Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Aneurysm | Research

Targeting myeloperoxidase to stabilize unruptured aneurysm: an imaging-guided approach

Authors: Xingchi Shi, Yuan Xue, Huiyu Wu, Chengyi Shen, Lei Zhong, Jun Lei, Zhiyang Xia, Ying Yang, Jiang Zhu

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Inflammation plays a key role in pathogenesis and rupture of aneurysms. Non-invasively and dynamically monitoring aneurysm inflammation is critical. This study evaluated myeloperoxidase (MPO) as an imaging biomarker and therapeutic target for aneurysm inflammation using an elastase-induced rabbit model treated with or without 4-aminobenzoic acid hydrazide (ABAH), an irreversible inhibitor of MPO. Myeloperoxidase-sensitive magnetic resonance imaging (MRI) using Mn-TyrEDTA, a peroxidase activity-dependent contrast agent, revealed weak contrast enhancement in contralateral arteries and decreased contrast enhancement in aneurysm walls with ABAH treatment, indicating MPO activity decreased and inflammation mitigated. This was supported by reduced immune cell infiltration, matrix metalloproteinases (MMP-2 and − 9) activity, ROS production and arterial wall destruction on histology. Finally, the aneurysm expansion rate remained < 50% throughout the study in the ABAH(+) group, but increased gradually in the ABAH(-) group. Our results suggest that inhibition of MPO attenuated inflammation and expansion of experimental aneurysm and MPO-sensitive MRI showed promise as a noninvasive tool for monitoring aneurysm inflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Korja M, Kivisaari R, Rezai Jahromi B, et al. Natural history of ruptured but untreated intracranial aneurysms. Stroke. 2017;48:1081–4.PubMedCrossRef Korja M, Kivisaari R, Rezai Jahromi B, et al. Natural history of ruptured but untreated intracranial aneurysms. Stroke. 2017;48:1081–4.PubMedCrossRef
2.
go back to reference Wiebers DO, Whisnant JP, Huston J, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.PubMedCrossRef Wiebers DO, Whisnant JP, Huston J, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.PubMedCrossRef
3.
go back to reference Feigin VL, Lawes CM, Bennett DA, et al. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2:43–53.PubMedCrossRef Feigin VL, Lawes CM, Bennett DA, et al. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2:43–53.PubMedCrossRef
4.
go back to reference Foulkes MA, Wolf PA, Price TR, et al. The stroke data bank: design, methods, and baseline characteristics. Stroke. 1988;19:547–54.PubMedCrossRef Foulkes MA, Wolf PA, Price TR, et al. The stroke data bank: design, methods, and baseline characteristics. Stroke. 1988;19:547–54.PubMedCrossRef
5.
go back to reference Juhana F, Riikka T, Anders P et al. Saccular intracranial aneurysm: pathology and mechanisms.Acta neuropathol. 2012; 123: 773–86. Juhana F, Riikka T, Anders P et al. Saccular intracranial aneurysm: pathology and mechanisms.Acta neuropathol. 2012; 123: 773–86.
6.
go back to reference Martinez AN, Tortelote GG, Pascale CL, et al. Single-cell transcriptome analysis of the Circle of Willis in a mouse cerebral aneurysm model. Stroke. 2022;53:2647–57.PubMedCrossRef Martinez AN, Tortelote GG, Pascale CL, et al. Single-cell transcriptome analysis of the Circle of Willis in a mouse cerebral aneurysm model. Stroke. 2022;53:2647–57.PubMedCrossRef
7.
go back to reference Chalouhi N, Ali MS. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metabolism. 2012;32:1659–76.CrossRef Chalouhi N, Ali MS. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metabolism. 2012;32:1659–76.CrossRef
8.
9.
go back to reference Tulamo R, Frosen J, Hernesniemi J, et al. Inflammatory changes in the aneurysm wall: a review. J NeuroIntervent Surg. 2010;2:120e130.CrossRef Tulamo R, Frosen J, Hernesniemi J, et al. Inflammatory changes in the aneurysm wall: a review. J NeuroIntervent Surg. 2010;2:120e130.CrossRef
10.
go back to reference Harrison JE, Schultz J. Studies on the chlorinating activity of myeloperoxidase. J Biol Chem. 1976;251:1371–4.PubMedCrossRef Harrison JE, Schultz J. Studies on the chlorinating activity of myeloperoxidase. J Biol Chem. 1976;251:1371–4.PubMedCrossRef
11.
go back to reference Hurst JK, Barrette WC. Leukocytic oxygen activation and microbicidal oxidative toxins. Crit Rev Biochem Mol Biol. 1989;24:271–328.PubMedCrossRef Hurst JK, Barrette WC. Leukocytic oxygen activation and microbicidal oxidative toxins. Crit Rev Biochem Mol Biol. 1989;24:271–328.PubMedCrossRef
13.
go back to reference Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349:1595–604.PubMedCrossRef Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349:1595–604.PubMedCrossRef
14.
15.
go back to reference Jucaite A, Svenningsson P, Rinne JO, et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain. 2015;138:2687–700.PubMedCrossRef Jucaite A, Svenningsson P, Rinne JO, et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain. 2015;138:2687–700.PubMedCrossRef
16.
go back to reference Fu X, Kassim SY, Parks WC, et al. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001;276:41279–87.PubMedCrossRef Fu X, Kassim SY, Parks WC, et al. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001;276:41279–87.PubMedCrossRef
17.
go back to reference Peppin GJ, Weiss SJ. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc. Natl. Acad. Sci. USA.1986; 83: 4322–6. Peppin GJ, Weiss SJ. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc. Natl. Acad. Sci. USA.1986; 83: 4322–6.
18.
go back to reference Kanta Pravalika. Myeloperoxidase and neurological disorder:a cross talk. ACS Chem Neurosci. 2018;21:421–30.CrossRef Kanta Pravalika. Myeloperoxidase and neurological disorder:a cross talk. ACS Chem Neurosci. 2018;21:421–30.CrossRef
19.
go back to reference Wang Yi, Rosen H, Madtes DK, et al. Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: an oxidative mechanism for regulating proteolysis during inflammation. J Biol Chem. 2007;282:31826–34.PubMedCrossRef Wang Yi, Rosen H, Madtes DK, et al. Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: an oxidative mechanism for regulating proteolysis during inflammation. J Biol Chem. 2007;282:31826–34.PubMedCrossRef
20.
go back to reference Aoki T, Kataoka H, Moriwaki T, et al. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke. 2007;38:2337–45.PubMedCrossRef Aoki T, Kataoka H, Moriwaki T, et al. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke. 2007;38:2337–45.PubMedCrossRef
22.
go back to reference Malecki C, Hambly BD, Jeremy RW, et al. The role of inflammation and myeloperoxidase-related oxidative stress in the pathogenesis of genetically triggered thoracic aortic aneurysms. Int J Mol Sci. 2020;21(20):7678.PubMedPubMedCentralCrossRef Malecki C, Hambly BD, Jeremy RW, et al. The role of inflammation and myeloperoxidase-related oxidative stress in the pathogenesis of genetically triggered thoracic aortic aneurysms. Int J Mol Sci. 2020;21(20):7678.PubMedPubMedCentralCrossRef
23.
go back to reference Sophie L, Myeloperoxidase. A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther. 2021;221:107711.CrossRef Sophie L, Myeloperoxidase. A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther. 2021;221:107711.CrossRef
24.
go back to reference Cai H, Chuang CY, Vanichkitrungruang S, et al. Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free Radic Biol Med. 2019;134:516–26.PubMedCrossRef Cai H, Chuang CY, Vanichkitrungruang S, et al. Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free Radic Biol Med. 2019;134:516–26.PubMedCrossRef
25.
go back to reference Mu H, Wang X, Lin PH, et al. Chlorotyrosine promotes human aortic smooth muscle cell migration through increasing superoxide anion production and ERK1/2 activation. Atherosclerosis. 2008;201:67–75.PubMedPubMedCentralCrossRef Mu H, Wang X, Lin PH, et al. Chlorotyrosine promotes human aortic smooth muscle cell migration through increasing superoxide anion production and ERK1/2 activation. Atherosclerosis. 2008;201:67–75.PubMedPubMedCentralCrossRef
26.
go back to reference Li YH, Xia Q, Zhu C, et al. An activatable mn(II) MRI probe for detecting peroxidase activity in vitro and in vivo. J Inorg Biochem. 2022;236:111979.PubMedCrossRef Li YH, Xia Q, Zhu C, et al. An activatable mn(II) MRI probe for detecting peroxidase activity in vitro and in vivo. J Inorg Biochem. 2022;236:111979.PubMedCrossRef
27.
go back to reference Short JG, Fujiwara NH, Marx WF, et al. Elastase-induced saccular aneurysms in rabbits: comparison of geometric features with those of human aneurysms. AJNR Am J Neuroradiol. 2001;22:1833–7.PubMedPubMedCentral Short JG, Fujiwara NH, Marx WF, et al. Elastase-induced saccular aneurysms in rabbits: comparison of geometric features with those of human aneurysms. AJNR Am J Neuroradiol. 2001;22:1833–7.PubMedPubMedCentral
28.
go back to reference Wang S, Dai D, Kolumam Parameswaran P, et al. Rabbit aneurysm models mimic histologic wall types identified in human intracranial aneurysms. J Neurointerv Surg. 2018;10:411–5.PubMedCrossRef Wang S, Dai D, Kolumam Parameswaran P, et al. Rabbit aneurysm models mimic histologic wall types identified in human intracranial aneurysms. J Neurointerv Surg. 2018;10:411–5.PubMedCrossRef
29.
go back to reference Zeng Z, Kallmes DF, Durka MJ, et al. Hemodynamics and anatomy of elastase-induced rabbit aneurysm models: similarity to human cerebral aneurysms? Am J Neuroradiol. 2011;32:595–601.PubMedPubMedCentralCrossRef Zeng Z, Kallmes DF, Durka MJ, et al. Hemodynamics and anatomy of elastase-induced rabbit aneurysm models: similarity to human cerebral aneurysms? Am J Neuroradiol. 2011;32:595–601.PubMedPubMedCentralCrossRef
30.
go back to reference Forghani R, Kim HJ, Wojtkiewicz GR, et al. Myeloperoxidase propagates damage and is a potential therapeutic target for subacute stroke. J Cereb Blood Flow Metab. 2015;35:485–93.PubMedCrossRef Forghani R, Kim HJ, Wojtkiewicz GR, et al. Myeloperoxidase propagates damage and is a potential therapeutic target for subacute stroke. J Cereb Blood Flow Metab. 2015;35:485–93.PubMedCrossRef
31.
go back to reference Pulli B, Ali M, Iwamoto Y, et al. Myeloperoxidase–hepatocyte–stellate Cell Cross Talk promotes hepatocyte Injury and Fibrosis in Experimental Nonalcoholic Steatohepatitis. Antioxid Redox Signal. 2015;23:1255–69.PubMedPubMedCentralCrossRef Pulli B, Ali M, Iwamoto Y, et al. Myeloperoxidase–hepatocyte–stellate Cell Cross Talk promotes hepatocyte Injury and Fibrosis in Experimental Nonalcoholic Steatohepatitis. Antioxid Redox Signal. 2015;23:1255–69.PubMedPubMedCentralCrossRef
32.
33.
go back to reference Forghani R, Wojtkiewicz GR, Zhang Y, et al. Demyelinating diseases: myeloperoxidase as an imaging biomarker and therapeutic target. Radiology. 2012;263:451–60.PubMedPubMedCentralCrossRef Forghani R, Wojtkiewicz GR, Zhang Y, et al. Demyelinating diseases: myeloperoxidase as an imaging biomarker and therapeutic target. Radiology. 2012;263:451–60.PubMedPubMedCentralCrossRef
34.
go back to reference Lyu Y, Luo J, Zhang Y et al. An Effective and Simple Way to Establish Elastase-Induced Middle Carotid Artery Fusiform Aneurysms in Rabbits. Biomed Res Int. 2020; 2020: 6707012. Lyu Y, Luo J, Zhang Y et al. An Effective and Simple Way to Establish Elastase-Induced Middle Carotid Artery Fusiform Aneurysms in Rabbits. Biomed Res Int. 2020; 2020: 6707012.
35.
go back to reference Schmitt AJ, Wallner AK, Afazel S, et al. Monitoring of the heparinization in the rabbit animal model during endovascular interventions. Neuroradiology. 2013;55(7):883–8.PubMedCrossRef Schmitt AJ, Wallner AK, Afazel S, et al. Monitoring of the heparinization in the rabbit animal model during endovascular interventions. Neuroradiology. 2013;55(7):883–8.PubMedCrossRef
36.
go back to reference Nahrendorf M, Sosnovik D, Chen JW, et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation. 2008;117(9):1153–60.PubMedPubMedCentralCrossRef Nahrendorf M, Sosnovik D, Chen JW, et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation. 2008;117(9):1153–60.PubMedPubMedCentralCrossRef
37.
go back to reference Song L, Jiang Z, Zhang X, et al. Selenium Deficiency via the ROS/NLRP3/IL-1β signaling pathway leads to Pyroptosis Injury in Pig Spleen. Biol Trace Elem Res. 2023;201:5192–200.PubMedCrossRef Song L, Jiang Z, Zhang X, et al. Selenium Deficiency via the ROS/NLRP3/IL-1β signaling pathway leads to Pyroptosis Injury in Pig Spleen. Biol Trace Elem Res. 2023;201:5192–200.PubMedCrossRef
39.
go back to reference Davies MJ, Hawkins CL. The role of Myeloperoxidase in Biomolecule Modification, chronic inflammation, and Disease. Antioxid Redox Signal. 2020;32:957–81.PubMedCrossRef Davies MJ, Hawkins CL. The role of Myeloperoxidase in Biomolecule Modification, chronic inflammation, and Disease. Antioxid Redox Signal. 2020;32:957–81.PubMedCrossRef
40.
go back to reference King RM, Gounis MJ, Schmidt EJ, et al. Molecular Magnetic Resonance Imaging of Aneurysmal Inflammation using a redox active Iron complex. Invest Radiol. 2023;58:656–62.PubMedPubMedCentralCrossRef King RM, Gounis MJ, Schmidt EJ, et al. Molecular Magnetic Resonance Imaging of Aneurysmal Inflammation using a redox active Iron complex. Invest Radiol. 2023;58:656–62.PubMedPubMedCentralCrossRef
41.
go back to reference Wang CKE, Zeller MWG, et al. An activatable PET imaging radioprobe is a dynamic reporter of myeloperoxidase activity in vivo. Proc Natl Acad Sci U S A. 2019;116:11966–71.PubMedPubMedCentralCrossRef Wang CKE, Zeller MWG, et al. An activatable PET imaging radioprobe is a dynamic reporter of myeloperoxidase activity in vivo. Proc Natl Acad Sci U S A. 2019;116:11966–71.PubMedPubMedCentralCrossRef
42.
go back to reference Querol M, Chen JW, Bogdanov AA. A paramagnetic contrast agent with myeloperoxidase-sensing properties. Org Biomol Chem. 2006;4(10):1887–95.PubMedCrossRef Querol M, Chen JW, Bogdanov AA. A paramagnetic contrast agent with myeloperoxidase-sensing properties. Org Biomol Chem. 2006;4(10):1887–95.PubMedCrossRef
43.
44.
go back to reference Avery MB, Alaqeel A, Bromley AB, et al. A refined experimental model of fusiform aneurysms in a rabbit carotid artery. J Neurosurg. 2018;131(1):88–95.PubMedCrossRef Avery MB, Alaqeel A, Bromley AB, et al. A refined experimental model of fusiform aneurysms in a rabbit carotid artery. J Neurosurg. 2018;131(1):88–95.PubMedCrossRef
45.
go back to reference Kim HW, Blomkalns AL, Ogbi M, et al. Role of myeloperoxidase in abdominal aortic aneurysm formation: mitigation by taurine. Am J Physiol Heart Circ Physiol. 2017;313:H1168–79.PubMedPubMedCentralCrossRef Kim HW, Blomkalns AL, Ogbi M, et al. Role of myeloperoxidase in abdominal aortic aneurysm formation: mitigation by taurine. Am J Physiol Heart Circ Physiol. 2017;313:H1168–79.PubMedPubMedCentralCrossRef
46.
go back to reference Houspian E, Pool JL. A systematic analysis of intracranial aneurysms from the autopsy file of the Presbyterian Hospital, 1914 to 1956. J Neuropathol Exp Neurol. 1958;17:409–23.CrossRef Houspian E, Pool JL. A systematic analysis of intracranial aneurysms from the autopsy file of the Presbyterian Hospital, 1914 to 1956. J Neuropathol Exp Neurol. 1958;17:409–23.CrossRef
47.
go back to reference Yu YL, Moseley IF, Pullicino P, McDonald WI. The clinical picture of ectasia of the intracerebral arteries. J Neurol Neurosurg Psychiatry. 1982;45:29–36.PubMedPubMedCentralCrossRef Yu YL, Moseley IF, Pullicino P, McDonald WI. The clinical picture of ectasia of the intracerebral arteries. J Neurol Neurosurg Psychiatry. 1982;45:29–36.PubMedPubMedCentralCrossRef
48.
go back to reference ANSON JA. Characteristics and surgical treatment of dolichoectatic and fusiform aneurysms. J Neurosurg. 1996;84(2):185–93.PubMedCrossRef ANSON JA. Characteristics and surgical treatment of dolichoectatic and fusiform aneurysms. J Neurosurg. 1996;84(2):185–93.PubMedCrossRef
49.
go back to reference Nakatomi H. Clinicopathological study of Intracranial Fusiform and Dolichoectatic aneurysms Insight on the mechanism of growth. Stroke. 2000;31(4):896–900.PubMedCrossRef Nakatomi H. Clinicopathological study of Intracranial Fusiform and Dolichoectatic aneurysms Insight on the mechanism of growth. Stroke. 2000;31(4):896–900.PubMedCrossRef
50.
go back to reference Wang J, Wei L, Lu H, Zhu Y. Roles of inflammation in the natural history of intracranial saccular aneurysms. J Neurol Sci. 2021;424:117294.PubMedCrossRef Wang J, Wei L, Lu H, Zhu Y. Roles of inflammation in the natural history of intracranial saccular aneurysms. J Neurol Sci. 2021;424:117294.PubMedCrossRef
51.
go back to reference Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2006;26:987–94.PubMedCrossRef Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2006;26:987–94.PubMedCrossRef
52.
go back to reference Meher AK, Spinosa M, Davis JP, et al. Novel role of IL (Interleukin)-1β in Neutrophil Extracellular trap formation and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2018;38:843–53.PubMedPubMedCentralCrossRef Meher AK, Spinosa M, Davis JP, et al. Novel role of IL (Interleukin)-1β in Neutrophil Extracellular trap formation and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2018;38:843–53.PubMedPubMedCentralCrossRef
53.
go back to reference Yuan Z, Lu Y, Wei J, et al. Abdominal aortic aneurysm: roles of inflammatory cells. Front Immunol. 2020;11:609161.PubMedCrossRef Yuan Z, Lu Y, Wei J, et al. Abdominal aortic aneurysm: roles of inflammatory cells. Front Immunol. 2020;11:609161.PubMedCrossRef
Metadata
Title
Targeting myeloperoxidase to stabilize unruptured aneurysm: an imaging-guided approach
Authors
Xingchi Shi
Yuan Xue
Huiyu Wu
Chengyi Shen
Lei Zhong
Jun Lei
Zhiyang Xia
Ying Yang
Jiang Zhu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-024-03822-1

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue