Skip to main content
Top

22-03-2024 | Ankylosing Spondylitis | RESEARCH

The Role of H3K27me3-Mediated Th17 Differentiation in Ankylosing Spondylitis

Authors: Yuening Chen, Wanlin Liu, Xiaohan Xu, Hongying Zhen, Bo Pang, Zhe Zhao, Yanan Zhao, Hongxiao Liu

Published in: Inflammation

Login to get access

Abstract

Ankylosing spondylitis (AS) is a common chronic progressive inflammatory autoimmune disease. T helper 17 (Th17) cells are the major effector cells mediating AS inflammation. Histone 3 Lys 27 trimethylation (H3K27me3) is an inhibitory histone modification that silences gene transcription and plays an important role in Th17 differentiation. The objective of this study was to investigate the expression of H3K27me3 in patients with AS and to explore its epigenetic regulation mechanism of Th17 differentiation during AS inflammation. We collected serum samples from 45 patients with AS at various stages and 10 healthy controls to measure their Interleukin-17 (IL-17) levels using ELISA. A quantitative polymerase chain reaction was used to quantify the mRNA levels of RORc and the signaling molecules of the JAK2/STAT3 pathway, JMJD3, and EZH2. Additionally, Western blot analysis was performed to quantify the protein levels of H3K27me3, RORγt, JAK2, STAT3, JMJD3, and EZH2 in cell protein extracts. The results showed that H3K27me3 expression in peripheral blood mononuclear cells (PBMCs) was significantly lower in patients with active AS compared to both the normal control groups and those with stable AS. Moreover, a significant negative correlation was observed between H3K27me3 expression and the characteristic transcription factor of Th17 differentiation, RORγt. We also discovered that patients with active AS exhibited significantly higher levels of JMJD3, an inhibitor of H3K27 demethylase, compared to the normal control group and patients with stable AS, while the expression of H3K27 methyltransferase (EZH2) was significantly lower. These findings suggest that H3K27me3 may be a dynamic and important epigenetic modification in AS inflammation, and JMJD3/EZH2 regulates the methylation level of H3K27me3, which may be one of the key regulatory factors in the pathogenesis of AS. These findings contribute to our understanding of the role of epigenetics in AS and may have implications for the development of novel therapeutic strategies for AS.
Literature
2.
go back to reference Maksymowych, W.P. 2010. Disease modification in ankylosing spondylitis. Nature Reviews Rheumatology 6 (2): 75–81.PubMedCrossRef Maksymowych, W.P. 2010. Disease modification in ankylosing spondylitis. Nature Reviews Rheumatology 6 (2): 75–81.PubMedCrossRef
3.
go back to reference Navarro-Compán, V., A. Sepriano, B. El-Zorkany, and D. van der Heijde. 2021. Axial spondyloarthritis. Annals of the Rheumatic Diseases 80 (12): 1511–1521.PubMedCrossRef Navarro-Compán, V., A. Sepriano, B. El-Zorkany, and D. van der Heijde. 2021. Axial spondyloarthritis. Annals of the Rheumatic Diseases 80 (12): 1511–1521.PubMedCrossRef
4.
go back to reference Liu, L., Y. Yuan, S. Zhang, J. Xu, and J. Zou. 2021. Osteoimmunological insights into the pathogenesis of ankylosing spondylitis. Journal of Cellular Physiology 236 (9): 6090–6100.PubMedCrossRef Liu, L., Y. Yuan, S. Zhang, J. Xu, and J. Zou. 2021. Osteoimmunological insights into the pathogenesis of ankylosing spondylitis. Journal of Cellular Physiology 236 (9): 6090–6100.PubMedCrossRef
5.
go back to reference Miossec, P., and J.K. Kolls. 2012. Targeting IL-17 and TH17 cells in chronic inflammation. Nature Reviews Drug Discovery 11 (10): 763–776.PubMedCrossRef Miossec, P., and J.K. Kolls. 2012. Targeting IL-17 and TH17 cells in chronic inflammation. Nature Reviews Drug Discovery 11 (10): 763–776.PubMedCrossRef
6.
go back to reference Yang, J., M.S. Sundrud, J. Skepner, and T. Yamagata. 2014. Targeting Th17 cells in autoimmune diseases. Trends in Pharmacological Sciences 35 (10): 493–500.PubMedCrossRef Yang, J., M.S. Sundrud, J. Skepner, and T. Yamagata. 2014. Targeting Th17 cells in autoimmune diseases. Trends in Pharmacological Sciences 35 (10): 493–500.PubMedCrossRef
7.
go back to reference Gracey, E., Y. Yao, B. Green, Z. Qaiyum, Y. Baglaenko, A. Lin, A. Anton, R. Ayearst, P. Yip, and R.D. Inman. 2016. Sexual dimorphism in the Th17 signature of ankylosing spondylitis. Arthritis & Rheumatology (Hoboken, NJ) 68 (3): 679–689.CrossRef Gracey, E., Y. Yao, B. Green, Z. Qaiyum, Y. Baglaenko, A. Lin, A. Anton, R. Ayearst, P. Yip, and R.D. Inman. 2016. Sexual dimorphism in the Th17 signature of ankylosing spondylitis. Arthritis & Rheumatology (Hoboken, NJ) 68 (3): 679–689.CrossRef
8.
go back to reference Klasen, C., A. Meyer, P.S. Wittekind, I. Waqué, S. Nabhani, and D.M. Kofler. 2019. Prostaglandin receptor EP4 expression by Th17 cells is associated with high disease activity in ankylosing spondylitis. Arthritis Research & Therapy 21 (1): 159.CrossRef Klasen, C., A. Meyer, P.S. Wittekind, I. Waqué, S. Nabhani, and D.M. Kofler. 2019. Prostaglandin receptor EP4 expression by Th17 cells is associated with high disease activity in ankylosing spondylitis. Arthritis Research & Therapy 21 (1): 159.CrossRef
9.
go back to reference Gaston, J.S.H., and D.R. Jadon. 2017. Th17 cell responses in spondyloarthritis. Best practice & research Clinical Rheumatology 31 (6): 777–796.CrossRef Gaston, J.S.H., and D.R. Jadon. 2017. Th17 cell responses in spondyloarthritis. Best practice & research Clinical Rheumatology 31 (6): 777–796.CrossRef
10.
go back to reference Chen, L., M.H. Al-Mossawi, A. Ridley, T. Sekine, A. Hammitzsch, J. de Wit, D. Simone, H. Shi, F. Penkava, M. Kurowska-Stolarska, et al. 2017. miR-10b-5p is a novel Th17 regulator present in Th17 cells from ankylosing spondylitis. Annals of the Rheumatic Diseases 76 (3): 620–625.PubMedCrossRef Chen, L., M.H. Al-Mossawi, A. Ridley, T. Sekine, A. Hammitzsch, J. de Wit, D. Simone, H. Shi, F. Penkava, M. Kurowska-Stolarska, et al. 2017. miR-10b-5p is a novel Th17 regulator present in Th17 cells from ankylosing spondylitis. Annals of the Rheumatic Diseases 76 (3): 620–625.PubMedCrossRef
11.
go back to reference McGinty, J., N. Brittain, and T.J. Kenna. 2020. Looking beyond Th17 cells: A role for Tr1 cells in ankylosing spondylitis? Frontiers in Immunology 11: 608900.PubMedPubMedCentralCrossRef McGinty, J., N. Brittain, and T.J. Kenna. 2020. Looking beyond Th17 cells: A role for Tr1 cells in ankylosing spondylitis? Frontiers in Immunology 11: 608900.PubMedPubMedCentralCrossRef
12.
go back to reference Pedersen, S.J., and W.P. Maksymowych. 2018. Beyond the TNF-α inhibitors: New and emerging targeted therapies for patients with axial spondyloarthritis and their relation to pathophysiology. Drugs 78 (14): 1397–1418.PubMedCrossRef Pedersen, S.J., and W.P. Maksymowych. 2018. Beyond the TNF-α inhibitors: New and emerging targeted therapies for patients with axial spondyloarthritis and their relation to pathophysiology. Drugs 78 (14): 1397–1418.PubMedCrossRef
13.
go back to reference Baeten, D., J. Sieper, J. Braun, X. Baraliakos, M. Dougados, P. Emery, A. Deodhar, B. Porter, R. Martin, M. Andersson, et al. 2015. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. The New England Journal of Medicine 373 (26): 2534–2548.PubMedCrossRef Baeten, D., J. Sieper, J. Braun, X. Baraliakos, M. Dougados, P. Emery, A. Deodhar, B. Porter, R. Martin, M. Andersson, et al. 2015. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. The New England Journal of Medicine 373 (26): 2534–2548.PubMedCrossRef
14.
go back to reference Antignano, F., and C. Zaph. 2015. Regulation of CD4 T-cell differentiation and inflammation by repressive histone methylation. Immunology and Cell Biology 93 (3): 245–252.PubMedCrossRef Antignano, F., and C. Zaph. 2015. Regulation of CD4 T-cell differentiation and inflammation by repressive histone methylation. Immunology and Cell Biology 93 (3): 245–252.PubMedCrossRef
15.
go back to reference Del Vescovo, S., V. Venerito, C. Iannone, and G. Lopalco. 2023. Uncovering the underworld of axial spondyloarthritis. International Journal of Molecular Sciences 24 (7): 6463.PubMedPubMedCentralCrossRef Del Vescovo, S., V. Venerito, C. Iannone, and G. Lopalco. 2023. Uncovering the underworld of axial spondyloarthritis. International Journal of Molecular Sciences 24 (7): 6463.PubMedPubMedCentralCrossRef
16.
go back to reference Roudier, F., I. Ahmed, C. Berard, A. Sarazin, T. Mary-Huard, S. Cortijo, D. Bouyer, E. Caillieux, E. Duvernois-Berthet, L. Al-Shikhley, et al. 2011. Integrative epigenomic mapping defines four main chromatin states in arabidopsis. The EMBO Journal 30 (10): 1928–1938.PubMedPubMedCentralCrossRef Roudier, F., I. Ahmed, C. Berard, A. Sarazin, T. Mary-Huard, S. Cortijo, D. Bouyer, E. Caillieux, E. Duvernois-Berthet, L. Al-Shikhley, et al. 2011. Integrative epigenomic mapping defines four main chromatin states in arabidopsis. The EMBO Journal 30 (10): 1928–1938.PubMedPubMedCentralCrossRef
17.
go back to reference Tang, H., S. An, H. Zhen, and F. Chen. 2014. Characterization of combinatorial histone modifications on lineage-affiliated genes during hematopoietic stem cell myeloid commitment. Acta Biochimica et Biophysica Sinica 46 (10): 894–901.PubMedCrossRef Tang, H., S. An, H. Zhen, and F. Chen. 2014. Characterization of combinatorial histone modifications on lineage-affiliated genes during hematopoietic stem cell myeloid commitment. Acta Biochimica et Biophysica Sinica 46 (10): 894–901.PubMedCrossRef
18.
go back to reference Zhang, X., H. Wen, and X. Shi. 2012. Lysine methylation: Beyond histones. Acta Biochimica et Biophysica Sinica 44 (1): 14–27.PubMedCrossRef Zhang, X., H. Wen, and X. Shi. 2012. Lysine methylation: Beyond histones. Acta Biochimica et Biophysica Sinica 44 (1): 14–27.PubMedCrossRef
19.
go back to reference Agger, K., P.A. Cloos, J. Christensen, D. Pasini, S. Rose, J. Rappsilber, I. Issaeva, E. Canaani, A.E. Salcini, and K. Helin. 2007. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449 (7163): 731–734.PubMedCrossRef Agger, K., P.A. Cloos, J. Christensen, D. Pasini, S. Rose, J. Rappsilber, I. Issaeva, E. Canaani, A.E. Salcini, and K. Helin. 2007. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449 (7163): 731–734.PubMedCrossRef
20.
go back to reference Schuettengruber, B., H.M. Bourbon, L. Di Croce, and G. Cavalli. 2017. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171 (1): 34–57.PubMedCrossRef Schuettengruber, B., H.M. Bourbon, L. Di Croce, and G. Cavalli. 2017. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171 (1): 34–57.PubMedCrossRef
21.
go back to reference Hubner, M.R., and D.L. Spector. 2010. Role of H3K27 demethylases Jmjd3 and UTX in transcriptional regulation. Cold Spring Harbor Symposia on Quantitative Biology 75: 43–49.PubMedCrossRef Hubner, M.R., and D.L. Spector. 2010. Role of H3K27 demethylases Jmjd3 and UTX in transcriptional regulation. Cold Spring Harbor Symposia on Quantitative Biology 75: 43–49.PubMedCrossRef
22.
go back to reference Duan, R., W. Du, and W. Guo. 2020. EZH2: A novel target for cancer treatment. Journal of Hematology & Oncology 13 (1): 104.CrossRef Duan, R., W. Du, and W. Guo. 2020. EZH2: A novel target for cancer treatment. Journal of Hematology & Oncology 13 (1): 104.CrossRef
23.
go back to reference Hoffmann, F., D. Niebel, P. Aymans, S. Ferring-Schmitt, D. Dietrich, and J. Landsberg. 2020. H3K27me3 and EZH2 expression in melanoma: Relevance for melanoma progression and response to immune checkpoint blockade. Clinical Epigenetics 12 (1): 24.PubMedPubMedCentralCrossRef Hoffmann, F., D. Niebel, P. Aymans, S. Ferring-Schmitt, D. Dietrich, and J. Landsberg. 2020. H3K27me3 and EZH2 expression in melanoma: Relevance for melanoma progression and response to immune checkpoint blockade. Clinical Epigenetics 12 (1): 24.PubMedPubMedCentralCrossRef
24.
go back to reference Liu, Z., W. Cao, L. Xu, X. Chen, Y. Zhan, Q. Yang, S. Liu, P. Chen, Y. Jiang, X. Sun, et al. 2015. The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. Journal of Molecular Cell Biology 7 (6): 505–516.PubMedCrossRef Liu, Z., W. Cao, L. Xu, X. Chen, Y. Zhan, Q. Yang, S. Liu, P. Chen, Y. Jiang, X. Sun, et al. 2015. The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. Journal of Molecular Cell Biology 7 (6): 505–516.PubMedCrossRef
25.
go back to reference Yang, X.P., K. Jiang, K. Hirahara, G. Vahedi, B. Afzali, G. Sciume, M. Bonelli, H.W. Sun, D. Jankovic, Y. Kanno, et al. 2015. EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports 5: 10643.PubMedPubMedCentralCrossRef Yang, X.P., K. Jiang, K. Hirahara, G. Vahedi, B. Afzali, G. Sciume, M. Bonelli, H.W. Sun, D. Jankovic, Y. Kanno, et al. 2015. EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports 5: 10643.PubMedPubMedCentralCrossRef
26.
go back to reference Guendisch, U., J. Weiss, F. Ecoeur, J.C. Riker, K. Kaupmann, J. Kallen, S. Hintermann, D. Orain, J. Dawson, A. Billich, et al. 2017. Pharmacological inhibition of RORgammat suppresses the Th17 pathway and alleviates arthritis in vivo. PLoS ONE 12 (11): e0188391.PubMedPubMedCentralCrossRef Guendisch, U., J. Weiss, F. Ecoeur, J.C. Riker, K. Kaupmann, J. Kallen, S. Hintermann, D. Orain, J. Dawson, A. Billich, et al. 2017. Pharmacological inhibition of RORgammat suppresses the Th17 pathway and alleviates arthritis in vivo. PLoS ONE 12 (11): e0188391.PubMedPubMedCentralCrossRef
27.
go back to reference Unutmaz, D. 2009. RORC2: The master of human Th17 cell programming. European Journal of Immunology 39 (6): 1452–1455.PubMedCrossRef Unutmaz, D. 2009. RORC2: The master of human Th17 cell programming. European Journal of Immunology 39 (6): 1452–1455.PubMedCrossRef
28.
go back to reference Huh, J.R., M.W. Leung, P. Huang, D.A. Ryan, M.R. Krout, R.R. Malapaka, J. Chow, N. Manel, M. Ciofani, S.V. Kim, et al. 2011. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature 472 (7344): 486–490.PubMedPubMedCentralCrossRef Huh, J.R., M.W. Leung, P. Huang, D.A. Ryan, M.R. Krout, R.R. Malapaka, J. Chow, N. Manel, M. Ciofani, S.V. Kim, et al. 2011. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature 472 (7344): 486–490.PubMedPubMedCentralCrossRef
29.
go back to reference Xia, L., E. Tian, M. Yu, C. Liu, L. Shen, Y. Huang, Z. Wu, J. Tian, K. Yu, Y. Wang, et al. 2022. RORγt agonist enhances anti-PD-1 therapy by promoting monocyte-derived dendritic cells through CXCL10 in cancers. Journal of Experimental & Clinical Cancer Research : CR 41 (1): 155.PubMedCentralCrossRef Xia, L., E. Tian, M. Yu, C. Liu, L. Shen, Y. Huang, Z. Wu, J. Tian, K. Yu, Y. Wang, et al. 2022. RORγt agonist enhances anti-PD-1 therapy by promoting monocyte-derived dendritic cells through CXCL10 in cancers. Journal of Experimental & Clinical Cancer Research : CR 41 (1): 155.PubMedCentralCrossRef
30.
go back to reference Yahia-Cherbal, H., M. Rybczynska, D. Lovecchio, T. Stephen, C. Lescale, K. Placek, J. Larghero, L. Rogge, and E. Bianchi. 2019. NFAT primes the human RORC locus for RORγt expression in CD4+ T cells. Nature Communications 10 (1): 4698.PubMedPubMedCentralCrossRef Yahia-Cherbal, H., M. Rybczynska, D. Lovecchio, T. Stephen, C. Lescale, K. Placek, J. Larghero, L. Rogge, and E. Bianchi. 2019. NFAT primes the human RORC locus for RORγt expression in CD4+ T cells. Nature Communications 10 (1): 4698.PubMedPubMedCentralCrossRef
31.
go back to reference Chaudhry, A., D. Rudra, P. Treuting, R.M. Samstein, Y. Liang, A. Kas, and A.Y. Rudensky. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326 (5955): 986–991.PubMedPubMedCentralCrossRef Chaudhry, A., D. Rudra, P. Treuting, R.M. Samstein, Y. Liang, A. Kas, and A.Y. Rudensky. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326 (5955): 986–991.PubMedPubMedCentralCrossRef
32.
go back to reference Burchfield, J.S., Q. Li, H.Y. Wang, and R.F. Wang. 2015. JMJD3 as an epigenetic regulator in development and disease. The International Journal of Biochemistry & Cell Biology 67: 148–157.CrossRef Burchfield, J.S., Q. Li, H.Y. Wang, and R.F. Wang. 2015. JMJD3 as an epigenetic regulator in development and disease. The International Journal of Biochemistry & Cell Biology 67: 148–157.CrossRef
33.
go back to reference Cohen, C.J., S.Q. Crome, K.G. MacDonald, E.L. Dai, D.L. Mager, and M.K. Levings. 2011. Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. Journal of Immunology 187 (11): 5615–5626.CrossRef Cohen, C.J., S.Q. Crome, K.G. MacDonald, E.L. Dai, D.L. Mager, and M.K. Levings. 2011. Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. Journal of Immunology 187 (11): 5615–5626.CrossRef
34.
go back to reference Hanisch, U.K. 2014. Linking STAT and TLR signaling in microglia: A new role for the histone demethylase Jmjd3. Journal of Molecular Medicine 92 (3): 197–200.PubMedCrossRef Hanisch, U.K. 2014. Linking STAT and TLR signaling in microglia: A new role for the histone demethylase Jmjd3. Journal of Molecular Medicine 92 (3): 197–200.PubMedCrossRef
35.
go back to reference Taams, L.S., K.J.A. Steel, U. Srenathan, L.A. Burns, and B.W. Kirkham. 2018. IL-17 in the immunopathogenesis of spondyloarthritis. Nature Reviews Rheumatology 14 (8): 453–466.PubMedCrossRef Taams, L.S., K.J.A. Steel, U. Srenathan, L.A. Burns, and B.W. Kirkham. 2018. IL-17 in the immunopathogenesis of spondyloarthritis. Nature Reviews Rheumatology 14 (8): 453–466.PubMedCrossRef
36.
go back to reference Cua, D.J., and C.M. Tato. 2010. Innate IL-17-producing cells: The sentinels of the immune system. Nature Reviews Immunology 10 (7): 479–489.PubMedCrossRef Cua, D.J., and C.M. Tato. 2010. Innate IL-17-producing cells: The sentinels of the immune system. Nature Reviews Immunology 10 (7): 479–489.PubMedCrossRef
37.
go back to reference Zrioual, S., R. Ecochard, A. Tournadre, V. Lenief, M.A. Cazalis, and P. Miossec. 2009. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. Journal of Immunology 182 (5): 3112–3120.CrossRef Zrioual, S., R. Ecochard, A. Tournadre, V. Lenief, M.A. Cazalis, and P. Miossec. 2009. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. Journal of Immunology 182 (5): 3112–3120.CrossRef
38.
go back to reference Geng, J., S. Yu, H. Zhao, X. Sun, X. Li, P. Wang, X. Xiong, L. Hong, C. Xie, J. Gao, et al. 2017. The transcriptional coactivator TAZ regulates reciprocal differentiation of T(H)17 cells and T(reg) cells. Nature Immunology 18 (7): 800–812.PubMedCrossRef Geng, J., S. Yu, H. Zhao, X. Sun, X. Li, P. Wang, X. Xiong, L. Hong, C. Xie, J. Gao, et al. 2017. The transcriptional coactivator TAZ regulates reciprocal differentiation of T(H)17 cells and T(reg) cells. Nature Immunology 18 (7): 800–812.PubMedCrossRef
39.
go back to reference Ivanov, I.I., B.S. McKenzie, L. Zhou, C.E. Tadokoro, A. Lepelley, J.J. Lafaille, D.J. Cua, and D.R. Littman. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126 (6): 1121–1133.PubMedCrossRef Ivanov, I.I., B.S. McKenzie, L. Zhou, C.E. Tadokoro, A. Lepelley, J.J. Lafaille, D.J. Cua, and D.R. Littman. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126 (6): 1121–1133.PubMedCrossRef
40.
go back to reference Zhang, M., L. Zhou, Y. Xu, M. Yang, Y. Xu, G.P. Komaniecki, T. Kosciuk, X. Chen, X. Lu, X. Zou, et al. 2020. A STAT3 palmitoylation cycle promotes T(H)17 differentiation and colitis. Nature 586 (7829): 434–439.PubMedPubMedCentralCrossRef Zhang, M., L. Zhou, Y. Xu, M. Yang, Y. Xu, G.P. Komaniecki, T. Kosciuk, X. Chen, X. Lu, X. Zou, et al. 2020. A STAT3 palmitoylation cycle promotes T(H)17 differentiation and colitis. Nature 586 (7829): 434–439.PubMedPubMedCentralCrossRef
41.
go back to reference Lee, J.Y., J.A. Hall, L. Kroehling, L. Wu, T. Najar, H.H. Nguyen, W.Y. Lin, S.T. Yeung, H.M. Silva, D. Li, et al. 2020. Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell 180 (1): 79-91.e16.PubMedCrossRef Lee, J.Y., J.A. Hall, L. Kroehling, L. Wu, T. Najar, H.H. Nguyen, W.Y. Lin, S.T. Yeung, H.M. Silva, D. Li, et al. 2020. Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell 180 (1): 79-91.e16.PubMedCrossRef
42.
go back to reference de Vlam, K. 2010. Soluble and tissue biomarkers in ankylosing spondylitis. Best Practice & Research Clinical Rheumatology 24 (5): 671–682.PubMedCrossRef de Vlam, K. 2010. Soluble and tissue biomarkers in ankylosing spondylitis. Best Practice & Research Clinical Rheumatology 24 (5): 671–682.PubMedCrossRef
43.
go back to reference Jiang, Y., C. Xiang, F. Zhong, Y. Zhang, L. Wang, Y. Zhao, J. Wang, C. Ding, L. Jin, F. He, et al. 2021. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics 11 (1): 361–378.PubMedPubMedCentralCrossRef Jiang, Y., C. Xiang, F. Zhong, Y. Zhang, L. Wang, Y. Zhao, J. Wang, C. Ding, L. Jin, F. He, et al. 2021. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics 11 (1): 361–378.PubMedPubMedCentralCrossRef
44.
go back to reference Li, Q., J. Zou, M. Wang, X. Ding, I. Chepelev, X. Zhou, W. Zhao, G. Wei, J. Cui, K. Zhao, et al. 2014. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nature Communications 5: 5780.PubMedCrossRef Li, Q., J. Zou, M. Wang, X. Ding, I. Chepelev, X. Zhou, W. Zhao, G. Wei, J. Cui, K. Zhao, et al. 2014. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nature Communications 5: 5780.PubMedCrossRef
45.
go back to reference Cribbs, A.P., S. Terlecki-Zaniewicz, M. Philpott, J. Baardman, D. Ahern, M. Lindow, S. Obad, H. Oerum, B. Sampey, P.K. Mander, et al. 2020. Histone H3K27me3 demethylases regulate human Th17 cell development and effector functions by impacting on metabolism. Proceedings of the National Academy of Sciences of the United States of America 117 (11): 6056–6066.PubMedPubMedCentralCrossRef Cribbs, A.P., S. Terlecki-Zaniewicz, M. Philpott, J. Baardman, D. Ahern, M. Lindow, S. Obad, H. Oerum, B. Sampey, P.K. Mander, et al. 2020. Histone H3K27me3 demethylases regulate human Th17 cell development and effector functions by impacting on metabolism. Proceedings of the National Academy of Sciences of the United States of America 117 (11): 6056–6066.PubMedPubMedCentralCrossRef
46.
go back to reference Chen, Q., X. Duan, M. Xu, H. Fan, Y. Dong, H. Wu, M. Zhang, Y. Liu, Z. Nan, S. Deng, et al. 2020. BMSC-EVs regulate Th17 cell differentiation in UC via H3K27me3. Molecular Immunology 118: 191–200.PubMedCrossRef Chen, Q., X. Duan, M. Xu, H. Fan, Y. Dong, H. Wu, M. Zhang, Y. Liu, Z. Nan, S. Deng, et al. 2020. BMSC-EVs regulate Th17 cell differentiation in UC via H3K27me3. Molecular Immunology 118: 191–200.PubMedCrossRef
47.
go back to reference Liu, X., S. Ren, X. Qu, C. Ge, K. Cheng, and R.C. Zhao. 2015. Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-γ-mediated SOCS3 activation. Immunologic Research 61 (3): 219–229.PubMedCrossRef Liu, X., S. Ren, X. Qu, C. Ge, K. Cheng, and R.C. Zhao. 2015. Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-γ-mediated SOCS3 activation. Immunologic Research 61 (3): 219–229.PubMedCrossRef
48.
go back to reference Lu, Y., Q. Ma, L. Yu, H. Huang, X. Liu, P. Chen, H. Ran, and W. Liu. 2023. JAK2 inhibitor ameliorates the progression of experimental autoimmune myasthenia gravis and balances Th17/Treg cells via regulating the JAK2/STAT3-AKT/mTOR signaling pathway. International Immunopharmacology 115: 109693.PubMedCrossRef Lu, Y., Q. Ma, L. Yu, H. Huang, X. Liu, P. Chen, H. Ran, and W. Liu. 2023. JAK2 inhibitor ameliorates the progression of experimental autoimmune myasthenia gravis and balances Th17/Treg cells via regulating the JAK2/STAT3-AKT/mTOR signaling pathway. International Immunopharmacology 115: 109693.PubMedCrossRef
49.
go back to reference He, L., J. Du, Y. Chen, C. Liu, M. Zhou, S. Adhikari, D.T. Rubin, J. Pekow, and Y.C. Li. 2019. Renin-angiotensin system promotes colonic inflammation by inducing T(H)17 activation via JAK2/STAT pathway. American Journal of Physiology Gastrointestinal and Liver Physiology 316 (6): G774–G784.PubMedPubMedCentralCrossRef He, L., J. Du, Y. Chen, C. Liu, M. Zhou, S. Adhikari, D.T. Rubin, J. Pekow, and Y.C. Li. 2019. Renin-angiotensin system promotes colonic inflammation by inducing T(H)17 activation via JAK2/STAT pathway. American Journal of Physiology Gastrointestinal and Liver Physiology 316 (6): G774–G784.PubMedPubMedCentralCrossRef
50.
go back to reference Raychaudhuri, S.P., and S.K. Raychaudhuri. 2017. Mechanistic rationales for targeting interleukin-17A in spondyloarthritis. Arthritis Research & Therapy 19 (1): 51.CrossRef Raychaudhuri, S.P., and S.K. Raychaudhuri. 2017. Mechanistic rationales for targeting interleukin-17A in spondyloarthritis. Arthritis Research & Therapy 19 (1): 51.CrossRef
51.
go back to reference Lubberts, E. 2015. The IL-23-IL-17 axis in inflammatory arthritis. Nature Reviews Rheumatology 11 (7): 415–429.PubMedCrossRef Lubberts, E. 2015. The IL-23-IL-17 axis in inflammatory arthritis. Nature Reviews Rheumatology 11 (7): 415–429.PubMedCrossRef
52.
go back to reference Dubash, S., C. Bridgewood, D. McGonagle, and H. Marzo-Ortega. 2019. The advent of IL-17A blockade in ankylosing spondylitis: Secukinumab, ixekizumab and beyond. Expert Review of Clinical Immunology 15 (2): 123–134.PubMedCrossRef Dubash, S., C. Bridgewood, D. McGonagle, and H. Marzo-Ortega. 2019. The advent of IL-17A blockade in ankylosing spondylitis: Secukinumab, ixekizumab and beyond. Expert Review of Clinical Immunology 15 (2): 123–134.PubMedCrossRef
53.
go back to reference Guo, P., Y. Liu, F. Geng, A.W. Daman, X. Liu, L. Zhong, A. Ravishankar, R. Lis, J.G. Barcia Durán, T. Itkin, et al. 2022. Histone variant H3.3 maintains adult haematopoietic stem cell homeostasis by enforcing chromatin adaptability. Nature Cell Biology 24 (1): 99–111.PubMedCrossRef Guo, P., Y. Liu, F. Geng, A.W. Daman, X. Liu, L. Zhong, A. Ravishankar, R. Lis, J.G. Barcia Durán, T. Itkin, et al. 2022. Histone variant H3.3 maintains adult haematopoietic stem cell homeostasis by enforcing chromatin adaptability. Nature Cell Biology 24 (1): 99–111.PubMedCrossRef
54.
go back to reference Wang, Y., P. Deng, Y. Liu, Y. Wu, Y. Chen, Y. Guo, S. Zhang, X. Zheng, L. Zhou, W. Liu, et al. 2020. Alpha-ketoglutarate ameliorates age-related osteoporosis via regulating histone methylations. Nature Communications 11 (1): 5596.PubMedPubMedCentralCrossRef Wang, Y., P. Deng, Y. Liu, Y. Wu, Y. Chen, Y. Guo, S. Zhang, X. Zheng, L. Zhou, W. Liu, et al. 2020. Alpha-ketoglutarate ameliorates age-related osteoporosis via regulating histone methylations. Nature Communications 11 (1): 5596.PubMedPubMedCentralCrossRef
55.
go back to reference Nassiri, F., J.Z. Wang, O. Singh, S. Karimi, T. Dalcourt, N. Ijad, N. Pirouzmand, H.K. Ng, A. Saladino, B. Pollo, et al. 2021. Loss of H3K27me3 in meningiomas. Neuro-Oncology 23 (8): 1282–1291.PubMedPubMedCentralCrossRef Nassiri, F., J.Z. Wang, O. Singh, S. Karimi, T. Dalcourt, N. Ijad, N. Pirouzmand, H.K. Ng, A. Saladino, B. Pollo, et al. 2021. Loss of H3K27me3 in meningiomas. Neuro-Oncology 23 (8): 1282–1291.PubMedPubMedCentralCrossRef
56.
go back to reference Behling, F., C. Fodi, I. Gepfner-Tuma, K. Kaltenbach, M. Renovanz, F. Paulsen, M. Skardelly, J. Honegger, M. Tatagiba, J. Schittenhelm, et al. 2021. H3K27me3 loss indicates an increased risk of recurrence in the Tübingen meningioma cohort. Neuro-Oncology 23 (8): 1273–1281.PubMedCrossRef Behling, F., C. Fodi, I. Gepfner-Tuma, K. Kaltenbach, M. Renovanz, F. Paulsen, M. Skardelly, J. Honegger, M. Tatagiba, J. Schittenhelm, et al. 2021. H3K27me3 loss indicates an increased risk of recurrence in the Tübingen meningioma cohort. Neuro-Oncology 23 (8): 1273–1281.PubMedCrossRef
57.
go back to reference Abu-Hanna, J., J.A. Patel, E. Anastasakis, R. Cohen, L.H. Clapp, M. Loizidou, and M.M.R. Eddama. 2022. Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: A review of the literature. Clinical Epigenetics 14 (1): 98.PubMedPubMedCentralCrossRef Abu-Hanna, J., J.A. Patel, E. Anastasakis, R. Cohen, L.H. Clapp, M. Loizidou, and M.M.R. Eddama. 2022. Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: A review of the literature. Clinical Epigenetics 14 (1): 98.PubMedPubMedCentralCrossRef
58.
go back to reference Zhang, X., L. Liu, X. Yuan, Y. Wei, and X. Wei. 2019. JMJD3 in the regulation of human diseases. Protein & Cell 10 (12): 864–882.CrossRef Zhang, X., L. Liu, X. Yuan, Y. Wei, and X. Wei. 2019. JMJD3 in the regulation of human diseases. Protein & Cell 10 (12): 864–882.CrossRef
59.
go back to reference Jin, Y., Z. Liu, Z. Li, H. Li, C. Zhu, R. Li, T. Zhou, and B. Fang. 2022. Histone demethylase JMJD3 downregulation protects against aberrant force-induced osteoarthritis through epigenetic control of NR4A1. International Journal of Oral Science 14 (1): 34.PubMedPubMedCentralCrossRef Jin, Y., Z. Liu, Z. Li, H. Li, C. Zhu, R. Li, T. Zhou, and B. Fang. 2022. Histone demethylase JMJD3 downregulation protects against aberrant force-induced osteoarthritis through epigenetic control of NR4A1. International Journal of Oral Science 14 (1): 34.PubMedPubMedCentralCrossRef
60.
go back to reference Nakka, K., S. Hachmer, Z. Mokhtari, R. Kovac, H. Bandukwala, C. Bernard, Y. Li, G. Xie, C. Liu, M. Fallahi, et al. 2022. JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment. Science 377 (6606): 666–669.PubMedCrossRef Nakka, K., S. Hachmer, Z. Mokhtari, R. Kovac, H. Bandukwala, C. Bernard, Y. Li, G. Xie, C. Liu, M. Fallahi, et al. 2022. JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment. Science 377 (6606): 666–669.PubMedCrossRef
61.
go back to reference Sun, D., X. Cao, and C. Wang. 2019. Polycomb chromobox Cbx2 enhances antiviral innate immunity by promoting Jmjd3-mediated demethylation of H3K27 at the Ifnb promoter. Protein & Cell 10 (4): 285–294.CrossRef Sun, D., X. Cao, and C. Wang. 2019. Polycomb chromobox Cbx2 enhances antiviral innate immunity by promoting Jmjd3-mediated demethylation of H3K27 at the Ifnb promoter. Protein & Cell 10 (4): 285–294.CrossRef
62.
go back to reference Davis, F.M., L.C. Tsoi, W.J. Melvin, A. denDekker, R. Wasikowski, A.D. Joshi, S. Wolf, A.T. Obi, A.C. Billi, X. Xing, et al. 2021. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. The Journal of Experimental Medicine 218 (6): e20201839.PubMedPubMedCentralCrossRef Davis, F.M., L.C. Tsoi, W.J. Melvin, A. denDekker, R. Wasikowski, A.D. Joshi, S. Wolf, A.T. Obi, A.C. Billi, X. Xing, et al. 2021. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. The Journal of Experimental Medicine 218 (6): e20201839.PubMedPubMedCentralCrossRef
63.
go back to reference Leng, X.Y., J. Yang, H. Fan, Q.Y. Chen, B.J. Cheng, H.X. He, F. Gao, F. Zhu, T. Yu, and Y.J. Liu. 2022. JMJD3/H3K27me3 epigenetic modification regulates Th17/Treg cell differentiation in ulcerative colitis. International Immunopharmacology 110: 109000.PubMedCrossRef Leng, X.Y., J. Yang, H. Fan, Q.Y. Chen, B.J. Cheng, H.X. He, F. Gao, F. Zhu, T. Yu, and Y.J. Liu. 2022. JMJD3/H3K27me3 epigenetic modification regulates Th17/Treg cell differentiation in ulcerative colitis. International Immunopharmacology 110: 109000.PubMedCrossRef
64.
go back to reference Ruutu, M., G. Thomas, R. Steck, M.A. Degli-Esposti, M.S. Zinkernagel, K. Alexander, J. Velasco, G. Strutton, A. Tran, H. Benham, et al. 2012. β-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis and Rheumatism 64 (7): 2211–2222.PubMedCrossRef Ruutu, M., G. Thomas, R. Steck, M.A. Degli-Esposti, M.S. Zinkernagel, K. Alexander, J. Velasco, G. Strutton, A. Tran, H. Benham, et al. 2012. β-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis and Rheumatism 64 (7): 2211–2222.PubMedCrossRef
65.
go back to reference Zhai, Y., L. Chen, Q. Zhao, Z.H. Zheng, Z.N. Chen, H. Bian, X. Yang, H.Y. Lu, P. Lin, X. Chen, et al. 2023. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 379 (6637): eabg2482.PubMedCrossRef Zhai, Y., L. Chen, Q. Zhao, Z.H. Zheng, Z.N. Chen, H. Bian, X. Yang, H.Y. Lu, P. Lin, X. Chen, et al. 2023. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 379 (6637): eabg2482.PubMedCrossRef
66.
go back to reference Kucuksezer, U.C., E. Aktas Cetin, F. Esen, I. Tahrali, N. Akdeniz, M.Y. Gelmez, and G. Deniz. 2021. The role of natural killer cells in autoimmune diseases. Frontiers in Immunology 12: 622306.PubMedPubMedCentralCrossRef Kucuksezer, U.C., E. Aktas Cetin, F. Esen, I. Tahrali, N. Akdeniz, M.Y. Gelmez, and G. Deniz. 2021. The role of natural killer cells in autoimmune diseases. Frontiers in Immunology 12: 622306.PubMedPubMedCentralCrossRef
67.
go back to reference Przanowski, P., M. Dabrowski, A. Ellert-Miklaszewska, M. Kloss, J. Mieczkowski, B. Kaza, A. Ronowicz, F. Hu, A. Piotrowski, H. Kettenmann, et al. 2014. The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. Journal of Molecular Medicine 92 (3): 239–254.PubMedCrossRef Przanowski, P., M. Dabrowski, A. Ellert-Miklaszewska, M. Kloss, J. Mieczkowski, B. Kaza, A. Ronowicz, F. Hu, A. Piotrowski, H. Kettenmann, et al. 2014. The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. Journal of Molecular Medicine 92 (3): 239–254.PubMedCrossRef
69.
go back to reference Lund, K., P.D. Adams, and M. Copland. 2014. EZH2 in normal and malignant hematopoiesis. Leukemia 28 (1): 44–49.PubMedCrossRef Lund, K., P.D. Adams, and M. Copland. 2014. EZH2 in normal and malignant hematopoiesis. Leukemia 28 (1): 44–49.PubMedCrossRef
70.
go back to reference Zhang, Y., S. Kinkel, J. Maksimovic, E. Bandala-Sanchez, M.C. Tanzer, G. Naselli, J.G. Zhang, Y. Zhan, A.M. Lew, J. Silke, et al. 2014. The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124 (5): 737–749.PubMedCrossRef Zhang, Y., S. Kinkel, J. Maksimovic, E. Bandala-Sanchez, M.C. Tanzer, G. Naselli, J.G. Zhang, Y. Zhan, A.M. Lew, J. Silke, et al. 2014. The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124 (5): 737–749.PubMedCrossRef
71.
go back to reference Fan, K., C.L. Zhang, B.H. Zhang, M.Q. Gao, and Y.C. Sun. 2022. Analysis of the correlation between Zeste enhancer homolog 2 (EZH2) mRNA expression and the prognosis of mesothelioma patients and immune infiltration. Scientific Reports 12 (1): 16583.PubMedPubMedCentralCrossRef Fan, K., C.L. Zhang, B.H. Zhang, M.Q. Gao, and Y.C. Sun. 2022. Analysis of the correlation between Zeste enhancer homolog 2 (EZH2) mRNA expression and the prognosis of mesothelioma patients and immune infiltration. Scientific Reports 12 (1): 16583.PubMedPubMedCentralCrossRef
72.
go back to reference Coit, P., M.G. Dozmorov, J.T. Merrill, W.J. McCune, K. Maksimowicz-McKinnon, J.D. Wren, and A.H. Sawalha. 2016. Epigenetic reprogramming in naive CD4+ T cells favoring T cell activation and non-Th1 effector T cell immune response as an early event in lupus flares. Arthritis & Rheumatology (Hoboken, NJ) 68 (9): 2200–2209.CrossRef Coit, P., M.G. Dozmorov, J.T. Merrill, W.J. McCune, K. Maksimowicz-McKinnon, J.D. Wren, and A.H. Sawalha. 2016. Epigenetic reprogramming in naive CD4+ T cells favoring T cell activation and non-Th1 effector T cell immune response as an early event in lupus flares. Arthritis & Rheumatology (Hoboken, NJ) 68 (9): 2200–2209.CrossRef
73.
go back to reference Maeda, M., H. Takeshima, N. Iida, N. Hattori, S. Yamashita, H. Moro, Y. Yasukawa, K. Nishiyama, T. Hashimoto, S. Sekine, et al. 2020. Cancer cell niche factors secreted from cancer-associated fibroblast by loss of H3K27me3. Gut 69 (2): 243–251.PubMedCrossRef Maeda, M., H. Takeshima, N. Iida, N. Hattori, S. Yamashita, H. Moro, Y. Yasukawa, K. Nishiyama, T. Hashimoto, S. Sekine, et al. 2020. Cancer cell niche factors secreted from cancer-associated fibroblast by loss of H3K27me3. Gut 69 (2): 243–251.PubMedCrossRef
74.
go back to reference Gauchotte, G., M. Peyre, C. Pouget, D. Cazals-Hatem, M. Polivka, F. Rech, P. Varlet, H. Loiseau, S. Lacomme, K. Mokhtari, et al. 2020. Prognostic value of histopathological features and loss of H3K27me3 immunolabeling in anaplastic meningioma: A multicenter retrospective study. Journal of Neuropathology and Experimental Neurology 79 (7): 754–762.PubMedCrossRef Gauchotte, G., M. Peyre, C. Pouget, D. Cazals-Hatem, M. Polivka, F. Rech, P. Varlet, H. Loiseau, S. Lacomme, K. Mokhtari, et al. 2020. Prognostic value of histopathological features and loss of H3K27me3 immunolabeling in anaplastic meningioma: A multicenter retrospective study. Journal of Neuropathology and Experimental Neurology 79 (7): 754–762.PubMedCrossRef
75.
go back to reference Harutyunyan, A.S., B. Krug, H. Chen, S. Papillon-Cavanagh, M. Zeinieh, N. De Jay, S. Deshmukh, C.C.L. Chen, J. Belle, L.G. Mikael, et al. 2019. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nature Communications 10 (1): 1262.PubMedPubMedCentralCrossRef Harutyunyan, A.S., B. Krug, H. Chen, S. Papillon-Cavanagh, M. Zeinieh, N. De Jay, S. Deshmukh, C.C.L. Chen, J. Belle, L.G. Mikael, et al. 2019. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nature Communications 10 (1): 1262.PubMedPubMedCentralCrossRef
Metadata
Title
The Role of H3K27me3-Mediated Th17 Differentiation in Ankylosing Spondylitis
Authors
Yuening Chen
Wanlin Liu
Xiaohan Xu
Hongying Zhen
Bo Pang
Zhe Zhao
Yanan Zhao
Hongxiao Liu
Publication date
22-03-2024
Publisher
Springer US
Published in
Inflammation
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02002-9
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine