sites for glutamate and gamma-aminobutyric acid in the basal ganglia in schizophrenia. Psychiatry Res 42:273–282PubMed
88.
go back to reference Aparicio-Legarza MI, Cutts AJ, Davis B, Reynolds GP (1997) Deficits of [3H]D-aspartate binding to glutamate uptake sites in striatal and accumbens tissue in patients with schizophrenia. Neurosci Lett 232:13–16PubMed Aparicio-Legarza MI, Cutts AJ, Davis B, Reynolds GP (1997) Deficits of [3H]D-aspartate binding to glutamate uptake sites in striatal and accumbens tissue in patients with schizophrenia. Neurosci Lett 232:13–16PubMed
89.
go back to reference Balcar VJ, Nanitsos EK (2006) Autoradiography of [3H]aspartate and glutamate transport in schizophrenia.[comment]. Neuropsychopharmacology 31:685–686PubMed Balcar VJ, Nanitsos EK (2006) Autoradiography of [3H]aspartate and glutamate transport in schizophrenia.[comment]. Neuropsychopharmacology 31:685–686PubMed
90.
go back to reference Lauriat TL, Dracheva S, Chin B, Schmeidler J, McInnes LA, Haroutunian V (2006) Quantitative analysis of glutamate transporter mRNA expression in prefrontal and primary visual cortex in normal and schizophrenic brain. Neuroscience 137:843–851PubMed Lauriat TL, Dracheva S, Chin B, Schmeidler J, McInnes LA, Haroutunian V (2006) Quantitative analysis of glutamate transporter mRNA expression in prefrontal and primary visual cortex in normal and schizophrenic brain. Neuroscience 137:843–851PubMed
91.
go back to reference Moutsimilli L, Farley S, Dumas S, Mestikawy SE, Giros B, Tzavara ET (2005) Selective cortical VGLUT1 increase as a marker for antidepressant activity. Neuropharmacology 49:890–900PubMed Moutsimilli L, Farley S, Dumas S, Mestikawy SE, Giros B, Tzavara ET (2005) Selective cortical VGLUT1 increase as a marker for antidepressant activity. Neuropharmacology 49:890–900PubMed
92.
go back to reference Bragina L, Melone M, Fattorini G, Torres-Ramos M, Vallejo-Illarramendi A, Matute C et al (2006) GLT-1 down-regulation induced by clozapine in rat frontal cortex is associated with synaptophysin up-regulation. J Neurochem 99:134–141PubMed Bragina L, Melone M, Fattorini G, Torres-Ramos M, Vallejo-Illarramendi A, Matute C et al (2006) GLT-1 down-regulation induced by clozapine in rat frontal cortex is associated with synaptophysin up-regulation. J Neurochem 99:134–141PubMed
93.
go back to reference Moutsimilli L, Farley S, El Khoury MA, Chamot C, Sibarita JB, Racine V et al (2008) Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways. Neuropharmacology 54:497–508PubMed Moutsimilli L, Farley S, El Khoury MA, Chamot C, Sibarita JB, Racine V et al (2008) Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways. Neuropharmacology 54:497–508PubMed
94.
go back to reference Vallejo-Illarramendi A, Torres-Ramos M, Melone M, Conti F, Matute C (2005) Clozapine reduces GLT-1 expression and glutamate uptake in astrocyte cultures. Glia 50:276–279PubMed Vallejo-Illarramendi A, Torres-Ramos M, Melone M, Conti F, Matute C (2005) Clozapine reduces GLT-1 expression and glutamate uptake in astrocyte cultures. Glia 50:276–279PubMed
95.
go back to reference Schneider JS, Wade T, Lidsky TI (1998) Chronic neuroleptic treatment alters expression of glial glutamate transporter GLT-1 mRNA in the striatum. NeuroReport 9:133–136PubMed Schneider JS, Wade T, Lidsky TI (1998) Chronic neuroleptic treatment alters expression of glial glutamate transporter GLT-1 mRNA in the striatum. NeuroReport 9:133–136PubMed
96.
go back to reference De Souza I, McBean GJ, Meredith GE (1999) Chronic haloperidol treatment impairs glutamate transport in the rat striatum. Eur J Pharmacol 382:139–142PubMed De Souza I, McBean GJ, Meredith GE (1999) Chronic haloperidol treatment impairs glutamate transport in the rat striatum. Eur J Pharmacol 382:139–142PubMed
97.
go back to reference Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Perez-Samartin A, Matute C, Cozzi A et al (2001) The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Mol Psychiatry 6:380–386PubMed Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Perez-Samartin A, Matute C, Cozzi A et al (2001) The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Mol Psychiatry 6:380–386PubMed
98.
go back to reference Melone M, Bragina L, Conti F, Melone M, Bragina L, Conti F (2003) Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry 8:12–13PubMed Melone M, Bragina L, Conti F, Melone M, Bragina L, Conti F (2003) Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry 8:12–13PubMed
99.
go back to reference Schmitt A, Zink M, Mueller B, May B, Herb A, Jatzko A et al (2003) Effects of long-term antipsychotic treatment on NMDA receptor binding and gene expression of subunits. Neurochem Res 28:235–241PubMed Schmitt A, Zink M, Mueller B, May B, Herb A, Jatzko A et al (2003) Effects of long-term antipsychotic treatment on NMDA receptor binding and gene expression of subunits. Neurochem Res 28:235–241PubMed
100.
go back to reference Schmitt A, Zink M, Petroianu G, May B, Braus DF, Henn FA (2003) Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain. Neurosci Lett 347:81–84PubMed Schmitt A, Zink M, Petroianu G, May B, Braus DF, Henn FA (2003) Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain. Neurosci Lett 347:81–84PubMed
101.
go back to reference Zink M, Schmitt A, May B, Müller B, Braus DF, Henn FA (2004) Differential effects of long-term treatment with clozapine or haloperidol on GABA-transporter expression. Pharmacopsychiatry 37:171–174PubMed Zink M, Schmitt A, May B, Müller B, Braus DF, Henn FA (2004) Differential effects of long-term treatment with clozapine or haloperidol on GABA-transporter expression. Pharmacopsychiatry 37:171–174PubMed
102.
go back to reference Zink M, Schmitt A, May B, Müller B, Demirakca T, Braus DF et al (2004) Differential effects of long-term treatment with clozapine of haloperidol on GABAa receptor binding and GAD67 expression. Schizophr Res 66:151–157PubMed Zink M, Schmitt A, May B, Müller B, Demirakca T, Braus DF et al (2004) Differential effects of long-term treatment with clozapine of haloperidol on GABAa receptor binding and GAD67 expression. Schizophr Res 66:151–157PubMed
103.
go back to reference Yamamura S, Ohoyama K, Hamaguchi T, Kashimoto K, Nakagawa M, Kanehara S et al (2009) Effects of quetiapine on monoamine, GABA, and glutamate release in rat prefrontal cortex. Psychopharmacology 206:243–258PubMed Yamamura S, Ohoyama K, Hamaguchi T, Kashimoto K, Nakagawa M, Kanehara S et al (2009) Effects of quetiapine on monoamine, GABA, and glutamate release in rat prefrontal cortex. Psychopharmacology 206:243–258PubMed
104.
go back to reference Yamamura S, Ohoyama K, Hamaguchi T, Nakagawa M, Suzuki D, Matsumoto T et al (2009) Effects of zotepine on extracellular levels of monoamine, GABA and glutamate in rat prefrontal cortex. Br J Pharmacol 157:656–665PubMedPubMedCentral Yamamura S, Ohoyama K, Hamaguchi T, Nakagawa M, Suzuki D, Matsumoto T et al (2009) Effects of zotepine on extracellular levels of monoamine, GABA and glutamate in rat prefrontal cortex. Br J Pharmacol 157:656–665PubMedPubMedCentral
105.
go back to reference Lopez-Gil X, Babot Z, margos-Bosch M, Sunol C, Artigas F, Adell A (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32:2087–2097PubMed Lopez-Gil X, Babot Z, margos-Bosch M, Sunol C, Artigas F, Adell A (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32:2087–2097PubMed
106.
go back to reference Abekawa T, Ito K, Koyoma T (2007) Different effects of a single and repeated administration of clozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the rat medial prefrontal cortex at short- and long-term withdrawal from this antipsychotic. Naunyn Schmiedeberg’s Arch Pharmacol 375:261–271 Abekawa T, Ito K, Koyoma T (2007) Different effects of a single and repeated administration of clozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the rat medial prefrontal cortex at short- and long-term withdrawal from this antipsychotic. Naunyn Schmiedeberg’s Arch Pharmacol 375:261–271
107.
go back to reference Ohoyama K, Yamamura S, Hamaguchi T, Nakagawa M, Motomura E, Shiroyama T et al (2011) Effect of novel atypical antipsychotic, blonanserin, on extracellular neurotransmitter level in rat prefrontal cortex. Eur J Pharmacol 653:47–57PubMed Ohoyama K, Yamamura S, Hamaguchi T, Nakagawa M, Motomura E, Shiroyama T et al (2011) Effect of novel atypical antipsychotic, blonanserin, on extracellular neurotransmitter level in rat prefrontal cortex. Eur J Pharmacol 653:47–57PubMed
108.
go back to reference Huang M, Panos JJ, Kwon S, Oyamada Y, Rajagopal L, Meltzer HY (2013) Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. J Neurochem. doi:10.1111/jnc.12512 PubMedCentral Huang M, Panos JJ, Kwon S, Oyamada Y, Rajagopal L, Meltzer HY (2013) Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. J Neurochem. doi:10.​1111/​jnc.​12512 PubMedCentral
109.
go back to reference Carli M, Calcagni E, Mainolfi P, Mainini E, Invernizzi RW (2011) Effects of aripiprazole, olanzapine, and haloperidol in a model of cognitive deficit of schizophrenia in rats: relationship with glutamate release in the medial prefrontal cortex. Psychopharmacology 214:639–652PubMed Carli M, Calcagni E, Mainolfi P, Mainini E, Invernizzi RW (2011) Effects of aripiprazole, olanzapine, and haloperidol in a model of cognitive deficit of schizophrenia in rats: relationship with glutamate release in the medial prefrontal cortex. Psychopharmacology 214:639–652PubMed
110.
go back to reference Carli M, Calcagno E, Mainini E, Arnt J, Invernizzi R (2011) Sertindole restores attentional performance and suppresses glutamate release induced by the NMDA receptor antagonist CPP. Psychopharmacology 214:625–637PubMed Carli M, Calcagno E, Mainini E, Arnt J, Invernizzi R (2011) Sertindole restores attentional performance and suppresses glutamate release induced by the NMDA receptor antagonist CPP. Psychopharmacology 214:625–637PubMed
111.
go back to reference Roenker NL, Gudelsky G, Ahlbrand R, Bronson SL, Kern JR, Waterman H et al (2011) Effect of paliperidone and risperidone on extracellular glutamate in the prefrontal cortex of rats exposed to prenatal immune activation or MK-801. Neurosci Lett 500:167–171PubMedPubMedCentral Roenker NL, Gudelsky G, Ahlbrand R, Bronson SL, Kern JR, Waterman H et al (2011) Effect of paliperidone and risperidone on extracellular glutamate in the prefrontal cortex of rats exposed to prenatal immune activation or MK-801. Neurosci Lett 500:167–171PubMedPubMedCentral
112.
go back to reference Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR et al (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411PubMed Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR et al (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411PubMed
113.
go back to reference Bowles TM, Levin GM (2003) Aripiprazole: a new atypical antipsychotic drug. Ann Pharmacother 37:687–694PubMed Bowles TM, Levin GM (2003) Aripiprazole: a new atypical antipsychotic drug. Ann Pharmacother 37:687–694PubMed
114.
go back to reference Bortolozzi A, az-Mataix L, Toth M, Celada P, Artigas F F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacology 191:745–758PubMed Bortolozzi A, az-Mataix L, Toth M, Celada P, Artigas F F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacology 191:745–758PubMed
115.
go back to reference Jordan S, Koprivica V, Dunn R, Tottori K, Kikuchi T, Altar CA (2004) In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 483:45–53PubMed Jordan S, Koprivica V, Dunn R, Tottori K, Kikuchi T, Altar CA (2004) In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 483:45–53PubMed
116.
go back to reference Kane JM, Carson WH, Saha AR, McQuade RD, Ingenito GG, Zimbroff DL et al (2002) Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry 63:763–771PubMed Kane JM, Carson WH, Saha AR, McQuade RD, Ingenito GG, Zimbroff DL et al (2002) Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry 63:763–771PubMed
117.
go back to reference El-Sayeh HG, Morganti C, Adams CE (2006) Aripiprazole for schizophrenia. Br J Psychiatry 189:102–108PubMed El-Sayeh HG, Morganti C, Adams CE (2006) Aripiprazole for schizophrenia. Br J Psychiatry 189:102–108PubMed
118.
go back to reference Tran-Johnson TK, Sack DA, Marcus RN, Auby P, McQuade RD, Oren DA (2007) Efficacy and safety of intramuscular aripiprazole in patients with acute agitation: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 68:111–119PubMed Tran-Johnson TK, Sack DA, Marcus RN, Auby P, McQuade RD, Oren DA (2007) Efficacy and safety of intramuscular aripiprazole in patients with acute agitation: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 68:111–119PubMed
119.
go back to reference Kern RS, Green MF, Cornblatt BA, Owen JR, McQuade RD, Carson WH et al (2006) The neurocognitive effects of aripiprazole: an open-label comparison with olanzapine. Psychopharmacology 187:312–320PubMed Kern RS, Green MF, Cornblatt BA, Owen JR, McQuade RD, Carson WH et al (2006) The neurocognitive effects of aripiprazole: an open-label comparison with olanzapine. Psychopharmacology 187:312–320PubMed
120.
go back to reference Hamamura T, Harada T (2007) Unique pharmacological profile of aripiprazole as the phasic component buster.[erratum appears in Psychopharmacology (Berl). 2007 Apr; 191(3):855]. [Review] [17 refs]. Psychopharmacology 191:741–743PubMed Hamamura T, Harada T (2007) Unique pharmacological profile of aripiprazole as the phasic component buster.[erratum appears in Psychopharmacology (Berl). 2007 Apr; 191(3):855]. [Review] [17 refs]. Psychopharmacology 191:741–743PubMed
121.
go back to reference Han M, Huang XF, Deng C (2009) Aripiprazole differentially affects mesolimbic and nigrostriatal dopaminergic transmission: implications for long-term drug efficacy and low extrapyramidal side-effects. Int J Neuropsychopharmacol. doi:10.1017/S1461145709009948 Han M, Huang XF, Deng C (2009) Aripiprazole differentially affects mesolimbic and nigrostriatal dopaminergic transmission: implications for long-term drug efficacy and low extrapyramidal side-effects. Int J Neuropsychopharmacol. doi:10.​1017/​S146114570900994​8
122.
go back to reference Cheng MC, Liao D-L, Hsiung C-A, Chen C-Y, Liao Y-C, Chen C-H (2008) Chronic treatment with aripiprazole induces differential gene expression in the rat frontal cortex. Int J Neuropsychopharmacol 11:207–216PubMed Cheng MC, Liao D-L, Hsiung C-A, Chen C-Y, Liao Y-C, Chen C-H (2008) Chronic treatment with aripiprazole induces differential gene expression in the rat frontal cortex. Int J Neuropsychopharmacol 11:207–216PubMed
123.
go back to reference Yang TT, Wang SJ (2008) Aripiprazole and its human metabolite OPC14857 reduce, through a presynaptic mechanism, glutamate release in rat prefrontal cortex: possible relevance to neuroprotective interventions in schizophrenia. Synapse 62:804–818PubMed Yang TT, Wang SJ (2008) Aripiprazole and its human metabolite OPC14857 reduce, through a presynaptic mechanism, glutamate release in rat prefrontal cortex: possible relevance to neuroprotective interventions in schizophrenia. Synapse 62:804–818PubMed
124.
go back to reference Segnitz N, Schmitt A, Gebicke-Härter P, Zink M (2009) Differential expression of glutamate transporter genes after chronic oral treatment with aripiprazole in rats. Neurochem Int 55:619–628PubMed Segnitz N, Schmitt A, Gebicke-Härter P, Zink M (2009) Differential expression of glutamate transporter genes after chronic oral treatment with aripiprazole in rats. Neurochem Int 55:619–628PubMed
125.
go back to reference Zink M, Rapp S, Donev R, Gebicke-Härter P, Thome J (2011) Fluoxetine-treatment induces the expression of EAAT2 in rat brain. J Neural Transm 118:849–855PubMed Zink M, Rapp S, Donev R, Gebicke-Härter P, Thome J (2011) Fluoxetine-treatment induces the expression of EAAT2 in rat brain. J Neural Transm 118:849–855PubMed
126.
go back to reference Zink M, Vollmayr B, Gebicke-Härter P, Henn FA (2010) Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 58:465–473PubMed Zink M, Vollmayr B, Gebicke-Härter P, Henn FA (2010) Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 58:465–473PubMed
128.
go back to reference Ibrahim HM, Hogg AJ Jr, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. [See comment]. Am J Psychiatry 157:1811–1823PubMed Ibrahim HM, Hogg AJ Jr, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. [See comment]. Am J Psychiatry 157:1811–1823PubMed
129.
go back to reference Vrajova M, Stastny F, Horacek J, Lochman L, Sery O, Pekova S et al (2010) Expression of the hippocampal NMDA receptor GluN1 subunit and its splicing isoforms in schizophrenia: postmortem study. Neurochem Res 35:994–1002PubMed Vrajova M, Stastny F, Horacek J, Lochman L, Sery O, Pekova S et al (2010) Expression of the hippocampal NMDA receptor GluN1 subunit and its splicing isoforms in schizophrenia: postmortem study. Neurochem Res 35:994–1002PubMed
130.
go back to reference Funk AJ, Rumbaugh G, Harotunian V, McCullumsmith RE, Meador-Woodruff JH (2009) Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. NeuroReport 20:1019–1022PubMedPubMedCentral Funk AJ, Rumbaugh G, Harotunian V, McCullumsmith RE, Meador-Woodruff JH (2009) Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. NeuroReport 20:1019–1022PubMedPubMedCentral
131.
go back to reference Bitanihirwe BK, Lim MP, Kelley JF, Kaneko T, Woo TU (2009) Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry 9:71PubMedPubMedCentral Bitanihirwe BK, Lim MP, Kelley JF, Kaneko T, Woo TU (2009) Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry 9:71PubMedPubMedCentral
132.
go back to reference Morris BJ, Cochran SM, Pratt JA (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106PubMed Morris BJ, Cochran SM, Pratt JA (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106PubMed
133.
go back to reference Turiumi K, Mouri A, Narasawa S, Aoyama Y, Ikawa N, Lu J et al (2012) Prenatal NMDA receptor antagonism impaired proliferation of neuronal progenitor, leading to fewer glutamatergic neurons in the prefrontal cortex. Neuropsychopharmacology 37:1387–1396 Turiumi K, Mouri A, Narasawa S, Aoyama Y, Ikawa N, Lu J et al (2012) Prenatal NMDA receptor antagonism impaired proliferation of neuronal progenitor, leading to fewer glutamatergic neurons in the prefrontal cortex. Neuropsychopharmacology 37:1387–1396
134.
go back to reference MacDonald AW III, Chafee MV (2006) Translational and developmental perspective on N-methyl-D-aspartate synaptic deficits in schizophrenia. Dev Psychopathol 18:853–876PubMed MacDonald AW III, Chafee MV (2006) Translational and developmental perspective on N-methyl-D-aspartate synaptic deficits in schizophrenia. Dev Psychopathol 18:853–876PubMed
135.
go back to reference Wang HX, Gao WJ (2009) Cell type-specific development of NMDA receptors in the interneurons of rat prefrontal cortex. Neuropsychopharmacology 34:2028–2040PubMedPubMedCentral Wang HX, Gao WJ (2009) Cell type-specific development of NMDA receptors in the interneurons of rat prefrontal cortex. Neuropsychopharmacology 34:2028–2040PubMedPubMedCentral
136.
go back to reference Fujimura M, Hashimoto K, Yamagami K (2000) Effects of antipsychotic drugs on neurotoxicity, expression of fos-like protein and c-fos mRNA in the retrosplenial cortex after administration of dizocilpine. Eur J Pharmacol 398:1–10PubMed Fujimura M, Hashimoto K, Yamagami K (2000) Effects of antipsychotic drugs on neurotoxicity, expression of fos-like protein and c-fos mRNA in the retrosplenial cortex after administration of dizocilpine. Eur J Pharmacol 398:1–10PubMed
137.
go back to reference Hashimoto K, Fujita Y, Shimuzu E, Iyo M (2005) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur J Pharmacol 519:114–117PubMed Hashimoto K, Fujita Y, Shimuzu E, Iyo M (2005) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur J Pharmacol 519:114–117PubMed
138.
go back to reference Braun I, Genius J, Grunze H, Bender A, Möller HJ, Rujescu D (2007) Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism. Schizophr Res 97:254–263PubMed Braun I, Genius J, Grunze H, Bender A, Möller HJ, Rujescu D (2007) Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism. Schizophr Res 97:254–263PubMed
139.
go back to reference Rujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H et al (2006) A pharmacological model for psychosis based on N-methyl-D-aspartate receptor hypofunction: molecular, cellular, functional and behavioral abnormalities. Biol Psychiatry 59:721–729PubMed Rujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H et al (2006) A pharmacological model for psychosis based on N-methyl-D-aspartate receptor hypofunction: molecular, cellular, functional and behavioral abnormalities. Biol Psychiatry 59:721–729PubMed
140.
go back to reference Romon T, Mengod G, Adell A (2011) Expression of parvalbumin and glutamic acid decarboxylase-67 after acute administration of MK-801. Implications for the NMDA hypofunction model of schizophrenia. Psychopharmacology 217:231–238PubMed Romon T, Mengod G, Adell A (2011) Expression of parvalbumin and glutamic acid decarboxylase-67 after acute administration of MK-801. Implications for the NMDA hypofunction model of schizophrenia. Psychopharmacology 217:231–238PubMed
141.
go back to reference Guo C, Yang Y, Su Y, Si T (2010) Postnatal BDNF expression profiles in prefrontal cortex and hippocampus of a rat schizophrenia model induced by MK-801 administration. J Biomed Biotechnol 2010:783297PubMedPubMedCentral Guo C, Yang Y, Su Y, Si T (2010) Postnatal BDNF expression profiles in prefrontal cortex and hippocampus of a rat schizophrenia model induced by MK-801 administration. J Biomed Biotechnol 2010:783297PubMedPubMedCentral
142.
go back to reference Fattorini G, Melone M, Bragina L, Candiracci C, Cozzi A, Pellegrini Giampietro DE et al (2008) GLT-1 expression and Glu uptake in rat cerebral cortex are increased by phencyclidine. Glia 56:1320–1327PubMed Fattorini G, Melone M, Bragina L, Candiracci C, Cozzi A, Pellegrini Giampietro DE et al (2008) GLT-1 expression and Glu uptake in rat cerebral cortex are increased by phencyclidine. Glia 56:1320–1327PubMed
143.
go back to reference Jenkins TA, Harte MK, Reynolds GP (2010) Effect of subchronic phencyclidine administration on sucrose preference and hippocampal parvalbumin immunoreactivity in the rat. Neurosci Lett 471:144–147PubMed Jenkins TA, Harte MK, Reynolds GP (2010) Effect of subchronic phencyclidine administration on sucrose preference and hippocampal parvalbumin immunoreactivity in the rat. Neurosci Lett 471:144–147PubMed
144.
go back to reference du Bois TM, Deng C, Han M, Newell KA, Huang XF (2009) Excitatory and inhibitory neurotransmission is chronically altered following perinatal NMDA receptor blockade. Eur Neuropsychopharmacol 19:256–265PubMed du Bois TM, Deng C, Han M, Newell KA, Huang XF (2009) Excitatory and inhibitory neurotransmission is chronically altered following perinatal NMDA receptor blockade. Eur Neuropsychopharmacol 19:256–265PubMed
145.
go back to reference Baier PC, Blume A, Koch J, Marx A, Fritzer G, Aldenhoff JB et al (2009) Early postnatal depletion of NMDA receptor development affects behaviour and NMDA receptor expression until later adulthood in rats—a possible model for schizophrenia. Behav Brain Res 205:96–101PubMed Baier PC, Blume A, Koch J, Marx A, Fritzer G, Aldenhoff JB et al (2009) Early postnatal depletion of NMDA receptor development affects behaviour and NMDA receptor expression until later adulthood in rats—a possible model for schizophrenia. Behav Brain Res 205:96–101PubMed
146.
go back to reference Seillier A, Giuffrida A (2009) Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav Brain Res 204:410–415PubMed Seillier A, Giuffrida A (2009) Evaluation of NMDA receptor models of schizophrenia: divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav Brain Res 204:410–415PubMed
147.
go back to reference Gilmour G, Pioli EY, Dix SL, Smith JW, Conway MW, Jones WT et al (2009) Diverse and often opposite behavioural effects of NMDA receptor antagonists in rats: implications for “NMDA antagonist modelling” of schizophrenia. Psychopharmacology 205:203–216PubMed Gilmour G, Pioli EY, Dix SL, Smith JW, Conway MW, Jones WT et al (2009) Diverse and often opposite behavioural effects of NMDA receptor antagonists in rats: implications for “NMDA antagonist modelling” of schizophrenia. Psychopharmacology 205:203–216PubMed
148.
go back to reference Duncan GE, Inada K, Farrington JS, Koller BH, Moy SS (2009) Neural activation deficits in a mouse genetic model of NMDA receptor hypofunction in tests of social aggression and swim stress. Brain Res 1265:186–195PubMedPubMedCentral Duncan GE, Inada K, Farrington JS, Koller BH, Moy SS (2009) Neural activation deficits in a mouse genetic model of NMDA receptor hypofunction in tests of social aggression and swim stress. Brain Res 1265:186–195PubMedPubMedCentral
149.
go back to reference Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83PubMedPubMedCentral Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83PubMedPubMedCentral
150.
go back to reference Dahan L, Husum H, Mnie-Filali O, Arnt J, Hertel P, Haddjeri N (2009) Effects of bifeprunox and aripiprazole on rat serotonin and dopamine neuronal activity and anxiolytic behaviour. J Psychopharmacol 23:177–189PubMed Dahan L, Husum H, Mnie-Filali O, Arnt J, Hertel P, Haddjeri N (2009) Effects of bifeprunox and aripiprazole on rat serotonin and dopamine neuronal activity and anxiolytic behaviour. J Psychopharmacol 23:177–189PubMed
151.
go back to reference Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15:2453–2461PubMed Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15:2453–2461PubMed
152.
go back to reference Segnitz N, Ferbert T, Schmitt A, Gass P, Gebicke-Härter P, Zink M (2011) Effects of chronic oral treatment with aripiprazole on the expression of NMDA receptor subunits and binding sites in rat brain. Psychopharmacology 217:127–142PubMed Segnitz N, Ferbert T, Schmitt A, Gass P, Gebicke-Härter P, Zink M (2011) Effects of chronic oral treatment with aripiprazole on the expression of NMDA receptor subunits and binding sites in rat brain. Psychopharmacology 217:127–142PubMed
153.
go back to reference Ulas J, Nguyen L, Cotman CW (1993) Chronic haloperidol treatment enhances binding to NMDA receptors in rat cortex. NeuroReport 4:1049–1051PubMed Ulas J, Nguyen L, Cotman CW (1993) Chronic haloperidol treatment enhances binding to NMDA receptors in rat cortex. NeuroReport 4:1049–1051PubMed
154.
go back to reference Choi YK, Gardner MP, Tarazi FI (2009) Effects of risperidone on glutamate receptor subtypes in developing rat brain. Eur Neuropsychopharmacol 19:77–84PubMedPubMedCentral Choi YK, Gardner MP, Tarazi FI (2009) Effects of risperidone on glutamate receptor subtypes in developing rat brain. Eur Neuropsychopharmacol 19:77–84PubMedPubMedCentral
155.
go back to reference Tarazi FI, Choi YK, Gardner M, Wong EH, Henry B, Shahid M (2009) Asenapine exerts distinctive regional effects on ionotropic glutamate receptor subtypes in rat brain. Synapse 63:413–420PubMed Tarazi FI, Choi YK, Gardner M, Wong EH, Henry B, Shahid M (2009) Asenapine exerts distinctive regional effects on ionotropic glutamate receptor subtypes in rat brain. Synapse 63:413–420PubMed
156.
go back to reference Kargieman L, Santana N, Mengod G, Celada P, Artigas F (2007) Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proc Natl Acad Sci USA 104:14843–14848PubMedPubMedCentral Kargieman L, Santana N, Mengod G, Celada P, Artigas F (2007) Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine. Proc Natl Acad Sci USA 104:14843–14848PubMedPubMedCentral
157.
go back to reference Homayoun H, Moghaddam B (2008) Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs. Proc Natl Acad Sci USA 105:18041–18046PubMedPubMedCentral Homayoun H, Moghaddam B (2008) Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs. Proc Natl Acad Sci USA 105:18041–18046PubMedPubMedCentral
158.
go back to reference Giegling I, Drago A, Dolžan V, Plesnicar BK, Schäfer M, Hartmann AM et al (2011) Glutamatergic gene variants impact the clinical profile of efficacy and side effects of haloperidol. Pharm Genomics 21(4):206–216 Giegling I, Drago A, Dolžan V, Plesnicar BK, Schäfer M, Hartmann AM et al (2011) Glutamatergic gene variants impact the clinical profile of efficacy and side effects of haloperidol. Pharm Genomics 21(4):206–216
159.
go back to reference Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83PubMed Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83PubMed
160.
go back to reference Lieberman JA (2004) Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 18:251–267PubMed Lieberman JA (2004) Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 18:251–267PubMed
161.
go back to reference Sparshatt A, Taylor D, Patel MX, Kapur S (2010) A systematic review of aripiprazole–dose, plasma concentration, receptor occupancy, and response: implications for therapeutic drug monitoring. J Clin Psychiatry 71:1447–1456PubMed Sparshatt A, Taylor D, Patel MX, Kapur S (2010) A systematic review of aripiprazole–dose, plasma concentration, receptor occupancy, and response: implications for therapeutic drug monitoring. J Clin Psychiatry 71:1447–1456PubMed
162.
go back to reference Peselmann N, Schmitt A, Gebicke-Haerter P, Zink M (2012) Aripiprazole differentially regulates the expression of Gad67 and ã-amino-butyric acid transporters in rat brain. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-012-0367-y PubMed Peselmann N, Schmitt A, Gebicke-Haerter P, Zink M (2012) Aripiprazole differentially regulates the expression of Gad67 and ã-amino-butyric acid transporters in rat brain. Eur Arch Psychiatry Clin Neurosci. doi:10.​1007/​s00406-012-0367-y PubMed
163.
go back to reference Daskalakis ZJ, George TP (2009) Clozapine, GABA(B), and the treatment of resistant schizophrenia. Clin Pharmacol Ther 86:442–446PubMed Daskalakis ZJ, George TP (2009) Clozapine, GABA(B), and the treatment of resistant schizophrenia. Clin Pharmacol Ther 86:442–446PubMed
164.
go back to reference Bruins Slot LA, Kleven MS, Newman-Tancredi A (2005) Effects of novel antipsychotics with mixed D(2) antagonist/5-HT(1A) agonist properties on PCP-induced social interaction deficits in the rat. Neuropharmacology 49:996–1006PubMed Bruins Slot LA, Kleven MS, Newman-Tancredi A (2005) Effects of novel antipsychotics with mixed D(2) antagonist/5-HT(1A) agonist properties on PCP-induced social interaction deficits in the rat. Neuropharmacology 49:996–1006PubMed
165.
go back to reference Nagai T, Murai R, Matsui K, Kamei H, Noda Y, Furukawa H et al (2009) Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology 202:315–328PubMed Nagai T, Murai R, Matsui K, Kamei H, Noda Y, Furukawa H et al (2009) Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology 202:315–328PubMed
166.
go back to reference Lopez-Gil X, Artigas F, Adell A (2009) Role of different monoamine receptors controlling MK-801-induced release of serotonin and glutamate in the medial prefrontal cortex: relevance for antipsychotic action. Int J Neuropsychopharmacol 12:487–499PubMed Lopez-Gil X, Artigas F, Adell A (2009) Role of different monoamine receptors controlling MK-801-induced release of serotonin and glutamate in the medial prefrontal cortex: relevance for antipsychotic action. Int J Neuropsychopharmacol 12:487–499PubMed
168.
go back to reference Cosi C, Waget A, Rollet K, Tesori V, Newman-Tancredi A (2005) Clozapine, ziprasidone and aripiprazole but not haloperidol protect against kainic acid-induced lesion of the striatum in mice, in vivo: role of 5-HT1A receptor activation. Brain Res 1043:32–41PubMed Cosi C, Waget A, Rollet K, Tesori V, Newman-Tancredi A (2005) Clozapine, ziprasidone and aripiprazole but not haloperidol protect against kainic acid-induced lesion of the striatum in mice, in vivo: role of 5-HT1A receptor activation. Brain Res 1043:32–41PubMed
169.
go back to reference Bontron S, Steimle V (1997) Efficient repression of endogenous major histocompatibility complex class II expression through dominant negative CIITA mutants isolated by a functional selection strategy. Mol Cell Biol 17:4249–4258PubMedPubMedCentral Bontron S, Steimle V (1997) Efficient repression of endogenous major histocompatibility complex class II expression through dominant negative CIITA mutants isolated by a functional selection strategy. Mol Cell Biol 17:4249–4258PubMedPubMedCentral
170.
go back to reference Varmeh-Ziaie S, Wimann KG (1997) Wig-1, a new p53-induced gene encoding a zinc finger protein. Oncogene 15:2699–2704PubMed Varmeh-Ziaie S, Wimann KG (1997) Wig-1, a new p53-induced gene encoding a zinc finger protein. Oncogene 15:2699–2704PubMed
171.
go back to reference Hollister RD, Xia M, McNamara MJ, Hyman BT (1997) Neuronal expression of class II major histocompatibility complex (HLA-DR) in 2 cases of pick disease. Arch Neurol 54:243–248PubMed Hollister RD, Xia M, McNamara MJ, Hyman BT (1997) Neuronal expression of class II major histocompatibility complex (HLA-DR) in 2 cases of pick disease. Arch Neurol 54:243–248PubMed
172.
go back to reference Leite JV, Guimaraes FS, Moreira FA (2008) Aripiprazole, an atypical antipsychotic, prevents the motor hyperactivity induced by psychotomimetics and psychostimulants in mice. Eur J Pharmacol 578:222–227PubMed Leite JV, Guimaraes FS, Moreira FA (2008) Aripiprazole, an atypical antipsychotic, prevents the motor hyperactivity induced by psychotomimetics and psychostimulants in mice. Eur J Pharmacol 578:222–227PubMed
173.
go back to reference Nordquist RE, Risterucci C, Moreau JL, von Kienlin KM, Kunnecke B, Maco M et al (2008) Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats. Neuropharmacology 54:405–416PubMed Nordquist RE, Risterucci C, Moreau JL, von Kienlin KM, Kunnecke B, Maco M et al (2008) Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats. Neuropharmacology 54:405–416PubMed
174.
go back to reference Wieronska JM, Slawinska A, Stachowicz K, Lason-Tyburkiewicz M, Gruca P, Papp M et al (2013) The reversal of cognitive, but not negative or positive symptoms of schizophrenia, by the mGlu2/3 receptor agonist, LY379268, is 5-HT1A dependent. Behav Brain Res 256:298–304PubMed Wieronska JM, Slawinska A, Stachowicz K, Lason-Tyburkiewicz M, Gruca P, Papp M et al (2013) The reversal of cognitive, but not negative or positive symptoms of schizophrenia, by the mGlu2/3 receptor agonist, LY379268, is 5-HT1A dependent. Behav Brain Res 256:298–304PubMed
175.
go back to reference Sumiyoshi T, Higuchi Y, Uehara T (2013) Neural basis for the ability of atypical antipsychotic drugs to improve cognition in schizophrenia. Front Behav Neurosci 7. doi:10.3389/fnbeh.2013.00140 Sumiyoshi T, Higuchi Y, Uehara T (2013) Neural basis for the ability of atypical antipsychotic drugs to improve cognition in schizophrenia. Front Behav Neurosci 7. doi:10.​3389/​fnbeh.​2013.​00140
176.
go back to reference Sumiyoshi T, Higuchi Y (2013) Facilitative effect of serotonin(1A) receptor agonists on cognition in patients with schizophrenia. Curr Med Chem 20:357–362PubMed Sumiyoshi T, Higuchi Y (2013) Facilitative effect of serotonin(1A) receptor agonists on cognition in patients with schizophrenia. Curr Med Chem 20:357–362PubMed
177.
go back to reference de Almeida J, Mengod G (2008) Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochem 107:488–496PubMed de Almeida J, Mengod G (2008) Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochem 107:488–496PubMed
178.
go back to reference Llado-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P (2012) 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex 22:1487–1497PubMed Llado-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P (2012) 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex 22:1487–1497PubMed
179.
go back to reference Meltzer HY, Sumiyoshi T (2008) Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res 195:98–102PubMed Meltzer HY, Sumiyoshi T (2008) Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res 195:98–102PubMed
180.
go back to reference Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11:59–67PubMed Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11:59–67PubMed
181.
go back to reference Wirkner K, Krause T, Koles L, Thummler S, Al-Khrasani M, Illes P (2004) D1 but not D2 dopamine receptors or adrenoceptors mediate dopamine-induced potentiation of N-methyl-d-aspartate currents in the rat prefrontal cortex. Neurosci Lett 372:89–93PubMed Wirkner K, Krause T, Koles L, Thummler S, Al-Khrasani M, Illes P (2004) D1 but not D2 dopamine receptors or adrenoceptors mediate dopamine-induced potentiation of N-methyl-d-aspartate currents in the rat prefrontal cortex. Neurosci Lett 372:89–93PubMed
182.
go back to reference Lei G, Anastasio NC, Fu Y, Neugebauer V, Johnson KM (2009) Activation of dopamine D1 receptors blocks phencyclidine-induced neurotoxicity by enhancing N-methyl-D-aspartate receptor-mediated synaptic strength. J Neurochem 109:1017–1030PubMedPubMedCentral Lei G, Anastasio NC, Fu Y, Neugebauer V, Johnson KM (2009) Activation of dopamine D1 receptors blocks phencyclidine-induced neurotoxicity by enhancing N-methyl-D-aspartate receptor-mediated synaptic strength. J Neurochem 109:1017–1030PubMedPubMedCentral
183.
go back to reference Kuo F, Gillespie TA, Kulanthaivel P, Lantz RJ, Ma TW, Nelson DL et al (2004) Synthesis and biological activity of some known and putative duloxetine metabolites.[erratum appears in Bioorg Med Chem Lett. 2004 Oct 18;14(20):5233]. Bioorg Med Chem Lett 14:3481–3486PubMed Kuo F, Gillespie TA, Kulanthaivel P, Lantz RJ, Ma TW, Nelson DL et al (2004) Synthesis and biological activity of some known and putative duloxetine metabolites.[erratum appears in Bioorg Med Chem Lett. 2004 Oct 18;14(20):5233]. Bioorg Med Chem Lett 14:3481–3486PubMed
184.
go back to reference Svenningsson P, Nairn AC, Greengard P (2005) DARPP-32 mediates the actions of multiple drugs of abuse. [Review] [76 refs]. AAPS J 7:E353–E360PubMedPubMedCentral Svenningsson P, Nairn AC, Greengard P (2005) DARPP-32 mediates the actions of multiple drugs of abuse. [Review] [76 refs]. AAPS J 7:E353–E360PubMedPubMedCentral
185.
go back to reference Konradi C, Cole RL, Heckers S, Hyman SE (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci 14:5623–5634PubMed Konradi C, Cole RL, Heckers S, Hyman SE (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci 14:5623–5634PubMed
186.
go back to reference Meyer-Lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH et al (2007) Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. J Clin Investig 117:672–682PubMedPubMedCentral Meyer-Lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH et al (2007) Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. J Clin Investig 117:672–682PubMedPubMedCentral
187.
go back to reference Bartolomeis A, Tomasetti C (2012) Calcium-dependent networks in dopamine-glutamate interaction: the role of postsynaptic scaffolding proteins. Mol Neurobiol 46:275–296PubMed Bartolomeis A, Tomasetti C (2012) Calcium-dependent networks in dopamine-glutamate interaction: the role of postsynaptic scaffolding proteins. Mol Neurobiol 46:275–296PubMed
188.
go back to reference de Bartolomeis A, Sarappa C, Buonaguro EF, Marmo F, Eramo A, Tomasetti C et al (2013) Different effects of the NMDA receptor antagonists ketamine, MK-801, and memantine on postsynaptic density transcripts and their topography: role of homer signaling, and implications for novel antipsychotic and pro-cognitive targets in psychosis. Prog Neuropsychopharmacol Biol Psychiatry 46:1–12PubMed de Bartolomeis A, Sarappa C, Buonaguro EF, Marmo F, Eramo A, Tomasetti C et al (2013) Different effects of the NMDA receptor antagonists ketamine, MK-801, and memantine on postsynaptic density transcripts and their topography: role of homer signaling, and implications for novel antipsychotic and pro-cognitive targets in psychosis. Prog Neuropsychopharmacol Biol Psychiatry 46:1–12PubMed
189.
go back to reference Rolls ET, Loh M, Deco G, Winterer G (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9:696–709PubMed Rolls ET, Loh M, Deco G, Winterer G (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9:696–709PubMed
190.
go back to reference Bartolomeis A, Buonaguro EF, Iasevoli F (2013) Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacology 225:1–19PubMed Bartolomeis A, Buonaguro EF, Iasevoli F (2013) Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacology 225:1–19PubMed
191.
go back to reference Schmitt A, Koschel J, Zink M, Bauer M, Sommer C, Frank J et al (2010) Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 260:101–111PubMedPubMedCentral Schmitt A, Koschel J, Zink M, Bauer M, Sommer C, Frank J et al (2010) Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 260:101–111PubMedPubMedCentral
Metadata
Title
Antipsychotic treatment modulates glutamate transport and NMDA receptor expression
Authors
Mathias Zink
Susanne Englisch
Andrea Schmitt
Publication date
01-11-2014
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue Special Issue 1/2014
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-014-0534-4

Other articles of this Special Issue 1/2014

European Archives of Psychiatry and Clinical Neuroscience 1/2014 Go to the issue