Skip to main content
Top
Published in: BMC Surgery 1/2022

Open Access 01-12-2022 | Research

Analysis of the therapeutic effect of artificial leather embedding combined with fascial sleeve flap transplantation on chronic wounds of lower limbs with bone and plate exposure

Authors: Yong Li, Zhi-bo Zhang, Ji-song Liu, Zhu-min Wu, Xin-cheng Sun, Yu-tin Zhao, Xiang-zhou Zhang

Published in: BMC Surgery | Issue 1/2022

Login to get access

Abstract

Background

After severe trauma of lower limbs, bone, tendon or plate graft exposure is common. The traditional repair method is to use a variety of skin flap transplantation to cover the exposed part, but the wound often can not heal after operation, or the wound is cracked, ulcer, sinus, bone and steel plate are exposed again after wound healing. The reason for this result is that when the flap is covered, the space around the bone plate is not well closed, forming a dead cavity, blood and exudate accumulation, hematoma formation or infection, and finally the wound ruptures again. In addition, due to the swelling and contracture of the flap after operation, the suture tension between the flap and the receiving area becomes larger, the skin becomes thinner and broken, and then the wound is formed. In order to solve the above problems, we carried out the study of artificial true skin embedding combined with fascial sleeve flap transplantation in the treatment of chronic bone plate exposed wounds of lower limbs.

Methods

In this paper, 11 cases of chronic wounds with bone exposure and skin necrosis after steel plate implantation were selected. First stage is the wound bed preparation including primary wound expansion, removal of necrotic tissue and incision of sinus wall, removal of deep necrotic bone and fibrotic scarred skin on the outer wall of steel plate to normal tissue on the outer edge of the wound, removal of precipitated peptone and purulent fur in the hole, periphery and bone space of the steel plate, and removal of tendon tissue with basal necrosis and disintegration of the wound. After vacuum sealing drainage (VSD) 1–2 weeks, the peritraumatic basal granulation tissue grew well and there was no necrotic tissue in the wound. In the second stage, the exposed bone was covered with artificial dermis, the steel plate hole or the periphery and the basal space were filled, and the exposed steel plate was completely embedded, and then the fascia sleeve flap was transplanted to cover the wound. The sural neurovascular flap was performed in nine cases and the lateral superior malleolar artery perforator flap in two case.

Results

The flap survived well in all 11 cases. During the follow-up of 6 months to the removal of the plate, there was no case of rupture, exposure and sinus formation.

Conclusions

Artificial dermal covering combined with fascial sleeve flap transplantation can effectively avoid wound dehiscence or sinus formation caused by foreign body retention, infection and flap contracture. It has good effect in repairing chronic wounds with bone plate exposure after severe trauma of lower limbs.
Literature
2.
go back to reference Khan AM, Tang QO, Spicer D. The epidemiology of adult distal femoral shaft fractures in a central london major trauma centre over five years. Open Orthop J. 2017;11:1277–91.CrossRefPubMedPubMedCentral Khan AM, Tang QO, Spicer D. The epidemiology of adult distal femoral shaft fractures in a central london major trauma centre over five years. Open Orthop J. 2017;11:1277–91.CrossRefPubMedPubMedCentral
5.
go back to reference Varey AHR, Khan U. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flflaps. Plast Reconstr Surg. 2013;131:448e.CrossRefPubMed Varey AHR, Khan U. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flflaps. Plast Reconstr Surg. 2013;131:448e.CrossRefPubMed
11.
go back to reference Zalavras CG. Prevention of infection in open fractures. Infect Dis Clin N Am. 2017;31(2):339–52.CrossRef Zalavras CG. Prevention of infection in open fractures. Infect Dis Clin N Am. 2017;31(2):339–52.CrossRef
12.
go back to reference Wang J, Wu Y, Wang Y, Wang M. Conservative dressing change method in treatment of skin necrosis after open reduction with internal fixation of calcaneal fracture. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011;25(7):805–7 (Chinese).PubMed Wang J, Wu Y, Wang Y, Wang M. Conservative dressing change method in treatment of skin necrosis after open reduction with internal fixation of calcaneal fracture. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011;25(7):805–7 (Chinese).PubMed
13.
go back to reference Xiaohong Z, Minggang W, Qingfu S, Yanjun C, Tao L. Reconstruction of tibial exposure with local muscular flap, VSD and skin transplantation. Zhonghua Zheng Xing Wai Ke Za Zhi. 2015;31(4):277–80 (Chinese).PubMed Xiaohong Z, Minggang W, Qingfu S, Yanjun C, Tao L. Reconstruction of tibial exposure with local muscular flap, VSD and skin transplantation. Zhonghua Zheng Xing Wai Ke Za Zhi. 2015;31(4):277–80 (Chinese).PubMed
14.
go back to reference Groupe de pathologie infectieuse. Recommandations de pratiques cliniques. Infections osteoarticulaires sur matériel (prothese, implant, ostéosynthese). Med Mal Infect. 2009. Groupe de pathologie infectieuse. Recommandations de pratiques cliniques. Infections osteoarticulaires sur matériel (prothese, implant, ostéosynthese). Med Mal Infect. 2009.
17.
go back to reference Gjødsbøl K, Christensen JJ, Karlsmark T, et al. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006;3(3):225–31.CrossRefPubMedPubMedCentral Gjødsbøl K, Christensen JJ, Karlsmark T, et al. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006;3(3):225–31.CrossRefPubMedPubMedCentral
18.
go back to reference Wang T, Feng Y, Sun H, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol. 2012;181(6):1911–20.CrossRefPubMed Wang T, Feng Y, Sun H, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol. 2012;181(6):1911–20.CrossRefPubMed
19.
go back to reference Serra R, Grande R, Buffone G, et al. Extracellular matrix assessment of infected chronic venous leg ulcers: role of metalloproteinases and inflammatory cytokines. Int Wound J. 2014;13:53–8 (Epub ahead of print).CrossRefPubMedPubMedCentral Serra R, Grande R, Buffone G, et al. Extracellular matrix assessment of infected chronic venous leg ulcers: role of metalloproteinases and inflammatory cytokines. Int Wound J. 2014;13:53–8 (Epub ahead of print).CrossRefPubMedPubMedCentral
20.
go back to reference Serra R, Buffone G, Costanzo G, et al. Altered metalloproteinase-9 expression as the least common denominator between varicocele, inguinal hernia and chronic venous disorders. Ann Vasc Surg. 2014;28(3):705–9.CrossRefPubMed Serra R, Buffone G, Costanzo G, et al. Altered metalloproteinase-9 expression as the least common denominator between varicocele, inguinal hernia and chronic venous disorders. Ann Vasc Surg. 2014;28(3):705–9.CrossRefPubMed
21.
go back to reference Serra R, Gallelli L, Conti A, et al. The effects of sulodexide on both clinical and molecular parameters in patients with mixed arterial and ulcers of lower limbs. Drug Des Dev Ther. 2014;8:1–9. Serra R, Gallelli L, Conti A, et al. The effects of sulodexide on both clinical and molecular parameters in patients with mixed arterial and ulcers of lower limbs. Drug Des Dev Ther. 2014;8:1–9.
22.
go back to reference Jiang D, Chen B, Xu M, Hu D, Tang C, Zhu X. The manufacturing and clinical application of heterogenous acellular dermal matrix. Zhonghua Shao Shang Za Zhi. 2002;18(1):15–8 (Chinese).PubMed Jiang D, Chen B, Xu M, Hu D, Tang C, Zhu X. The manufacturing and clinical application of heterogenous acellular dermal matrix. Zhonghua Shao Shang Za Zhi. 2002;18(1):15–8 (Chinese).PubMed
24.
go back to reference Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14(1):65–81.CrossRefPubMed Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14(1):65–81.CrossRefPubMed
25.
go back to reference Burke JF, Yannas IV, Quniby Jr WC, et al. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194(4):413–28.CrossRefPubMedPubMedCentral Burke JF, Yannas IV, Quniby Jr WC, et al. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194(4):413–28.CrossRefPubMedPubMedCentral
26.
go back to reference Suzuki S, Kawai K, Ashoori F, et al. Long-term follow-up study of artificial dermis composed of outer silicone layer and inner collagen sponge. Br J Plast Surg. 2000;53(8):659–66.CrossRefPubMed Suzuki S, Kawai K, Ashoori F, et al. Long-term follow-up study of artificial dermis composed of outer silicone layer and inner collagen sponge. Br J Plast Surg. 2000;53(8):659–66.CrossRefPubMed
27.
go back to reference Koga Y, Komuro Y, Yamato M, et al. Recovery course of full-thickness skin defects with exposed bone: an evaluation by a quantitative examination of new blood vessels. J Surg Res. 2007;137(1):30.CrossRefPubMed Koga Y, Komuro Y, Yamato M, et al. Recovery course of full-thickness skin defects with exposed bone: an evaluation by a quantitative examination of new blood vessels. J Surg Res. 2007;137(1):30.CrossRefPubMed
Metadata
Title
Analysis of the therapeutic effect of artificial leather embedding combined with fascial sleeve flap transplantation on chronic wounds of lower limbs with bone and plate exposure
Authors
Yong Li
Zhi-bo Zhang
Ji-song Liu
Zhu-min Wu
Xin-cheng Sun
Yu-tin Zhao
Xiang-zhou Zhang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2022
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-022-01521-2

Other articles of this Issue 1/2022

BMC Surgery 1/2022 Go to the issue