Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2017

Open Access 01-12-2017 | Research article

Anodal transcranial direct current stimulation over the left temporal pole restores normal visual evoked potential habituation in interictal migraineurs

Authors: Francesca Cortese, Francesco Pierelli, Ilaria Bove, Cherubino Di Lorenzo, Maurizio Evangelista, Armando Perrotta, Mariano Serrao, Vincenzo Parisi, Gianluca Coppola

Published in: The Journal of Headache and Pain | Issue 1/2017

Login to get access

Abstract

Background

Neuroimaging data has implicated the temporal pole (TP) in migraine pathophysiology; the density and functional activity of the TP were reported to fluctuate in accordance with the migraine cycle. Yet, the exact link between TP morpho-functional abnormalities and migraine is unknown. Here, we examined whether non-invasive anodal transcranial direct current stimulation (tDCS) ameliorates abnormal interictal multimodal sensory processing in patients with migraine.

Methods

We examined the habituation of visual evoked potentials and median nerve somatosensory evoked potentials (SSEP) before and immediately after 20-min anodal tDCS (2 mA) or sham stimulation delivered over the left TP in interictal migraineurs.

Results

Prior to tDCS, interictal migraineurs did not exhibit habituation in response to repetitive visual or somatosensory stimulation. After anodal tDCS but not sham stimulation, migraineurs exhibited normal habituation responses to visual stimulation; however, tDCS had no effect on SSEP habituation in migraineurs.

Conclusion

Our study shows for the first time that enhancing excitability of the TP with anodal tDCS normalizes abnormal interictal visual information processing in migraineurs. This finding has implications for the role of the TP in migraine, and specifically highlights the ventral stream of the visual pathway as a pathophysiological neural substrate for abnormal visual processing in migraine.
Literature
4.
go back to reference Shapiro K, Hillstrom AP, Husain M (2002) Control of visuotemporal attention by inferior parietal and superior temporal cortex. Curr Biol 12:1320–1325CrossRefPubMed Shapiro K, Hillstrom AP, Husain M (2002) Control of visuotemporal attention by inferior parietal and superior temporal cortex. Curr Biol 12:1320–1325CrossRefPubMed
5.
go back to reference Kravitz DJ, Saleem KS, Baker CI et al (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17:26–49CrossRefPubMed Kravitz DJ, Saleem KS, Baker CI et al (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17:26–49CrossRefPubMed
6.
go back to reference Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev 8:976–987CrossRef Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev 8:976–987CrossRef
7.
go back to reference Demarquay G, Royet JP, Mick G, Ryvlin P (2008) Olfactory hypersensitivity in migraineurs: a H(2)(15)O-PET study. Cephalalgia 28:1069–1080CrossRefPubMed Demarquay G, Royet JP, Mick G, Ryvlin P (2008) Olfactory hypersensitivity in migraineurs: a H(2)(15)O-PET study. Cephalalgia 28:1069–1080CrossRefPubMed
8.
go back to reference Moulton EA, Becerra L, Maleki N et al (2011) Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine states. Cereb cortex (New York, NY 1991) 21:435–448CrossRef Moulton EA, Becerra L, Maleki N et al (2011) Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine states. Cereb cortex (New York, NY 1991) 21:435–448CrossRef
9.
go back to reference Stankewitz A, May A (2011) Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology 77:476–482CrossRefPubMed Stankewitz A, May A (2011) Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology 77:476–482CrossRefPubMed
10.
go back to reference Coppola G, Di Renzo A, Tinelli E et al (2015) Evidence for brain morphometric changes during the migraine cycle: a magnetic resonance-based morphometry study. Cephalalgia 35:783–791CrossRefPubMed Coppola G, Di Renzo A, Tinelli E et al (2015) Evidence for brain morphometric changes during the migraine cycle: a magnetic resonance-based morphometry study. Cephalalgia 35:783–791CrossRefPubMed
12.
go back to reference Schwedt TJ, Berisha V, Chong CD (2015) Temporal lobe cortical thickness correlations differentiate the migraine brain from the healthy brain. PLoS One 10:e0116687CrossRefPubMedPubMedCentral Schwedt TJ, Berisha V, Chong CD (2015) Temporal lobe cortical thickness correlations differentiate the migraine brain from the healthy brain. PLoS One 10:e0116687CrossRefPubMedPubMedCentral
13.
go back to reference Priori A, Berardelli A, Rona S et al (1998) Polarization of the human motor cortex through the scalp. Neuroreport 9:2257–2260CrossRefPubMed Priori A, Berardelli A, Rona S et al (1998) Polarization of the human motor cortex through the scalp. Neuroreport 9:2257–2260CrossRefPubMed
14.
go back to reference Nitsche MA, Cohen LG, Wassermann EM et al (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1:206–223CrossRefPubMed Nitsche MA, Cohen LG, Wassermann EM et al (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1:206–223CrossRefPubMed
15.
go back to reference Brunoni AR, Nitsche MA, Bolognini N et al (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5:175–195CrossRefPubMed Brunoni AR, Nitsche MA, Bolognini N et al (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5:175–195CrossRefPubMed
16.
go back to reference Zaghi S, Heine N, Fregni F (2009) Brain stimulation for the treatment of pain: a review of costs, clinical effects, and mechanisms of treatment for three different central neuromodulatory approaches. J Pain Manag 2:339–352PubMedPubMedCentral Zaghi S, Heine N, Fregni F (2009) Brain stimulation for the treatment of pain: a review of costs, clinical effects, and mechanisms of treatment for three different central neuromodulatory approaches. J Pain Manag 2:339–352PubMedPubMedCentral
17.
go back to reference DaSilva AF, Truong DQ, DosSantos MF et al (2015) State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control. Front Neuroanat 9:89CrossRefPubMedPubMedCentral DaSilva AF, Truong DQ, DosSantos MF et al (2015) State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control. Front Neuroanat 9:89CrossRefPubMedPubMedCentral
18.
go back to reference Bikson M, Grossman P, Thomas C et al (2016) Safety of Transcranial direct current stimulation: evidence based update 2016. Brain Stimul 9:641–661CrossRefPubMed Bikson M, Grossman P, Thomas C et al (2016) Safety of Transcranial direct current stimulation: evidence based update 2016. Brain Stimul 9:641–661CrossRefPubMed
19.
go back to reference Auvichayapat P, Janyacharoen T, Rotenberg A et al (2012) Migraine prophylaxis by anodal transcranial direct current stimulation, a randomized, placebo-controlled trial. J Med Assoc Thail 95:1003–1012 Auvichayapat P, Janyacharoen T, Rotenberg A et al (2012) Migraine prophylaxis by anodal transcranial direct current stimulation, a randomized, placebo-controlled trial. J Med Assoc Thail 95:1003–1012
20.
go back to reference Dasilva A, Mendonca ME, Zaghi S et al (2012) tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache 52:1283–1295CrossRefPubMedPubMedCentral Dasilva A, Mendonca ME, Zaghi S et al (2012) tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache 52:1283–1295CrossRefPubMedPubMedCentral
21.
go back to reference Andrade SM, de Brito Aranha REL, de Oliveira EA et al (2017) Transcranial direct current stimulation over the primary motor vs prefrontal cortex in refractory chronic migraine: a pilot randomized controlled trial. J Neurol Sci 378:225–232CrossRefPubMed Andrade SM, de Brito Aranha REL, de Oliveira EA et al (2017) Transcranial direct current stimulation over the primary motor vs prefrontal cortex in refractory chronic migraine: a pilot randomized controlled trial. J Neurol Sci 378:225–232CrossRefPubMed
22.
go back to reference Viganò A, D’Elia TS, Sava SL et al (2013) Transcranial direct current stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J Headache Pain 14:23CrossRefPubMedPubMedCentral Viganò A, D’Elia TS, Sava SL et al (2013) Transcranial direct current stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J Headache Pain 14:23CrossRefPubMedPubMedCentral
23.
go back to reference Gallate J, Chi R, Ellwood S, Snyder A (2009) Reducing false memories by magnetic pulse stimulation. Neurosci Lett 449:151–154CrossRefPubMed Gallate J, Chi R, Ellwood S, Snyder A (2009) Reducing false memories by magnetic pulse stimulation. Neurosci Lett 449:151–154CrossRefPubMed
24.
go back to reference Chi RP, Fregni F, Snyder AW (2010) Visual memory improved by non-invasive brain stimulation. Brain Res 1353:168–175CrossRefPubMed Chi RP, Fregni F, Snyder AW (2010) Visual memory improved by non-invasive brain stimulation. Brain Res 1353:168–175CrossRefPubMed
25.
go back to reference Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99CrossRefPubMed Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99CrossRefPubMed
26.
go back to reference Sparing R, Buelte D, Meister IG et al (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29:82–96CrossRefPubMed Sparing R, Buelte D, Meister IG et al (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29:82–96CrossRefPubMed
27.
go back to reference Ozkul Y, Uckardes A (2002) Median nerve somatosensory evoked potentials in migraine. Eur J Neurol 9:227–232CrossRefPubMed Ozkul Y, Uckardes A (2002) Median nerve somatosensory evoked potentials in migraine. Eur J Neurol 9:227–232CrossRefPubMed
28.
go back to reference Coppola G, Iacovelli E, Bracaglia M et al (2013) Electrophysiological correlates of episodic migraine chronification: evidence for thalamic involvement. J Headache Pain 14:76CrossRefPubMedPubMedCentral Coppola G, Iacovelli E, Bracaglia M et al (2013) Electrophysiological correlates of episodic migraine chronification: evidence for thalamic involvement. J Headache Pain 14:76CrossRefPubMedPubMedCentral
29.
go back to reference Di Lorenzo C, Coppola G, Bracaglia M et al (2016) Cortical functional correlates of responsiveness to short-lasting preventive intervention with ketogenic diet in migraine: a multimodal evoked potentials study. J Headache Pain 17:58CrossRefPubMedPubMedCentral Di Lorenzo C, Coppola G, Bracaglia M et al (2016) Cortical functional correlates of responsiveness to short-lasting preventive intervention with ketogenic diet in migraine: a multimodal evoked potentials study. J Headache Pain 17:58CrossRefPubMedPubMedCentral
30.
go back to reference Markowitsch HJ, Emmans D, Irle E et al (1985) Cortical and subcortical afferent connections of the primate’s temporal pole: a study of rhesus monkeys, squirrel monkeys, and marmosets. J Comp Neurol 242:425–458CrossRefPubMed Markowitsch HJ, Emmans D, Irle E et al (1985) Cortical and subcortical afferent connections of the primate’s temporal pole: a study of rhesus monkeys, squirrel monkeys, and marmosets. J Comp Neurol 242:425–458CrossRefPubMed
31.
go back to reference Cusick CG, Scripter JL, Darensbourg JG, Weber JT (1993) Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr. J Comp Neurol 336:1–30CrossRefPubMed Cusick CG, Scripter JL, Darensbourg JG, Weber JT (1993) Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr. J Comp Neurol 336:1–30CrossRefPubMed
32.
go back to reference Chabardès S, Kahane P, Minotti L et al (2002) Anatomy of the temporal pole region. Epileptic Disord 4(Suppl 1):S9–15PubMed Chabardès S, Kahane P, Minotti L et al (2002) Anatomy of the temporal pole region. Epileptic Disord 4(Suppl 1):S9–15PubMed
33.
go back to reference Olson IR, Plotzker A, Ezzyat Y (2007) The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130:1718–1731CrossRefPubMed Olson IR, Plotzker A, Ezzyat Y (2007) The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130:1718–1731CrossRefPubMed
34.
go back to reference Pascual B, Masdeu JC, Hollenbeck M et al (2015) Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex 25:680–702CrossRefPubMed Pascual B, Masdeu JC, Hollenbeck M et al (2015) Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex 25:680–702CrossRefPubMed
35.
go back to reference Pehrs C, Zaki J, Schlochtermeier LH et al (2017) The temporal pole top-down modulates the ventral visual stream during social cognition. Cereb Cortex 27:777–792PubMed Pehrs C, Zaki J, Schlochtermeier LH et al (2017) The temporal pole top-down modulates the ventral visual stream during social cognition. Cereb Cortex 27:777–792PubMed
36.
go back to reference Bar M (2003) A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn Neurosci 15:600–609CrossRefPubMed Bar M (2003) A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn Neurosci 15:600–609CrossRefPubMed
37.
go back to reference Harris JD (1943) Habituatory response decrement in the intact organism. Psychol Bull 40:385–422CrossRef Harris JD (1943) Habituatory response decrement in the intact organism. Psychol Bull 40:385–422CrossRef
38.
go back to reference Rankin CH, Abrams T, Barry RJ et al (2009) Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem 92:135–138CrossRefPubMed Rankin CH, Abrams T, Barry RJ et al (2009) Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem 92:135–138CrossRefPubMed
39.
go back to reference Rioult-Pedotti MS, Friedman D, Donoghue JP (2000) Learning-induced LTP in neocortex. Science 290:533–536CrossRefPubMed Rioult-Pedotti MS, Friedman D, Donoghue JP (2000) Learning-induced LTP in neocortex. Science 290:533–536CrossRefPubMed
40.
go back to reference Polanía R, Paulus W, Nitsche MA (2012) Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33:2499–2508CrossRefPubMed Polanía R, Paulus W, Nitsche MA (2012) Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33:2499–2508CrossRefPubMed
41.
go back to reference Hodkinson DJ, Wilcox SL, Veggeberg R et al (2016) Increased amplitude of Thalamocortical low-frequency oscillations in patients with migraine. J Neurosci 36:8026–8036CrossRefPubMedPubMedCentral Hodkinson DJ, Wilcox SL, Veggeberg R et al (2016) Increased amplitude of Thalamocortical low-frequency oscillations in patients with migraine. J Neurosci 36:8026–8036CrossRefPubMedPubMedCentral
42.
go back to reference Porcaro C, Di Lorenzo G, Seri S et al (2016) Impaired brainstem and thalamic high-frequency oscillatory EEG activity in migraine between attacks. Cephalalgia. doi:10.1177/0333102416657146 Porcaro C, Di Lorenzo G, Seri S et al (2016) Impaired brainstem and thalamic high-frequency oscillatory EEG activity in migraine between attacks. Cephalalgia. doi:10.​1177/​0333102416657146​
43.
go back to reference Coppola G, Tinelli E, Lepre C et al (2014) Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol 21:287–e13CrossRefPubMed Coppola G, Tinelli E, Lepre C et al (2014) Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol 21:287–e13CrossRefPubMed
44.
go back to reference Magon S, May A, Stankewitz A et al (2015) Morphological abnormalities of thalamic subnuclei in migraine: a multicenter MRI study at 3 Tesla. J Neurosci 35:13800–13806CrossRefPubMed Magon S, May A, Stankewitz A et al (2015) Morphological abnormalities of thalamic subnuclei in migraine: a multicenter MRI study at 3 Tesla. J Neurosci 35:13800–13806CrossRefPubMed
45.
go back to reference Höffken O, Stude P, Lenz M et al (2009) Visual paired-pulse stimulation reveals enhanced visual cortex excitability in migraineurs. Eur J Neurosci 30:714–720CrossRefPubMed Höffken O, Stude P, Lenz M et al (2009) Visual paired-pulse stimulation reveals enhanced visual cortex excitability in migraineurs. Eur J Neurosci 30:714–720CrossRefPubMed
46.
47.
go back to reference Martelletti P, Jensen RH, Antal A et al (2013) Neuromodulation of chronic headaches: position statement from the European headache federation. J Headache Pain 14:86CrossRefPubMedPubMedCentral Martelletti P, Jensen RH, Antal A et al (2013) Neuromodulation of chronic headaches: position statement from the European headache federation. J Headache Pain 14:86CrossRefPubMedPubMedCentral
48.
go back to reference Tippett LJ, Miller LA, Farah MJ (2000) Prosopamnesia: a selective impairment in face learning. Cogn Neuropsychol 17:241–255CrossRefPubMed Tippett LJ, Miller LA, Farah MJ (2000) Prosopamnesia: a selective impairment in face learning. Cogn Neuropsychol 17:241–255CrossRefPubMed
Metadata
Title
Anodal transcranial direct current stimulation over the left temporal pole restores normal visual evoked potential habituation in interictal migraineurs
Authors
Francesca Cortese
Francesco Pierelli
Ilaria Bove
Cherubino Di Lorenzo
Maurizio Evangelista
Armando Perrotta
Mariano Serrao
Vincenzo Parisi
Gianluca Coppola
Publication date
01-12-2017
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 1/2017
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-017-0778-2

Other articles of this Issue 1/2017

The Journal of Headache and Pain 1/2017 Go to the issue