Skip to main content
Top
Published in: Angiogenesis 3/2009

01-09-2009 | Original Paper

Analysis of PPARα-dependent and PPARα-independent transcript regulation following fenofibrate treatment of human endothelial cells

Authors: Hiromitsu Araki, Yoshinori Tamada, Seiya Imoto, Ben Dunmore, Deborah Sanders, Sally Humphrey, Masao Nagasaki, Atsushi Doi, Yukiko Nakanishi, Kaori Yasuda, Yuki Tomiyasu, Kousuke Tashiro, Cristin Print, D. Stephen Charnock-Jones, Satoru Kuhara, Satoru Miyano

Published in: Angiogenesis | Issue 3/2009

Login to get access

Abstract

Fenofibrate is a synthetic ligand for the nuclear receptor peroxisome proliferator-activated receptor (PPAR) alpha and has been widely used in the treatment of metabolic disorders, especially hyperlipemia, due to its lipid-lowering effect. The molecular mechanism of lipid-lowering is relatively well defined: an activated PPARα forms a PPAR–RXR heterodimer and this regulates the transcription of genes involved in energy metabolism by binding to PPAR response elements in their promoter regions, so-called “trans-activation”. In addition, fenofibrate also has anti-inflammatory and anti-athrogenic effects in vascular endothelial and smooth muscle cells. We have limited information about the anti-inflammatory mechanism of fenofibrate; however, “trans-repression” which suppresses production of inflammatory cytokines and adhesion molecules probably contributes to this mechanism. Furthermore, there are reports that fenofibrate affects endothelial cells in a PPARα-independent manner. In order to identify PPARα-dependently and PPARα-independently regulated transcripts, we generated microarray data from human endothelial cells treated with fenofibrate, and with and without siRNA-mediated knock-down of PPARα. We also constructed dynamic Bayesian transcriptome networks to reveal PPARα-dependent and -independent pathways. Our transcriptome network analysis identified growth differentiation factor 15 (GDF15) as a hub gene having PPARα-independently regulated transcripts as its direct downstream children. This result suggests that GDF15 may be PPARα-independent master-regulator of fenofibrate action in human endothelial cells.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Gervois P, Fruchart JC, Staels B (2007) Drug insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Clin Pract Endocrinol Metab 3:145–156. doi:10.1038/ncpendmet0397 PubMedCrossRef Gervois P, Fruchart JC, Staels B (2007) Drug insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Clin Pract Endocrinol Metab 3:145–156. doi:10.​1038/​ncpendmet0397 PubMedCrossRef
4.
go back to reference Zandbergen F, Plutzky J (2007) PPARα in atherosclerosis and inflammation. Biochim Biophys Acta 1771:972–982PubMed Zandbergen F, Plutzky J (2007) PPARα in atherosclerosis and inflammation. Biochim Biophys Acta 1771:972–982PubMed
6.
7.
go back to reference Affara M, Dunmore B, Savoie C, Imoto S, Tamada Y, Araki H, Charnock-Jones DS, Miyano S, Print C (2007) Understanding endothelial cell apoptosis: what can the transcriptome, glycome and proteome reveal? Philos Trans R Soc Lond B Biol Sci 362:1469–1487. doi:10.1098/rstb.2007.2129 PubMedCrossRef Affara M, Dunmore B, Savoie C, Imoto S, Tamada Y, Araki H, Charnock-Jones DS, Miyano S, Print C (2007) Understanding endothelial cell apoptosis: what can the transcriptome, glycome and proteome reveal? Philos Trans R Soc Lond B Biol Sci 362:1469–1487. doi:10.​1098/​rstb.​2007.​2129 PubMedCrossRef
8.
go back to reference Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43:13348–13356. doi:10.1021/bi048950a PubMedCrossRef Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43:13348–13356. doi:10.​1021/​bi048950a PubMedCrossRef
9.
go back to reference Tamada Y, Araki H, Imoto S, Nagasaki M, Doi A, Nakanishi Y, Tomiyasu Y, Yasuda K, Dunmore B, Sanders D, Humphries S, Print C, Charnock-Jones DS, Sanders D, Tashiro K, Kuhara S, Miyano S (2009) Unraveling dynamic activities of autocrine pathways that control drug-response transcriptome networks. Pac Symp Biocomput 14:251–263 Tamada Y, Araki H, Imoto S, Nagasaki M, Doi A, Nakanishi Y, Tomiyasu Y, Yasuda K, Dunmore B, Sanders D, Humphries S, Print C, Charnock-Jones DS, Sanders D, Tashiro K, Kuhara S, Miyano S (2009) Unraveling dynamic activities of autocrine pathways that control drug-response transcriptome networks. Pac Symp Biocomput 14:251–263
11.
go back to reference Gupta PK, Yoshida R, Imoto S, Yamaguchi R, Miyano S (2007) Statistical absolute evaluation of gene ontology terms with gene expression data. Proceedings of the 3rd international symposium on bioinformatics research and applications. Lecture note in Bioinformatics, vol 4463. Springer-Verlag, pp 146–157 Gupta PK, Yoshida R, Imoto S, Yamaguchi R, Miyano S (2007) Statistical absolute evaluation of gene ontology terms with gene expression data. Proceedings of the 3rd international symposium on bioinformatics research and applications. Lecture note in Bioinformatics, vol 4463. Springer-Verlag, pp 146–157
12.
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300
14.
go back to reference Gervois P, Vu-Dac N, Kleemann R, Kockx M, Dubois G, Laine B, Kosykh V, Fruchart JC, Kooistra T, Staels B (2001) Negative regulation of human fibrinogen gene expression by peroxisome proliferator-activated receptor alpha agonists via inhibition of CCAAT box/enhancer-binding protein beta. J Biol Chem 276:33471–33477. doi:10.1074/jbc.M102839200 PubMedCrossRef Gervois P, Vu-Dac N, Kleemann R, Kockx M, Dubois G, Laine B, Kosykh V, Fruchart JC, Kooistra T, Staels B (2001) Negative regulation of human fibrinogen gene expression by peroxisome proliferator-activated receptor alpha agonists via inhibition of CCAAT box/enhancer-binding protein beta. J Biol Chem 276:33471–33477. doi:10.​1074/​jbc.​M102839200 PubMedCrossRef
15.
go back to reference Goya K, Sumitani S, Xu X, Kitamura T, Yamamoto H, Kurebayashi S, Saito H, Kouhara H, Kasayama S, Kawase I (2004) Peroxisome proliferator-activated receptor α agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 24:658–663. doi:10.1161/01.ATV.0000118682.58708.78 PubMedCrossRef Goya K, Sumitani S, Xu X, Kitamura T, Yamamoto H, Kurebayashi S, Saito H, Kouhara H, Kasayama S, Kawase I (2004) Peroxisome proliferator-activated receptor α agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 24:658–663. doi:10.​1161/​01.​ATV.​0000118682.​58708.​78 PubMedCrossRef
16.
go back to reference Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnés CM, Fannon M, Laforme AM, Chaponis DM, Folkman J, Kieran MW (2008) PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci USA 105:985–990. doi:10.1073/pnas.0711281105 PubMedCrossRef Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnés CM, Fannon M, Laforme AM, Chaponis DM, Folkman J, Kieran MW (2008) PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci USA 105:985–990. doi:10.​1073/​pnas.​0711281105 PubMedCrossRef
17.
go back to reference Sands WA, Martin AF, Strong EW, Palmer TM (2004) Specific inhibition of nuclear factor-kappaB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol Pharmacol 66:1147–1159. doi:10.1124/mol.104.001107 PubMedCrossRef Sands WA, Martin AF, Strong EW, Palmer TM (2004) Specific inhibition of nuclear factor-kappaB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol Pharmacol 66:1147–1159. doi:10.​1124/​mol.​104.​001107 PubMedCrossRef
18.
go back to reference Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P, Blaschke F, Graf K, Law RE, Fleck E, Gräfe M (2002) PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun 293:1431–1437. doi:10.1016/S0006-291X(02)00385-6 PubMedCrossRef Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P, Blaschke F, Graf K, Law RE, Fleck E, Gräfe M (2002) PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun 293:1431–1437. doi:10.​1016/​S0006-291X(02)00385-6 PubMedCrossRef
20.
go back to reference Zotenko E, Mestre J, O’Leary DP, Przytycka TM (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLOS Comput Biol 4:e1000140. doi:10.1371/journal.pcbi.1000140 PubMedCrossRef Zotenko E, Mestre J, O’Leary DP, Przytycka TM (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLOS Comput Biol 4:e1000140. doi:10.​1371/​journal.​pcbi.​1000140 PubMedCrossRef
21.
go back to reference Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P, Hauser K, Hahnfeldt P, Hlatky L, Debus J, Peters JM, Friess H, Folkman J, Huber PE (2007) Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 104:12890–12895. doi:10.1073/pnas.0705505104 PubMedCrossRef Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P, Hauser K, Hahnfeldt P, Hlatky L, Debus J, Peters JM, Friess H, Folkman J, Huber PE (2007) Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 104:12890–12895. doi:10.​1073/​pnas.​0705505104 PubMedCrossRef
22.
go back to reference Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390. doi:10.1038/ng1532 PubMedCrossRef Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390. doi:10.​1038/​ng1532 PubMedCrossRef
23.
go back to reference Yamamoto T, Nishizaki I, Nukada T, Kamegaya E, Furuya S, Hirabayashi Y, Ikeda K, Hata H, Kobayashi H, Sora I, Yamamoto H (2004) Functional identification of ASCT1 neutral amino acid transporter as the predominant system for the uptake of l-serine in rat neurons in primary culture. Neurosci Res 49:101–111. doi:10.1016/j.neures.2004.02.004 PubMedCrossRef Yamamoto T, Nishizaki I, Nukada T, Kamegaya E, Furuya S, Hirabayashi Y, Ikeda K, Hata H, Kobayashi H, Sora I, Yamamoto H (2004) Functional identification of ASCT1 neutral amino acid transporter as the predominant system for the uptake of l-serine in rat neurons in primary culture. Neurosci Res 49:101–111. doi:10.​1016/​j.​neures.​2004.​02.​004 PubMedCrossRef
25.
go back to reference Ferrari N, Pfeffer U, Dell’Eva R, Ambrosini C, Noonan DM, Albini A (2005) The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl) retinamide. Clin Cancer Res 11:4610–4619. doi:10.1158/1078-0432.CCR-04-2210 PubMedCrossRef Ferrari N, Pfeffer U, Dell’Eva R, Ambrosini C, Noonan DM, Albini A (2005) The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl) retinamide. Clin Cancer Res 11:4610–4619. doi:10.​1158/​1078-0432.​CCR-04-2210 PubMedCrossRef
26.
go back to reference Huang CY, Beer TM, Higano CS, True LD, Vessella R, Lange PH, Garzotto M, Nelson PS (2007) Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15. Clin Cancer Res 13:5825–5833. doi:10.1158/1078-0432.CCR-07-1037 PubMedCrossRef Huang CY, Beer TM, Higano CS, True LD, Vessella R, Lange PH, Garzotto M, Nelson PS (2007) Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15. Clin Cancer Res 13:5825–5833. doi:10.​1158/​1078-0432.​CCR-07-1037 PubMedCrossRef
27.
go back to reference Lin R, Liu J, Gan W, Yang G (2004) C-reactive protein-induced expression of CD40-CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull 27:1537–1543. doi:10.1248/bpb.27.1537 PubMedCrossRef Lin R, Liu J, Gan W, Yang G (2004) C-reactive protein-induced expression of CD40-CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull 27:1537–1543. doi:10.​1248/​bpb.​27.​1537 PubMedCrossRef
28.
go back to reference Martinez JM, Sali T, Okazaki R, Anna C, Hollingshead M, Hose C, Monks A, Walker NJ, Baek SJ, Eling TE (2006) Drug-induced expression of nonsteroidal anti-inflammatory drug-activated gene/macrophage inhibitory cytokine-1/prostate-derived factor, a putative tumor suppressor, inhibits tumor growth. J Pharmacol Exp Ther 318:899–906. doi:10.1124/jpet.105.100081 PubMedCrossRef Martinez JM, Sali T, Okazaki R, Anna C, Hollingshead M, Hose C, Monks A, Walker NJ, Baek SJ, Eling TE (2006) Drug-induced expression of nonsteroidal anti-inflammatory drug-activated gene/macrophage inhibitory cytokine-1/prostate-derived factor, a putative tumor suppressor, inhibits tumor growth. J Pharmacol Exp Ther 318:899–906. doi:10.​1124/​jpet.​105.​100081 PubMedCrossRef
29.
go back to reference Holland CM, Saidi SA, Evans AL, Sharkey AM, Latimer JA, Crawford RA, Charnock-Jones DS, Print C, Smith SK (2004) Transcriptome analysis of endometrial cancer identifies peroxisome proliferator-activated receptors as potential therapeutic targets. Mol Cancer Ther 3:993–1001PubMed Holland CM, Saidi SA, Evans AL, Sharkey AM, Latimer JA, Crawford RA, Charnock-Jones DS, Print C, Smith SK (2004) Transcriptome analysis of endometrial cancer identifies peroxisome proliferator-activated receptors as potential therapeutic targets. Mol Cancer Ther 3:993–1001PubMed
30.
go back to reference Baek SJ, Kim JS, Nixon JB, DiAugustine RP, Eling TE (2004) Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem 279:6883–6892. doi:10.1074/jbc.M305295200 PubMedCrossRef Baek SJ, Kim JS, Nixon JB, DiAugustine RP, Eling TE (2004) Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem 279:6883–6892. doi:10.​1074/​jbc.​M305295200 PubMedCrossRef
31.
go back to reference Chintharlapalli S, Papineni S, Baek SJ, Liu S, Safe S (2005) 1,1-Bis(3′-indolyl)-1-(p-substitutedphenyl)methanes are peroxisome proliferator-activated receptor gamma agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Mol Pharmacol 68:1782–1792PubMed Chintharlapalli S, Papineni S, Baek SJ, Liu S, Safe S (2005) 1,1-Bis(3′-indolyl)-1-(p-substitutedphenyl)methanes are peroxisome proliferator-activated receptor gamma agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Mol Pharmacol 68:1782–1792PubMed
32.
go back to reference Yamaguchi K, Lee SH, Eling TE, Baek SJ (2006) A novel peroxisome proliferator-activated receptor gamma ligand, MCC-555, induces apoptosis via posttranscriptional regulation of NAG-1 in colorectal cancer cells. Mol Cancer Ther 5:1352–1361. doi:10.1158/1535-7163.MCT-05-0528 PubMedCrossRef Yamaguchi K, Lee SH, Eling TE, Baek SJ (2006) A novel peroxisome proliferator-activated receptor gamma ligand, MCC-555, induces apoptosis via posttranscriptional regulation of NAG-1 in colorectal cancer cells. Mol Cancer Ther 5:1352–1361. doi:10.​1158/​1535-7163.​MCT-05-0528 PubMedCrossRef
33.
go back to reference Baek SJ, Wilson LC, Hsi LC, Eling TE (2003) Troglitazone, a peroxisome proliferator-activated receptor gamma (PPAR gamma) ligand, selectively induces the early growth response-1 gene independently of PPAR gamma. A novel mechanism for its anti-tumorigenic activity. J Biol Chem 278:5845–5853. doi:10.1074/jbc.M208394200 PubMedCrossRef Baek SJ, Wilson LC, Hsi LC, Eling TE (2003) Troglitazone, a peroxisome proliferator-activated receptor gamma (PPAR gamma) ligand, selectively induces the early growth response-1 gene independently of PPAR gamma. A novel mechanism for its anti-tumorigenic activity. J Biol Chem 278:5845–5853. doi:10.​1074/​jbc.​M208394200 PubMedCrossRef
34.
go back to reference Duhaney TA, Cui L, Rude MK, Lebrasseur NK, Ngoy S, De Silva DS, Siwik DA, Liao R, Sam F (2007) Peroxisome proliferator-activated receptor alpha-independent actions of fenofibrate exacerbates left ventricular dilation and fibrosis in chronic pressure overload. Hypertension 49:1084–1094. doi:10.1161/HYPERTENSIONAHA.107.086926 PubMedCrossRef Duhaney TA, Cui L, Rude MK, Lebrasseur NK, Ngoy S, De Silva DS, Siwik DA, Liao R, Sam F (2007) Peroxisome proliferator-activated receptor alpha-independent actions of fenofibrate exacerbates left ventricular dilation and fibrosis in chronic pressure overload. Hypertension 49:1084–1094. doi:10.​1161/​HYPERTENSIONAHA.​107.​086926 PubMedCrossRef
Metadata
Title
Analysis of PPARα-dependent and PPARα-independent transcript regulation following fenofibrate treatment of human endothelial cells
Authors
Hiromitsu Araki
Yoshinori Tamada
Seiya Imoto
Ben Dunmore
Deborah Sanders
Sally Humphrey
Masao Nagasaki
Atsushi Doi
Yukiko Nakanishi
Kaori Yasuda
Yuki Tomiyasu
Kousuke Tashiro
Cristin Print
D. Stephen Charnock-Jones
Satoru Kuhara
Satoru Miyano
Publication date
01-09-2009
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 3/2009
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-009-9142-8

Other articles of this Issue 3/2009

Angiogenesis 3/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.