Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Anti-dsDNA antibodies induce inflammation via endoplasmic reticulum stress in human mesangial cells

Authors: Hui Zhang, Chunmei Zhao, Shuang Wang, Yuefang Huang, Hongyue Wang, Jijun Zhao, Niansheng Yang

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Anti-dsDNA antibodies play an important role in the pathogenesis of lupus nephritis (LN). Endoplasmic reticulum (ER) stress is a physical reaction under stressful condition and can cause inflammation when stimulation is sustained. This study investigated the roles of ER stress in anti-dsDNA antibody-induced inflammation response in human mesangial cells (HMCs).

Method

Anti-dsDNA antibodies isolated from LN patients were used to stimulate HMCs. The expression of GRP78, PERK, p-PERK, p-eIF2α, ATF4, p-IRE1α, ATF6 and CHOP in HMCs was measured by western blot. NF-κB activation was detected by examining nuclear translocation of NF-κB p65. The expression and production of IL-1β, TNF-α and MCP-1 were examined by qPCR and ELISA.

Results

Flow cytometry and cellular ELISA showed that anti-dsDNA antibodies can bind to HMCs. The binding was not inhibited by blockage of Fc receptor. Anti-dsDNA antibody stimulation significantly enhanced the expression of GRP78, p-PERK, p-eIF2α and ATF4 in HMCs. However, no significant increase in the expression of p-IRE1α and ATF6 was found. In addition, anti-dsDNA antibodies also significantly increased the activation of NF-κB and upregulated the expression of IL-1β, TNF-α and MCP-1, which were suppressed by pretreatment of HMCs with chemical ER stress inhibitor 4-PBA. Transfection of specific ATF4 siRNA also significantly reduced the activation of NF-κB and expression of proinflammatory cytokines.

Conclusion

Anti-dsDNA antibodies induce NF-κB activation and inflammation in HMCs via PERK-eIF2α-ATF4 ER stress pathway.
Literature
1.
go back to reference Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y (2004) Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 34:501–537PubMedCrossRef Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y (2004) Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 34:501–537PubMedCrossRef
2.
go back to reference de Salgado Zubiria A, Herrera-Diaz C (2012) Lupus nephritis: an overview of recent findings. Autoimmune Dis 2012:849684 de Salgado Zubiria A, Herrera-Diaz C (2012) Lupus nephritis: an overview of recent findings. Autoimmune Dis 2012:849684
3.
go back to reference ter Borg EJ, Horst G, Hummel EJ, Limburg PC, Kallenberg CG (1990) Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum 33:634–643PubMedCrossRef ter Borg EJ, Horst G, Hummel EJ, Limburg PC, Kallenberg CG (1990) Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum 33:634–643PubMedCrossRef
4.
go back to reference Sun KH, Yu CL, Tang SJ, Sun GH (2000) Monoclonal anti-double-stranded DNA autoantibody stimulates the expression and release of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha from normal human mononuclear cells involving in the lupus pathogenesis. Immunology 99:352–360PubMedCentralPubMedCrossRef Sun KH, Yu CL, Tang SJ, Sun GH (2000) Monoclonal anti-double-stranded DNA autoantibody stimulates the expression and release of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha from normal human mononuclear cells involving in the lupus pathogenesis. Immunology 99:352–360PubMedCentralPubMedCrossRef
5.
6.
go back to reference Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233PubMedCrossRef Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233PubMedCrossRef
7.
9.
go back to reference Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529PubMedCrossRef Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529PubMedCrossRef
10.
go back to reference Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133–1149PubMedCrossRef Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133–1149PubMedCrossRef
13.
go back to reference Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8:663–674PubMedCrossRef Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8:663–674PubMedCrossRef
15.
go back to reference Ghosh S, Baltimore D (1990) Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B. Nature 344:678–682PubMedCrossRef Ghosh S, Baltimore D (1990) Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B. Nature 344:678–682PubMedCrossRef
16.
go back to reference Kaneko M, Niinuma Y, Nomura Y (2003) Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 26:931–935PubMedCrossRef Kaneko M, Niinuma Y, Nomura Y (2003) Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 26:931–935PubMedCrossRef
17.
go back to reference Zheng L, Sinniah R, Hsu SI (2006) In situ glomerular expression of activated NF-kappaB in human lupus nephritis and other non-proliferative proteinuric glomerulopathy. Virchows Arch 448:172–183PubMedCrossRef Zheng L, Sinniah R, Hsu SI (2006) In situ glomerular expression of activated NF-kappaB in human lupus nephritis and other non-proliferative proteinuric glomerulopathy. Virchows Arch 448:172–183PubMedCrossRef
18.
go back to reference Zheng L, Sinniah R, Hsu SI (2008) Pathogenic role of NF-kappaB activation in tubulointerstitial inflammatory lesions in human lupus nephritis. J Histochem Cytochem 56:517–529PubMedCentralPubMedCrossRef Zheng L, Sinniah R, Hsu SI (2008) Pathogenic role of NF-kappaB activation in tubulointerstitial inflammatory lesions in human lupus nephritis. J Histochem Cytochem 56:517–529PubMedCentralPubMedCrossRef
19.
go back to reference Inagi R (2010) Endoplasmic reticulum stress as a progression factor for kidney injury. Curr Opin Pharmacol 10:156–165PubMedCrossRef Inagi R (2010) Endoplasmic reticulum stress as a progression factor for kidney injury. Curr Opin Pharmacol 10:156–165PubMedCrossRef
20.
go back to reference Cybulsky AV (2010) Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int 77:187–193PubMedCrossRef Cybulsky AV (2010) Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int 77:187–193PubMedCrossRef
21.
go back to reference Chan TM, Leung JK, Ho SK, Yung S (2002) Mesangial cell-binding anti-DNA antibodies in patients with systemic lupus erythematosus. J Am Soc Nephrol 13:1219–1229PubMedCrossRef Chan TM, Leung JK, Ho SK, Yung S (2002) Mesangial cell-binding anti-DNA antibodies in patients with systemic lupus erythematosus. J Am Soc Nephrol 13:1219–1229PubMedCrossRef
22.
23.
go back to reference Jacob L, Viard JP, Allenet B, Anin MF, Slama FB, Vandekerckhove J et al (1989) A monoclonal anti-double-stranded DNA autoantibody binds to a 94-kDa cell-surface protein on various cell types via nucleosomes or a DNA-histone complex. Proc Natl Acad Sci U S A 86:4669–4673PubMedCentralPubMedCrossRef Jacob L, Viard JP, Allenet B, Anin MF, Slama FB, Vandekerckhove J et al (1989) A monoclonal anti-double-stranded DNA autoantibody binds to a 94-kDa cell-surface protein on various cell types via nucleosomes or a DNA-histone complex. Proc Natl Acad Sci U S A 86:4669–4673PubMedCentralPubMedCrossRef
24.
go back to reference Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRef Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRef
25.
go back to reference Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R et al (2005) Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 52:1824–1835PubMedCrossRef Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R et al (2005) Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 52:1824–1835PubMedCrossRef
26.
go back to reference Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756PubMedCentralPubMedCrossRef Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756PubMedCentralPubMedCrossRef
27.
go back to reference Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol 295:F323–F334PubMedCrossRef Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol 295:F323–F334PubMedCrossRef
28.
go back to reference Cybulsky AV, Takano T, Papillon J, Bijian K (2005) Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem 280:24396–24403PubMedCrossRef Cybulsky AV, Takano T, Papillon J, Bijian K (2005) Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem 280:24396–24403PubMedCrossRef
29.
go back to reference Inagi R, Kumagai T, Nishi H, Kawakami T, Miyata T, Fujita T et al (2008) Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J Am Soc Nephrol 19:915–922PubMedCentralPubMedCrossRef Inagi R, Kumagai T, Nishi H, Kawakami T, Miyata T, Fujita T et al (2008) Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J Am Soc Nephrol 19:915–922PubMedCentralPubMedCrossRef
30.
go back to reference Markan S, Kohli HS, Joshi K, Minz RW, Sud K, Ahuja M et al (2009) Up regulation of the GRP-78 and GADD-153 and down regulation of Bcl-2 proteins in primary glomerular diseases: a possible involvement of the ER stress pathway in glomerulonephritis. Mol Cell Biochem 324:131–138PubMedCrossRef Markan S, Kohli HS, Joshi K, Minz RW, Sud K, Ahuja M et al (2009) Up regulation of the GRP-78 and GADD-153 and down regulation of Bcl-2 proteins in primary glomerular diseases: a possible involvement of the ER stress pathway in glomerulonephritis. Mol Cell Biochem 324:131–138PubMedCrossRef
31.
go back to reference Hirabayashi Y, Oka Y, Tada M, Takahashi R, Ishii T (2007) A potential trigger of nephritogenic anti-DNA antibodies in lupus nephritis. Ann NY Acad Sci 1108:92–95PubMedCrossRef Hirabayashi Y, Oka Y, Tada M, Takahashi R, Ishii T (2007) A potential trigger of nephritogenic anti-DNA antibodies in lupus nephritis. Ann NY Acad Sci 1108:92–95PubMedCrossRef
32.
go back to reference Hirabayashi Y, Oka Y, Ikeda T, Fujii H, Ishii T, Sasaki T et al (2010) The endoplasmic reticulum stress-inducible protein, Herp, is a potential triggering antigen for anti-DNA response. J Immunol 184:3276–3283PubMedCrossRef Hirabayashi Y, Oka Y, Ikeda T, Fujii H, Ishii T, Sasaki T et al (2010) The endoplasmic reticulum stress-inducible protein, Herp, is a potential triggering antigen for anti-DNA response. J Immunol 184:3276–3283PubMedCrossRef
33.
go back to reference Zhao J, Zhang H, Huang Y, Wang H, Wang S, Zhao C et al (2013) Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-kappaB activation. Int Immunopharmacol 17:116–122PubMedCrossRef Zhao J, Zhang H, Huang Y, Wang H, Wang S, Zhao C et al (2013) Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-kappaB activation. Int Immunopharmacol 17:116–122PubMedCrossRef
34.
go back to reference Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT et al (2004) Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem 279:46384–46392PubMedCrossRef Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT et al (2004) Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem 279:46384–46392PubMedCrossRef
35.
go back to reference Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26:3071–3084PubMedCentralPubMedCrossRef Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26:3071–3084PubMedCentralPubMedCrossRef
36.
go back to reference Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73PubMedCentralPubMedCrossRef Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73PubMedCentralPubMedCrossRef
37.
go back to reference Pahl HL, Baeuerle PA (1995) A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. Embo J 14:2580–2588PubMedCentralPubMed Pahl HL, Baeuerle PA (1995) A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. Embo J 14:2580–2588PubMedCentralPubMed
38.
go back to reference Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389PubMedCrossRef Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389PubMedCrossRef
39.
go back to reference Nishitoh H (2012) CHOP is a multifunctional transcription factor in the ER stress response. J Biochem 151:217–219PubMedCrossRef Nishitoh H (2012) CHOP is a multifunctional transcription factor in the ER stress response. J Biochem 151:217–219PubMedCrossRef
40.
go back to reference Iwasaki Y, Suganami T, Hachiya R, Shirakawa I, Kim-Saijo M, Tanaka M et al (2014) Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes 63:152–161PubMedCrossRef Iwasaki Y, Suganami T, Hachiya R, Shirakawa I, Kim-Saijo M, Tanaka M et al (2014) Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes 63:152–161PubMedCrossRef
Metadata
Title
Anti-dsDNA antibodies induce inflammation via endoplasmic reticulum stress in human mesangial cells
Authors
Hui Zhang
Chunmei Zhao
Shuang Wang
Yuefang Huang
Hongyue Wang
Jijun Zhao
Niansheng Yang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0536-7

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.