Skip to main content
Top
Published in: Inflammation 1/2017

01-02-2017 | ORIGINAL ARTICLE

Angiotensin II-Induced Early and Late Inflammatory Responses Through NOXs and MAPK Pathways

Authors: Xi Zhang, Jia Yang, Xinyi Yu, Si Cheng, Hua Gan, Yunfeng Xia

Published in: Inflammation | Issue 1/2017

Login to get access

Abstract

Angiotensin II (Ang II) dysregulation has been determined as cause or an effect of many diseases. The relationship between Ang II and reactive oxygen species (ROS), which are generated by enzymes in the nicotinamide adenine dinucleotide phosphate oxidase (NOX) family, has been the focus of many researchers for years. Inflammation in response to the activities of various NOXs with differing time-dependent characteristics was reported. It is still unclear how these factors interplay over the course of the inflammatory response and how signal transduction through mitogen-activated protein kinase (MAPK) pathways. Our study collected data on the effects of Ang II on human umbilical vascular endothelial cells (HUVECs) over a comprehensive time period. Our results demonstrated that NOXs had two time-dependent reactions in response to Ang II stimulation via MAPK pathways. First, ROS was produced only during the early inflammatory phase. NOX4 promoted more rapid generation of H2O2 via the JNK pathway than generation of O2· via ERK1/2 and p38 pathways. During both the early and late phases of the inflammatory response, NOX4 activity was transduced through the JNK pathway, whereas NOX1 and NOX2 signals were transmitted via the ERK1/2 and p38 pathways. Signal transduction via ROS generation was more likely during the early phase of the inflammatory response, and increased cytokine levels were more likely induced by the late phase of the inflammatory response.
Literature
1.
go back to reference Cat, A.N.D., A.C. Montezano, D. Burger, and R.M. Touyz. 2013. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 19(10): 1110–1120.CrossRef Cat, A.N.D., A.C. Montezano, D. Burger, and R.M. Touyz. 2013. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 19(10): 1110–1120.CrossRef
2.
go back to reference Anilkumar, N., R. Weber, M. Zhang, A. Brewer, and A.M. Shah. 2008. Nox4 and Nox2 NAPDH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc Biol 28: 1347–1354.CrossRefPubMed Anilkumar, N., R. Weber, M. Zhang, A. Brewer, and A.M. Shah. 2008. Nox4 and Nox2 NAPDH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc Biol 28: 1347–1354.CrossRefPubMed
3.
go back to reference Shatanawi, A., M.J. Romero, J.A. Iddings, et al. 2011. Angiotensin II-induced vascular endothelial dysfunction through RhoA/Rho kinase/p38 mitogen-activated protein kinase/arginase pathway. Am J Physiol Cell Physiol 300: C1181–C1192.CrossRefPubMedPubMedCentral Shatanawi, A., M.J. Romero, J.A. Iddings, et al. 2011. Angiotensin II-induced vascular endothelial dysfunction through RhoA/Rho kinase/p38 mitogen-activated protein kinase/arginase pathway. Am J Physiol Cell Physiol 300: C1181–C1192.CrossRefPubMedPubMedCentral
4.
go back to reference Zhang, X., M. Wu, H. Jiang, et al. 2014. Angiotensin II upregulates endothelial lipase expression via the NF-kappa B and MAPK signaling pathways. PLOS ONE 9(9): e107634.CrossRefPubMedPubMedCentral Zhang, X., M. Wu, H. Jiang, et al. 2014. Angiotensin II upregulates endothelial lipase expression via the NF-kappa B and MAPK signaling pathways. PLOS ONE 9(9): e107634.CrossRefPubMedPubMedCentral
5.
go back to reference Qiu, Y., L. Tao, C. Lei, et al. 2015. Downregulating p22phox ameliorates inflammatory response in angiotensin II-induced oxidative stress by regulating MAPK and NF-κB pathways in ARPE-19 cells. Sci Rep 29(5): 14362.CrossRef Qiu, Y., L. Tao, C. Lei, et al. 2015. Downregulating p22phox ameliorates inflammatory response in angiotensin II-induced oxidative stress by regulating MAPK and NF-κB pathways in ARPE-19 cells. Sci Rep 29(5): 14362.CrossRef
6.
go back to reference Guo, R.-W., L.-X. Yang, M.-Q. Li, B. Liu, and X.-M. Wang. 2006. Angiotensin II induces NF-κB activation in HUVEC via the p38MAPK pathway. Peptides 27: 3269–3275.CrossRefPubMed Guo, R.-W., L.-X. Yang, M.-Q. Li, B. Liu, and X.-M. Wang. 2006. Angiotensin II induces NF-κB activation in HUVEC via the p38MAPK pathway. Peptides 27: 3269–3275.CrossRefPubMed
7.
go back to reference Balla, S., M.B. Nusair, and M.A. Alpert. 2013. Risk factors for atherosclerosis in patients with chronic kidney disease: recognition and management. Curr Opin Pharmacol 13: 192–199.CrossRefPubMed Balla, S., M.B. Nusair, and M.A. Alpert. 2013. Risk factors for atherosclerosis in patients with chronic kidney disease: recognition and management. Curr Opin Pharmacol 13: 192–199.CrossRefPubMed
8.
go back to reference Alvarez, A., M. Cerda-Nicolas, Y.N.A. Nabah, et al. 2004. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood 104: 402–408.CrossRefPubMed Alvarez, A., M. Cerda-Nicolas, Y.N.A. Nabah, et al. 2004. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood 104: 402–408.CrossRefPubMed
9.
go back to reference Nabah, Y.N.A., M. Losada, R. Estelles, et al. 2007. CXCR2 blockade impairs angiotensin II-induced CC chemokine synthesis and mononuclear leukocyte infiltration. Arterioscler Thromb Vasc Biol 27: 2370–2376.CrossRefPubMed Nabah, Y.N.A., M. Losada, R. Estelles, et al. 2007. CXCR2 blockade impairs angiotensin II-induced CC chemokine synthesis and mononuclear leukocyte infiltration. Arterioscler Thromb Vasc Biol 27: 2370–2376.CrossRefPubMed
10.
11.
go back to reference Zhang, L., A. Zalewski, Y. Liu, et al. 2003. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 108: 472–478.CrossRefPubMed Zhang, L., A. Zalewski, Y. Liu, et al. 2003. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 108: 472–478.CrossRefPubMed
12.
go back to reference Forman, H.J., and M. Torres. 2002. Reactive oxygen species and cell signaling-respiratory burst in macrophage signaling. Am J Resp Crit Care Med 166: S4–S8.CrossRefPubMed Forman, H.J., and M. Torres. 2002. Reactive oxygen species and cell signaling-respiratory burst in macrophage signaling. Am J Resp Crit Care Med 166: S4–S8.CrossRefPubMed
13.
go back to reference Dikalov, S.I., A.E. Dikalova, A.T. Bikineyeva, H.H.H.W. Schmidt, D.G. Harrison, and K.K. Griendling. 2008. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45: 1340–1351.CrossRefPubMedPubMedCentral Dikalov, S.I., A.E. Dikalova, A.T. Bikineyeva, H.H.H.W. Schmidt, D.G. Harrison, and K.K. Griendling. 2008. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45: 1340–1351.CrossRefPubMedPubMedCentral
14.
go back to reference Mendez, J.I., W.J. Nicholson, and W.R. Taylor. 2005. SOD isoforms and signaling in blood vessels: evidence for the importance of ROS compartmentalization. Arterioscler Thromb Vasc Biol 25: 887–888.CrossRefPubMed Mendez, J.I., W.J. Nicholson, and W.R. Taylor. 2005. SOD isoforms and signaling in blood vessels: evidence for the importance of ROS compartmentalization. Arterioscler Thromb Vasc Biol 25: 887–888.CrossRefPubMed
15.
go back to reference Rodriguez-Rocha, H., A. Garcia-Garcia, C. Pickett, et al. 2014. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: distinct roles of superoxide anion and superoside dismutases. Free Radic Biol Med 61: 370–383.CrossRef Rodriguez-Rocha, H., A. Garcia-Garcia, C. Pickett, et al. 2014. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: distinct roles of superoxide anion and superoside dismutases. Free Radic Biol Med 61: 370–383.CrossRef
16.
go back to reference Wu, R.-F., Z. Ma, Z. Liu, and L.S. Terada. 2010. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol Cell Biol 30(14): 3553–3568.CrossRefPubMedPubMedCentral Wu, R.-F., Z. Ma, Z. Liu, and L.S. Terada. 2010. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol Cell Biol 30(14): 3553–3568.CrossRefPubMedPubMedCentral
17.
go back to reference Schroder, K., M. Zhang, S. Benkhoff, et al. 2012. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110: 1217–1225.CrossRefPubMed Schroder, K., M. Zhang, S. Benkhoff, et al. 2012. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110: 1217–1225.CrossRefPubMed
18.
go back to reference Stolk, J., T.J. Hiltermann, J.H. Dijkman, and A.J. Verhoeven. 1994. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Resp Cell Mol Biol 11(1): 95–102.CrossRef Stolk, J., T.J. Hiltermann, J.H. Dijkman, and A.J. Verhoeven. 1994. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Resp Cell Mol Biol 11(1): 95–102.CrossRef
19.
go back to reference Schulz, E., and T. Munzel. 2008. NOX5, a new “radical” player in human atherosclerosis? J Am College Cardiol 52(22): 1810–1812.CrossRef Schulz, E., and T. Munzel. 2008. NOX5, a new “radical” player in human atherosclerosis? J Am College Cardiol 52(22): 1810–1812.CrossRef
20.
go back to reference Brandes, R.P., N. Weissmann, and K. Schroder. 2014. Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76: 208–226.CrossRefPubMed Brandes, R.P., N. Weissmann, and K. Schroder. 2014. Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76: 208–226.CrossRefPubMed
21.
go back to reference Bedard, K., and K.-H. Krause. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1): 245–313.CrossRefPubMed Bedard, K., and K.-H. Krause. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1): 245–313.CrossRefPubMed
22.
go back to reference Rabb, H., M.D. Griffin, D.B. McKay, et al. 2015. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 27(2): 371–379.CrossRefPubMed Rabb, H., M.D. Griffin, D.B. McKay, et al. 2015. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 27(2): 371–379.CrossRefPubMed
23.
go back to reference Pescatore, L.A., D. Bonatto, F.L. Forti, A. Sadok, H. Kovacic, and F.R.M. Laurindo. 2012. Protein disulfide isomerase is required for platelet-derived growth factor-induced vascular smooth muscle cell migration, Nox1 NADPH oxidase expression, and RhoGTPase activation. J Biol Chem 287(35): 29290–29300.CrossRefPubMedPubMedCentral Pescatore, L.A., D. Bonatto, F.L. Forti, A. Sadok, H. Kovacic, and F.R.M. Laurindo. 2012. Protein disulfide isomerase is required for platelet-derived growth factor-induced vascular smooth muscle cell migration, Nox1 NADPH oxidase expression, and RhoGTPase activation. J Biol Chem 287(35): 29290–29300.CrossRefPubMedPubMedCentral
24.
go back to reference Wu J-S, Tsai H-D, Cheung W-M, Hsu CY, Lin T-N (2015) PPAR-γ ameliorates neuronal apoptosis and ischemic brain injury via suppressing NF-κB-driven p22phox transcription. Mol Neurobiol 1–20 Wu J-S, Tsai H-D, Cheung W-M, Hsu CY, Lin T-N (2015) PPAR-γ ameliorates neuronal apoptosis and ischemic brain injury via suppressing NF-κB-driven p22phox transcription. Mol Neurobiol 1–20
25.
go back to reference Kim, H.G., Y.R. Kim, J.H. Park, et al. 2015. Endosulfan induces COX-2 expression via NADPH oxidase and the ROS, MAPK, and Akt pathways. Arch Toxicol 89(11): 2039–2050.CrossRefPubMed Kim, H.G., Y.R. Kim, J.H. Park, et al. 2015. Endosulfan induces COX-2 expression via NADPH oxidase and the ROS, MAPK, and Akt pathways. Arch Toxicol 89(11): 2039–2050.CrossRefPubMed
26.
go back to reference Zhao, Q.D., S. Viswanadhapalli, P. Williams, et al. 2015. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation 131: 643–655.CrossRefPubMedPubMedCentral Zhao, Q.D., S. Viswanadhapalli, P. Williams, et al. 2015. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation 131: 643–655.CrossRefPubMedPubMedCentral
27.
go back to reference Gupta, S.C., R. Singh, R. Pochampally, K. Watabe, and Y.-Y. Mo. 2014. Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-κB pathway. Oncotarget 5(23): 12070–12082.CrossRefPubMedPubMedCentral Gupta, S.C., R. Singh, R. Pochampally, K. Watabe, and Y.-Y. Mo. 2014. Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-κB pathway. Oncotarget 5(23): 12070–12082.CrossRefPubMedPubMedCentral
28.
go back to reference Yamamoto, S., S. Niida, E. Azuma, et al. 2015. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci Rep 5: 8505.CrossRefPubMedPubMedCentral Yamamoto, S., S. Niida, E. Azuma, et al. 2015. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci Rep 5: 8505.CrossRefPubMedPubMedCentral
29.
go back to reference Wang, Y.-F., Y.-J. Hsu, H.-F. Wu, et al. 2016. Endothelium-derived 5-methoxytryptophan is a circulating anti-inflammatory molecule that blocks systemic inflammation. Circ Res. Wang, Y.-F., Y.-J. Hsu, H.-F. Wu, et al. 2016. Endothelium-derived 5-methoxytryptophan is a circulating anti-inflammatory molecule that blocks systemic inflammation. Circ Res.
30.
go back to reference Flemming, S., N. Burkard, Melanie, et al. 2015. Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis. Cardiovasc Res 107(1): 32–44.CrossRefPubMed Flemming, S., N. Burkard, Melanie, et al. 2015. Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis. Cardiovasc Res 107(1): 32–44.CrossRefPubMed
31.
go back to reference Mylroie, H., O. Dumont, A. Bauer, et al. 2015. PKCε-CREB-Nrf2 signalling induces HO-1 in the vascular endothelium and enhances resistance to inflammation and apoptosis. Cardiovasc Res 106(3): 509–591.CrossRefPubMedPubMedCentral Mylroie, H., O. Dumont, A. Bauer, et al. 2015. PKCε-CREB-Nrf2 signalling induces HO-1 in the vascular endothelium and enhances resistance to inflammation and apoptosis. Cardiovasc Res 106(3): 509–591.CrossRefPubMedPubMedCentral
32.
go back to reference Calvayrac, O., R. Rodriguez-Calvo, I. Marti-Pamies, et al. 2015. NOR-1 modulates the inflammatory response of vascular smooth muscle cells by preventing NFκB activation. J Mol Cell Cardiol 80: 34–44.CrossRefPubMed Calvayrac, O., R. Rodriguez-Calvo, I. Marti-Pamies, et al. 2015. NOR-1 modulates the inflammatory response of vascular smooth muscle cells by preventing NFκB activation. J Mol Cell Cardiol 80: 34–44.CrossRefPubMed
33.
go back to reference Freise, C., and U. Querfeld. 2015. The lignan(+)-episesamin interferes with TNF-α-induced activation of VSMC via diminished activation of NF-κB, ERK1/2 and AKT and decreased activity of gelatinases. Acta Physiol 213(3): 642–652.CrossRef Freise, C., and U. Querfeld. 2015. The lignan(+)-episesamin interferes with TNF-α-induced activation of VSMC via diminished activation of NF-κB, ERK1/2 and AKT and decreased activity of gelatinases. Acta Physiol 213(3): 642–652.CrossRef
34.
go back to reference Orriols, M., S. Varona, I. Marti-Pamies, et al. 2016. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Cardiovasc Res 110(3): 431–442.CrossRefPubMed Orriols, M., S. Varona, I. Marti-Pamies, et al. 2016. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Cardiovasc Res 110(3): 431–442.CrossRefPubMed
35.
go back to reference Brandes, R.P., N. Weissmann, and K. Schroder. 2014. Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences. Antioxid Redox Signal 20(6): 887–898.CrossRefPubMedPubMedCentral Brandes, R.P., N. Weissmann, and K. Schroder. 2014. Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences. Antioxid Redox Signal 20(6): 887–898.CrossRefPubMedPubMedCentral
Metadata
Title
Angiotensin II-Induced Early and Late Inflammatory Responses Through NOXs and MAPK Pathways
Authors
Xi Zhang
Jia Yang
Xinyi Yu
Si Cheng
Hua Gan
Yunfeng Xia
Publication date
01-02-2017
Publisher
Springer US
Published in
Inflammation / Issue 1/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0464-6

Other articles of this Issue 1/2017

Inflammation 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.