Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 1/2020

01-01-2020 | Aneurysm | Original Article

Comparison of statistical learning approaches for cerebral aneurysm rupture assessment

Authors: Felicitas J. Detmer, Daniel Lückehe, Fernando Mut, Martin Slawski, Sven Hirsch, Philippe Bijlenga, Gabriele von Voigt, Juan R. Cebral

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 1/2020

Login to get access

Abstract

Purpose

Incidental aneurysms pose a challenge to physicians who need to decide whether or not to treat them. A statistical model could potentially support such treatment decisions. The aim of this study was to compare a previously developed aneurysm rupture logistic regression probability model (LRM) to other machine learning (ML) classifiers for discrimination of aneurysm rupture status.

Methods

Hemodynamic, morphological, and patient-related information of 1631 cerebral aneurysms characterized by computational fluid dynamics simulations were used to train support vector machines (SVMs) with linear and RBF kernel (RBF-SVM), k-nearest neighbors (kNN), decision tree, random forest, and multilayer perceptron (MLP) neural network classifiers for predicting the aneurysm rupture status. The classifiers’ accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were evaluated and compared to the LRM using 249 test cases obtained from two external cohorts. Additionally, important variables were determined based on the random forest and weights of the linear SVM.

Results

The AUCs of the MLP, LRM, linear SVM, RBF-SVM, kNN, decision tree, and random forest were 0.83, 0.82, 0.80, 0.81, 0.76, 0.70, and 0.79, respectively. The accuracy ranged between 0.76 (decision tree,) and 0.79 (linear SVM, RBF-SVM, and MLP). Important variables for predicting the aneurysm rupture status included aneurysm location, the mean surface curvature, and maximum flow velocity.

Conclusion

The performance of the LRM was overall comparable to that of the other ML classifiers, confirming its potential for aneurysm rupture assessment. To further improve the predictions, additional information, e.g., related to the aneurysm wall, might be needed.
Appendix
Available only for authorised users
Footnotes
1
Segmentations of the raw 3D-DRA images for the AneuX dataset were performed using the Aneufuse platform. Data are stored at the Swiss Institute of Bioinformatics and available to the scientific community by written request at adb@itis.ethz.ch.
 
Literature
1.
go back to reference Rinkel GJ, Djibuti M, van Gijn J (1998) Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–259CrossRefPubMed Rinkel GJ, Djibuti M, van Gijn J (1998) Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–259CrossRefPubMed
11.
go back to reference Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24:457–467CrossRefPubMed Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24:457–467CrossRefPubMed
12.
go back to reference Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New YorkCrossRef Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New YorkCrossRef
14.
go back to reference Platt J (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classif 10:61–74 Platt J (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classif 10:61–74
16.
go back to reference Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinform 12:77CrossRef Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinform 12:77CrossRef
17.
go back to reference Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Boston Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Boston
18.
go back to reference Diaconis P (1988) Group representations in probability and statistics. Institute of Mathematical Statistics, Hayward Diaconis P (1988) Group representations in probability and statistics. Institute of Mathematical Statistics, Hayward
19.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
20.
go back to reference Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2016) TensorFlow: large-scale machine learning on heterogeneous systems. arXiv:1603.04467 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2016) TensorFlow: large-scale machine learning on heterogeneous systems. arXiv:​1603.​04467
22.
go back to reference Tominari S, Morita A, Ishibashi T, Yamazaki T, Takao H, Murayama Y, Sonobe M, Yonekura M, Saito N, Shiokawa Y, Date I, Tominaga T, Nozaki K, Houkin K, Miyamoto S, Kirino T, Hashi K, Nakayama T, Unruptured Cerebral Aneurysm Study Japan Investigators (2015) Prediction model for 3-year rupture risk of unruptured cerebral aneurysms in Japanese patients. Ann Neurol 77:1050–1059. https://doi.org/10.1002/ana.24400 CrossRefPubMed Tominari S, Morita A, Ishibashi T, Yamazaki T, Takao H, Murayama Y, Sonobe M, Yonekura M, Saito N, Shiokawa Y, Date I, Tominaga T, Nozaki K, Houkin K, Miyamoto S, Kirino T, Hashi K, Nakayama T, Unruptured Cerebral Aneurysm Study Japan Investigators (2015) Prediction model for 3-year rupture risk of unruptured cerebral aneurysms in Japanese patients. Ann Neurol 77:1050–1059. https://​doi.​org/​10.​1002/​ana.​24400 CrossRefPubMed
23.
25.
go back to reference Bisbal J, Engelbrecht G, Villa-Uriol M-C, Frangi AF (2011) Prediction of cerebral aneurysm rupture using hemodynamic, morphologic and clinical features: a data mining approach. In: Hameurlain A, Liddle SW, Schewe K-D, Zhou X (eds) Database and expert systems applications. Springer, Berlin, pp 59–73CrossRef Bisbal J, Engelbrecht G, Villa-Uriol M-C, Frangi AF (2011) Prediction of cerebral aneurysm rupture using hemodynamic, morphologic and clinical features: a data mining approach. In: Hameurlain A, Liddle SW, Schewe K-D, Zhou X (eds) Database and expert systems applications. Springer, Berlin, pp 59–73CrossRef
28.
go back to reference Raghavan ML, Ma B, Harbaugh RE (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102:355–362CrossRefPubMed Raghavan ML, Ma B, Harbaugh RE (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102:355–362CrossRefPubMed
29.
go back to reference Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H (2008) Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63:185–197CrossRefPubMed Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H (2008) Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63:185–197CrossRefPubMed
Metadata
Title
Comparison of statistical learning approaches for cerebral aneurysm rupture assessment
Authors
Felicitas J. Detmer
Daniel Lückehe
Fernando Mut
Martin Slawski
Sven Hirsch
Philippe Bijlenga
Gabriele von Voigt
Juan R. Cebral
Publication date
01-01-2020
Publisher
Springer International Publishing
Keywords
Aneurysm
Aneurysm
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 1/2020
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02065-2

Other articles of this Issue 1/2020

International Journal of Computer Assisted Radiology and Surgery 1/2020 Go to the issue