Skip to main content
Top
Published in: European Journal of Medical Research 1/2015

Open Access 01-12-2015 | Research

Analysis of risk factors for adjacent superior vertebral pedicle-induced facet joint violation during the minimally invasive surgery transforaminal lumbar interbody fusion: a retrospective study

Authors: Zhi-Li Zeng, Long Jia, Wei Xu, Yan Yu, Xiao Hu, Yong-Wei Jia, Jian-Jie Wang, Li-Ming Cheng

Published in: European Journal of Medical Research | Issue 1/2015

Login to get access

Abstract

Background

The purpose was to explore possible risk factors of facet joint violation induced by adjacent superior vertebral pedicle screw during the minimally invasive surgery transforaminal lumbar interbody fusion (MIS-TLIF).

Methods

A total of 69 patients with lumbar degenerative disease, who underwent MIS-TLIF were retrospectively reviewed. Postoperative computed tomography images were used to assess the facet joint violation. The correlation of facet joint violations with gender, age, body mass index (BMI), the adjacent superior vertebral level, fusion segment numbers, position of screw insertion, straight leg-raising test (SLRT) results, clinical diseases and renal dysfunction were analyzed by Chi-square tests and binary logistic regression analysis.

Results

The incidence of adjacent superior facet joint violations was 25.4 %. Chi-square test showed the patients with age <60 and high BMI (≥30 kg/m2) were more prone to have facet joint violations (P = 0.007; P = 0.006). The single segment fusion presented more facet joint violations than the double segments fusion (P = 0.048). The vertebral pedicle screw implant location at L5 showed more facet joint violations compared with that at L3 and L4 (P = 0.035). No correlation was found between gender, screw implant position, SLRT results, clinical diseases and renal dysfunction and facet joint violations. Logistic regression analysis revealed that age <60 years (OR: 2.902; 95 % CI 1.227–6.864; P = 0.015) and BMI ≥30 kg/m2 (OR: 2.825; 95 % CI 1.191–6.700; P = 0.018 < 0.05) were significantly associated with facet joint violation.

Conclusion

These results found a high incidence of adjacent superior vertebral facet joint violation in the MIS-TLIF. Age <60 and BMI ≥30 kg/m2 might be risk factors of facet joint violation.
Evidence level: Level 4.
Literature
1.
go back to reference Lowe TG, Tahernia AD, O’Brien MF, Smith DA. Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique, and 2-year results. J Spinal Disord Tech. 2002;15(1):31–8.CrossRefPubMed Lowe TG, Tahernia AD, O’Brien MF, Smith DA. Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique, and 2-year results. J Spinal Disord Tech. 2002;15(1):31–8.CrossRefPubMed
2.
3.
go back to reference Foley K, Lefkowitz M. Advances in minimally invasive spine surgery. Clin Neurosurg. 2001;49:499–517. Foley K, Lefkowitz M. Advances in minimally invasive spine surgery. Clin Neurosurg. 2001;49:499–517.
4.
go back to reference Schwender JD, Holly LT, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 2005;18:S1–6.CrossRefPubMed Schwender JD, Holly LT, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 2005;18:S1–6.CrossRefPubMed
5.
go back to reference Lee KH, Yue WM, Yeo W, Soeharno H, Tan SB. Clinical and radiological outcomes of open versus minimally invasive transforaminal lumbar interbody fusion. Eur Spine J. 2012;21(11):2265–70.PubMedCentralCrossRefPubMed Lee KH, Yue WM, Yeo W, Soeharno H, Tan SB. Clinical and radiological outcomes of open versus minimally invasive transforaminal lumbar interbody fusion. Eur Spine J. 2012;21(11):2265–70.PubMedCentralCrossRefPubMed
6.
go back to reference Kim HJ, Kang KT, Son J, Lee CK, Chang BS, Jin SY. The influence of facet joint orientation and tropism on the stress at the adjacent segment after lumbar fusion surgery: a biomechanical analysis. Spine J Off J N Am Spine Soc. 2015;15(8):1841–47. Kim HJ, Kang KT, Son J, Lee CK, Chang BS, Jin SY. The influence of facet joint orientation and tropism on the stress at the adjacent segment after lumbar fusion surgery: a biomechanical analysis. Spine J Off J N Am Spine Soc. 2015;15(8):1841–47.
7.
go back to reference Kumar M, Baklanov A, Chopin D. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J. 2001;10(4):314–9.PubMedCentralCrossRefPubMed Kumar M, Baklanov A, Chopin D. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J. 2001;10(4):314–9.PubMedCentralCrossRefPubMed
8.
go back to reference Zheng Z, Liu H, Sribastav SS, Li Z, Wang J, Yang H. Effect of spino-pelvic sagittal balance on degree of disk degeneration in the lumbar spine. Global Spine J. 2012;2(S 01):43. Zheng Z, Liu H, Sribastav SS, Li Z, Wang J, Yang H. Effect of spino-pelvic sagittal balance on degree of disk degeneration in the lumbar spine. Global Spine J. 2012;2(S 01):43.
9.
go back to reference Schwabegger AH, Wolfram-Raunicher D, Rabensteiner E. Complications, special problems. Congenit Thorac Wall Deform. 2011:277–305. Schwabegger AH, Wolfram-Raunicher D, Rabensteiner E. Complications, special problems. Congenit Thorac Wall Deform. 2011:277–305.
10.
go back to reference Kim KT, Lee SH, Suk KS, Lee JH, Jeong BO. Biomechanical changes of the lumbar segment after total disc replacement: Charite®, Prodisc® and Maverick® using finite element model study. J Korean Neurosurg Soc. 2010;47(6):446–53.PubMedCentralCrossRefPubMed Kim KT, Lee SH, Suk KS, Lee JH, Jeong BO. Biomechanical changes of the lumbar segment after total disc replacement: Charite®, Prodisc® and Maverick® using finite element model study. J Korean Neurosurg Soc. 2010;47(6):446–53.PubMedCentralCrossRefPubMed
11.
go back to reference Ma J, Jia H, Ma X, Xu W, Yu J, Feng R, et al. Evaluation of the stress distribution change at the adjacent facet joints after lumbar fusion surgery: a biomechanical study. Proc Inst Mech Eng H. 2014;228:665–73.CrossRefPubMed Ma J, Jia H, Ma X, Xu W, Yu J, Feng R, et al. Evaluation of the stress distribution change at the adjacent facet joints after lumbar fusion surgery: a biomechanical study. Proc Inst Mech Eng H. 2014;228:665–73.CrossRefPubMed
12.
go back to reference Park P, Foley KT. Minimally invasive transforaminal lumbar interbody fusion with reduction of spondylolisthesis: technique and outcomes after a minimum of 2 years’ follow-up. Neurosurg Focus. 2008;25(2):E16.CrossRefPubMed Park P, Foley KT. Minimally invasive transforaminal lumbar interbody fusion with reduction of spondylolisthesis: technique and outcomes after a minimum of 2 years’ follow-up. Neurosurg Focus. 2008;25(2):E16.CrossRefPubMed
13.
go back to reference Paul P, Garton HJ, Gala VC, Hoff JT, Mcgillicuddy JE. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine. 2004;29(17):1938–44.CrossRef Paul P, Garton HJ, Gala VC, Hoff JT, Mcgillicuddy JE. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine. 2004;29(17):1938–44.CrossRef
14.
go back to reference Chung KJ, Suh SW, Swapnil K, Yang JH, Song HR. Facet joint violation during pedicle screw insertion: a cadaveric study of the adult lumbosacral spine comparing the two pedicle screw insertion techniques. Int Orthop. 2007;31(5):653–6.PubMedCentralCrossRefPubMed Chung KJ, Suh SW, Swapnil K, Yang JH, Song HR. Facet joint violation during pedicle screw insertion: a cadaveric study of the adult lumbosacral spine comparing the two pedicle screw insertion techniques. Int Orthop. 2007;31(5):653–6.PubMedCentralCrossRefPubMed
15.
go back to reference Park Y, Ha JW, Lee YT, Sung NY. Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion. Spine J. 2011;11(4):295–302.CrossRefPubMed Park Y, Ha JW, Lee YT, Sung NY. Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion. Spine J. 2011;11(4):295–302.CrossRefPubMed
16.
go back to reference Park Y, Ha JW, Lee YT, Sung NY. Percutaneous placement of pedicle screws in overweight and obese patients. Spine J. 2011;11(10):919–24.CrossRefPubMed Park Y, Ha JW, Lee YT, Sung NY. Percutaneous placement of pedicle screws in overweight and obese patients. Spine J. 2011;11(10):919–24.CrossRefPubMed
17.
go back to reference Patel RD, Graziano GP, Vanderhave KL, Patel AA, Gerling MC. Facet violation with the placement of percutaneous pedicle screws. Spine. 2011;36(26):E1749–52.CrossRefPubMed Patel RD, Graziano GP, Vanderhave KL, Patel AA, Gerling MC. Facet violation with the placement of percutaneous pedicle screws. Spine. 2011;36(26):E1749–52.CrossRefPubMed
18.
go back to reference Lau D, Terman SW, Patel R, La Marca F, Park P. Incidence of and risk factors for superior facet violation in minimally invasive versus open pedicle screw placement during transforaminal lumbar interbody fusion: a comparative analysis: clinical article. J Neurosurg Spine. 2013;18(4):356–61.CrossRefPubMed Lau D, Terman SW, Patel R, La Marca F, Park P. Incidence of and risk factors for superior facet violation in minimally invasive versus open pedicle screw placement during transforaminal lumbar interbody fusion: a comparative analysis: clinical article. J Neurosurg Spine. 2013;18(4):356–61.CrossRefPubMed
19.
go back to reference Babu R, Mehta AI, Brown CR, Isaacs RE, Bagley CA, Gottfried ON. Comparison of superior-level facet joint violations during open and percutaneous pedicle screw placement. Neurosurgery. 2012;71(5):S47.CrossRef Babu R, Mehta AI, Brown CR, Isaacs RE, Bagley CA, Gottfried ON. Comparison of superior-level facet joint violations during open and percutaneous pedicle screw placement. Neurosurgery. 2012;71(5):S47.CrossRef
20.
go back to reference Lt H, Jd S, Dp R, Kt F. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Am Assoc Neurol Surg. 2006;20(3):1–5. Lt H, Jd S, Dp R, Kt F. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Am Assoc Neurol Surg. 2006;20(3):1–5.
21.
go back to reference Hy S. Does the facet joint violation by transpedicular screw cause adjacent segment degradation? Presented at the 2011 Annual Meeting of the American Academy of Orthopaedic Surgeons. 2011; Paper 257.(Feb. 15–19. San Diego). Hy S. Does the facet joint violation by transpedicular screw cause adjacent segment degradation? Presented at the 2011 Annual Meeting of the American Academy of Orthopaedic Surgeons. 2011; Paper 257.(Feb. 15–19. San Diego).
22.
go back to reference Niosi CA, Wilson DC, Zhu Q, Keynan O, Wilson DR, Oxland TR. The effect of dynamic posterior stabilization on facet joint contact forces: an in vitro investigation. Spine. 2008;33(1):19–26.CrossRefPubMed Niosi CA, Wilson DC, Zhu Q, Keynan O, Wilson DR, Oxland TR. The effect of dynamic posterior stabilization on facet joint contact forces: an in vitro investigation. Spine. 2008;33(1):19–26.CrossRefPubMed
23.
go back to reference Hikata T, Kamata M, Furukawa M. Risk factors for adjacent segment disease after posterior lumbar interbody fusion and efficacy of simultaneous decompression surgery for symptomatic adjacent segment disease. J Spinal Disord Tech. 2014;27(2):70–5.CrossRefPubMed Hikata T, Kamata M, Furukawa M. Risk factors for adjacent segment disease after posterior lumbar interbody fusion and efficacy of simultaneous decompression surgery for symptomatic adjacent segment disease. J Spinal Disord Tech. 2014;27(2):70–5.CrossRefPubMed
24.
go back to reference Cardoso MJ, Dmitriev AE, Helgeson M, Lehman RA, Kuklo TR, Rosner MK. Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation?: an in vitro human cadaveric assessment. Spine. 2008;33(26):2868–73.CrossRefPubMed Cardoso MJ, Dmitriev AE, Helgeson M, Lehman RA, Kuklo TR, Rosner MK. Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation?: an in vitro human cadaveric assessment. Spine. 2008;33(26):2868–73.CrossRefPubMed
25.
go back to reference Lau D, Terman SW, Patel R, La MF, Park P. Incidence of and risk factors for superior facet violation in minimally invasive versus open pedicle screw placement during transforaminal lumbar interbody fusion: a comparative analysis. J Neurosurg Spine. 2013;18:356–61.CrossRefPubMed Lau D, Terman SW, Patel R, La MF, Park P. Incidence of and risk factors for superior facet violation in minimally invasive versus open pedicle screw placement during transforaminal lumbar interbody fusion: a comparative analysis. J Neurosurg Spine. 2013;18:356–61.CrossRefPubMed
26.
go back to reference Park Y, Ha JW, Yun TL, Na YS. Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion. Spine J. 2011;11(4):295–302.CrossRefPubMed Park Y, Ha JW, Yun TL, Na YS. Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion. Spine J. 2011;11(4):295–302.CrossRefPubMed
27.
go back to reference Kim M-C, Chung H-T, Cho J-L, Kim D-J, Chung N-S. Factors affecting the accurate placement of percutaneous pedicle screws during minimally invasive transforaminal lumbar interbody fusion. Eur Spine J. 2011;20(10):1635–43.PubMedCentralCrossRefPubMed Kim M-C, Chung H-T, Cho J-L, Kim D-J, Chung N-S. Factors affecting the accurate placement of percutaneous pedicle screws during minimally invasive transforaminal lumbar interbody fusion. Eur Spine J. 2011;20(10):1635–43.PubMedCentralCrossRefPubMed
28.
go back to reference van Schaik JP, Verbiest H, van Schaik FD. The orientation of laminae and facet joints in the lower lumbar spine. Spine. 1985;10(1):59–63.CrossRefPubMed van Schaik JP, Verbiest H, van Schaik FD. The orientation of laminae and facet joints in the lower lumbar spine. Spine. 1985;10(1):59–63.CrossRefPubMed
29.
go back to reference Babu R, Park JG, Mehta AI, Shan T, Grossi PM, Brown CR, et al. Comparison of superior level facet joint violations during open and percutaneous pedicle screw placement. Neurosurgery. 2012;71(5):962.PubMedCentralCrossRefPubMed Babu R, Park JG, Mehta AI, Shan T, Grossi PM, Brown CR, et al. Comparison of superior level facet joint violations during open and percutaneous pedicle screw placement. Neurosurgery. 2012;71(5):962.PubMedCentralCrossRefPubMed
30.
go back to reference Moshirfar A, Jenis LG, Spector LR, Burke PJ, Losina E, Katz JN, et al. Computed tomography evaluation of superior-segment facet-joint violation after pedicle instrumentation of the lumbar spine with a midline surgical approach. Spine. 2006;31(22):2624–9.CrossRefPubMed Moshirfar A, Jenis LG, Spector LR, Burke PJ, Losina E, Katz JN, et al. Computed tomography evaluation of superior-segment facet-joint violation after pedicle instrumentation of the lumbar spine with a midline surgical approach. Spine. 2006;31(22):2624–9.CrossRefPubMed
Metadata
Title
Analysis of risk factors for adjacent superior vertebral pedicle-induced facet joint violation during the minimally invasive surgery transforaminal lumbar interbody fusion: a retrospective study
Authors
Zhi-Li Zeng
Long Jia
Wei Xu
Yan Yu
Xiao Hu
Yong-Wei Jia
Jian-Jie Wang
Li-Ming Cheng
Publication date
01-12-2015
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2015
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-015-0174-9

Other articles of this Issue 1/2015

European Journal of Medical Research 1/2015 Go to the issue