Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 5/2018

01-09-2018 | Original Article

Analysis of Ca2+ response of osteocyte network by three-dimensional time-lapse imaging in living bone

Authors: Tomoyo Tanaka, Mitsuhiro Hoshijima, Junko Sunaga, Takashi Nishida, Mana Hashimoto, Naoya Odagaki, Ryuta Osumi, Taiji Aadachi, Hiroshi Kamioka

Published in: Journal of Bone and Mineral Metabolism | Issue 5/2018

Login to get access

Abstract

Osteocytes form a three-dimensional (3D) cellular network within the mineralized bone matrix. The cellular network has important roles in mechanosensation and mechanotransduction related to bone homeostasis. We visualized the embedded osteocyte network in chick calvariae and observed the flow-induced Ca2+ signaling in osteocytes using 3D time-lapse imaging. In response to the flow, intracellular Ca2+ ([Ca2+]i) significantly increased in developmentally mature osteocytes in comparison with young osteocytes in the bone matrix. To investigate the differences in response between young and developmentally mature osteocytes in detail, we evaluated the expression of osteocyte-related genes using the osteocyte-like cell line MLO-Y4, which was 3D-cultured within type I collagen gels. We found that the c-Fos, Cx43, Panx3, Col1a1, and OCN mRNA levels significantly increased on day 15 in comparison with day 7. These findings indicate that developmentally mature osteocytes are more responsive to mechanical stress than young osteocytes and have important functions in bone formation and remodeling.
Literature
1.
go back to reference Power J, Loveridge N, Rushton N, Parker M, Reeve J (2002) Osteocyte density in aging subjects is enhanced in bone adjacent to remodeling haversian systems. Bone (NY) 30:859–865CrossRef Power J, Loveridge N, Rushton N, Parker M, Reeve J (2002) Osteocyte density in aging subjects is enhanced in bone adjacent to remodeling haversian systems. Bone (NY) 30:859–865CrossRef
2.
go back to reference Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone (NY) 28:145–149CrossRef Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone (NY) 28:145–149CrossRef
3.
go back to reference Gu G, Kurata K, Chen Z, Väänänen KH (2007) Osteocyte: a cellular basis for mechanotransduction in bone. J Biomech Sci Eng 2:150–165CrossRef Gu G, Kurata K, Chen Z, Väänänen KH (2007) Osteocyte: a cellular basis for mechanotransduction in bone. J Biomech Sci Eng 2:150–165CrossRef
4.
go back to reference Hu M, Tian GW, Gibbons DE, Jiao J, Qin YX (2015) Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations. Arch Biochem Biophys 579:55–61CrossRefPubMedPubMedCentral Hu M, Tian GW, Gibbons DE, Jiao J, Qin YX (2015) Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations. Arch Biochem Biophys 579:55–61CrossRefPubMedPubMedCentral
5.
go back to reference Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone (NY) 42:606–615CrossRef Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone (NY) 42:606–615CrossRef
6.
go back to reference Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone (NY) 54:182–190CrossRef Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone (NY) 54:182–190CrossRef
9.
go back to reference Hughes-Fulford M (2004) Signal transduction and mechanical stress. Sci STKE 2004(249):RE12PubMed Hughes-Fulford M (2004) Signal transduction and mechanical stress. Sci STKE 2004(249):RE12PubMed
10.
go back to reference Wadhwa S, Godwin SL, Peterson DR, Epstein MA, Raisz LG, Pilbeam CC (2002) Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway. J Bone Miner Res 17:266–274CrossRefPubMed Wadhwa S, Godwin SL, Peterson DR, Epstein MA, Raisz LG, Pilbeam CC (2002) Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway. J Bone Miner Res 17:266–274CrossRefPubMed
11.
go back to reference Wadhwa S, Choudhary S, Voznesensky M, Epstein M, Raisz L, Pilbeam C (2002) Fluid flow induces COX-2 expression in MC3T3-E1 osteoblasts via a PKA signaling pathway. Biochem Biophys Res Commun 297:46–51CrossRefPubMed Wadhwa S, Choudhary S, Voznesensky M, Epstein M, Raisz L, Pilbeam C (2002) Fluid flow induces COX-2 expression in MC3T3-E1 osteoblasts via a PKA signaling pathway. Biochem Biophys Res Commun 297:46–51CrossRefPubMed
12.
go back to reference You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 276:13365–13371CrossRefPubMed You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 276:13365–13371CrossRefPubMed
13.
go back to reference Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature (Lond) 395:645–648CrossRef Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature (Lond) 395:645–648CrossRef
14.
go back to reference Kamioka H, Sugawara Y, Murshid SA, Ishihara Y, Honjo T, Takano-Yamamoto T (2006) Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res 21:1012–1021CrossRefPubMed Kamioka H, Sugawara Y, Murshid SA, Ishihara Y, Honjo T, Takano-Yamamoto T (2006) Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res 21:1012–1021CrossRefPubMed
15.
go back to reference Lu XL, Huo B, Chiang V, Guo XE (2012) Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J Bone Miner Res 27:563–574CrossRefPubMedPubMedCentral Lu XL, Huo B, Chiang V, Guo XE (2012) Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J Bone Miner Res 27:563–574CrossRefPubMedPubMedCentral
16.
go back to reference Hung CT, Pollack SR, Reilly TM, Brighton CT (1995) Real-time calcium response of cultured bone cells to fluid flow. Clin Orthop Relat Res 313:256–269 Hung CT, Pollack SR, Reilly TM, Brighton CT (1995) Real-time calcium response of cultured bone cells to fluid flow. Clin Orthop Relat Res 313:256–269
17.
go back to reference Ishihara Y, Sugawara Y, Kamioka H, Kawanabe N, Hayano S, Balam TA, Naruse K, Yamashiro T (2013) Ex vivo real-time observation of Ca2+ signaling in living bone in response to shear stress applied on the bone surface. Bone (NY) 53:204–215CrossRef Ishihara Y, Sugawara Y, Kamioka H, Kawanabe N, Hayano S, Balam TA, Naruse K, Yamashiro T (2013) Ex vivo real-time observation of Ca2+ signaling in living bone in response to shear stress applied on the bone surface. Bone (NY) 53:204–215CrossRef
18.
go back to reference Xu H, Gu S, Riquelme MA, Burra S, Callaway D, Cheng H, Guda T, Schmitz J, Fajardo RJ, Werner SL, Zhao H, Shang P, Johnson ML, Bonewald LF, Jiang JX (2015) Connexin 43 channels are essential for normal bone structure and osteocyte viability. J Bone Miner Res 30:436–448CrossRefPubMed Xu H, Gu S, Riquelme MA, Burra S, Callaway D, Cheng H, Guda T, Schmitz J, Fajardo RJ, Werner SL, Zhao H, Shang P, Johnson ML, Bonewald LF, Jiang JX (2015) Connexin 43 channels are essential for normal bone structure and osteocyte viability. J Bone Miner Res 30:436–448CrossRefPubMed
19.
go back to reference Ilvesaro J, Väänänen K, Tuukkanen J (2000) Bone-resorbing osteoclasts contain gap-junctional connexin-43. J Bone Miner Res 15:919–926CrossRefPubMed Ilvesaro J, Väänänen K, Tuukkanen J (2000) Bone-resorbing osteoclasts contain gap-junctional connexin-43. J Bone Miner Res 15:919–926CrossRefPubMed
20.
go back to reference Burra S, Nicolella DP, Francis WL, Freitas CJ, Mueschke NJ, Poole K, Jiang JX (2010) Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc Natl Acad Sci USA 107:13648–13653CrossRefPubMed Burra S, Nicolella DP, Francis WL, Freitas CJ, Mueschke NJ, Poole K, Jiang JX (2010) Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc Natl Acad Sci USA 107:13648–13653CrossRefPubMed
21.
go back to reference Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106CrossRefPubMedPubMedCentral Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106CrossRefPubMedPubMedCentral
22.
go back to reference Iwamoto T, Nakamura T, Doyle A, Ishikawa M, de Vega S, Fukumoto S, Yamada Y (2010) Pannexin 3 regulates intracellular ATP/cAMP levels and promotes chondrocyte differentiation. J Biol Chem 285:18948–18958CrossRefPubMedPubMedCentral Iwamoto T, Nakamura T, Doyle A, Ishikawa M, de Vega S, Fukumoto S, Yamada Y (2010) Pannexin 3 regulates intracellular ATP/cAMP levels and promotes chondrocyte differentiation. J Biol Chem 285:18948–18958CrossRefPubMedPubMedCentral
23.
go back to reference Ishikawa M, Iwamoto T, Fukumoto S, Yamada Y (2014) Pannexin 3 inhibits proliferation of osteoprogenitor cells by regulating Wnt and p21 signaling. J Biol Chem 289:2839–2851CrossRefPubMed Ishikawa M, Iwamoto T, Fukumoto S, Yamada Y (2014) Pannexin 3 inhibits proliferation of osteoprogenitor cells by regulating Wnt and p21 signaling. J Biol Chem 289:2839–2851CrossRefPubMed
24.
go back to reference Palumbo C (1986) A three-dimensional ultrastructural study of osteoid–osteocytes in the tibia of chick embryos. Cell Tissue Res 246:125–131CrossRefPubMed Palumbo C (1986) A three-dimensional ultrastructural study of osteoid–osteocytes in the tibia of chick embryos. Cell Tissue Res 246:125–131CrossRefPubMed
25.
go back to reference Ishihara Y, Sugawara Y, Kamioka H, Kawanabe N, Kurosaka H, Naruse K, Yamashiro T (2012) In situ imaging of the autonomous intracellular Ca2+ oscillations of osteoblasts and osteocytes in bone. Bone (NY) 50:842–852CrossRef Ishihara Y, Sugawara Y, Kamioka H, Kawanabe N, Kurosaka H, Naruse K, Yamashiro T (2012) In situ imaging of the autonomous intracellular Ca2+ oscillations of osteoblasts and osteocytes in bone. Bone (NY) 50:842–852CrossRef
26.
go back to reference Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF (1997) Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res 12:2014–2023CrossRefPubMed Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF (1997) Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res 12:2014–2023CrossRefPubMed
27.
go back to reference Kurata K, Heino TJ, Higaki H, Väänänen HK (2006) Bone marrow cell differentiation induced by mechanically damaged osteocytes in 3D gel-embedded culture. J Bone Miner Res 21:616–625CrossRefPubMed Kurata K, Heino TJ, Higaki H, Väänänen HK (2006) Bone marrow cell differentiation induced by mechanically damaged osteocytes in 3D gel-embedded culture. J Bone Miner Res 21:616–625CrossRefPubMed
28.
go back to reference Adachi T, Aonuma Y, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009) Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech 42:1989–1995CrossRefPubMed Adachi T, Aonuma Y, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009) Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech 42:1989–1995CrossRefPubMed
29.
go back to reference Mc Garrigle MJ, Mullen CA, Haugh MG, Voisin MC, McNamara LM (2016) Osteocyte differentiation and the formation of an interconnected cellular network in vitro. Eur Cell Mater 31:323–340CrossRefPubMed Mc Garrigle MJ, Mullen CA, Haugh MG, Voisin MC, McNamara LM (2016) Osteocyte differentiation and the formation of an interconnected cellular network in vitro. Eur Cell Mater 31:323–340CrossRefPubMed
30.
31.
go back to reference Jing D, Baik AD, Lu XL, Zhou B, Lai X, Wang L, Luo E, Guo XE (2014) In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J 28:1582–1592CrossRefPubMedPubMedCentral Jing D, Baik AD, Lu XL, Zhou B, Lai X, Wang L, Luo E, Guo XE (2014) In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J 28:1582–1592CrossRefPubMedPubMedCentral
32.
go back to reference Adachi T, Aonuma Y, Ito S, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009) Osteocyte calcium signaling response to bone matrix deformation. J Biomech 42:2507–2512CrossRefPubMed Adachi T, Aonuma Y, Ito S, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009) Osteocyte calcium signaling response to bone matrix deformation. J Biomech 42:2507–2512CrossRefPubMed
33.
go back to reference Hoebe RA, Van Oven CH, Gadella TWJ, Dhonukshe PB, Van Noorden CJF, Manders EMM (2007) Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotechnol 25:249–253CrossRefPubMed Hoebe RA, Van Oven CH, Gadella TWJ, Dhonukshe PB, Van Noorden CJF, Manders EMM (2007) Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotechnol 25:249–253CrossRefPubMed
34.
go back to reference Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF (2011) Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 26:2634–2646CrossRefPubMedPubMedCentral Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF (2011) Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 26:2634–2646CrossRefPubMedPubMedCentral
35.
go back to reference Vazquez M, Evans BA, Riccardi D, Evans SL, Ralphs JR, Dillingham CM, Mason DJ (2014) A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Front Endocrinol (Lausanne) 5:208 Vazquez M, Evans BA, Riccardi D, Evans SL, Ralphs JR, Dillingham CM, Mason DJ (2014) A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Front Endocrinol (Lausanne) 5:208
36.
go back to reference Boukhechba F, Balaguer T, Michiels JF, Ackermann K, Quincey D, Bouler JM, Pyerin W, Carle GF, Rochet N (2009) Human primary osteocyte differentiation in a 3D culture system. J Bone Miner Res 24:1927–1935CrossRefPubMed Boukhechba F, Balaguer T, Michiels JF, Ackermann K, Quincey D, Bouler JM, Pyerin W, Carle GF, Rochet N (2009) Human primary osteocyte differentiation in a 3D culture system. J Bone Miner Res 24:1927–1935CrossRefPubMed
37.
go back to reference Sugawara Y, Kamioka H, Ishihara Y, Fujisawa N, Kawanabe N, Yamashiro T (2013) The early mouse 3D osteocyte network in the presence and absence of mechanical loading. Bone (NY) 52:189–196CrossRef Sugawara Y, Kamioka H, Ishihara Y, Fujisawa N, Kawanabe N, Yamashiro T (2013) The early mouse 3D osteocyte network in the presence and absence of mechanical loading. Bone (NY) 52:189–196CrossRef
38.
go back to reference Toyosawa S, Oya K, Sato S, Ishida K (2012) Osteocyte and DMP1. Clin Calcium 22:713–720PubMed Toyosawa S, Oya K, Sato S, Ishida K (2012) Osteocyte and DMP1. Clin Calcium 22:713–720PubMed
40.
go back to reference Atkins GJ, Rowe PS, Lim HP, Welldon KJ, Ormsby R, Wijenayaka AR, Zelenchuk L, Evdokiou A, Findlay DM (2011) Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res 26:1425–1436CrossRefPubMedPubMedCentral Atkins GJ, Rowe PS, Lim HP, Welldon KJ, Ormsby R, Wijenayaka AR, Zelenchuk L, Evdokiou A, Findlay DM (2011) Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res 26:1425–1436CrossRefPubMedPubMedCentral
41.
go back to reference Wang Z, Odagaki N, Tanaka T, Hashimoto M, Nakamura M, Hayano S, Ishihara Y, Kawanabe N, Kamioka H (2016) Alternation in the gap-junctional intercellular communication capacity during the maturation of osteocytes in the embryonic chick calvaria. Bone (NY) 91:20–29CrossRef Wang Z, Odagaki N, Tanaka T, Hashimoto M, Nakamura M, Hayano S, Ishihara Y, Kawanabe N, Kamioka H (2016) Alternation in the gap-junctional intercellular communication capacity during the maturation of osteocytes in the embryonic chick calvaria. Bone (NY) 91:20–29CrossRef
42.
go back to reference Vanden AF, Bidaux G, Gordienko D, Beck B, Panchin YV, Baranova AV, Ivanov DV, Skryma R, Prevarskaya N (2006) Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol 174:535–546CrossRef Vanden AF, Bidaux G, Gordienko D, Beck B, Panchin YV, Baranova AV, Ivanov DV, Skryma R, Prevarskaya N (2006) Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol 174:535–546CrossRef
Metadata
Title
Analysis of Ca2+ response of osteocyte network by three-dimensional time-lapse imaging in living bone
Authors
Tomoyo Tanaka
Mitsuhiro Hoshijima
Junko Sunaga
Takashi Nishida
Mana Hashimoto
Naoya Odagaki
Ryuta Osumi
Taiji Aadachi
Hiroshi Kamioka
Publication date
01-09-2018
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 5/2018
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-017-0868-x

Other articles of this Issue 5/2018

Journal of Bone and Mineral Metabolism 5/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.