Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2020

Open Access 01-12-2020 | Research article

An R package for an integrated evaluation of statistical approaches to cancer incidence projection

Authors: Maximilian Knoll, Jennifer Furkel, Jürgen Debus, Amir Abdollahi, André Karch, Christian Stock

Published in: BMC Medical Research Methodology | Issue 1/2020

Login to get access

Abstract

Background

Projection of future cancer incidence is an important task in cancer epidemiology. The results are of interest also for biomedical research and public health policy. Age-Period-Cohort (APC) models, usually based on long-term cancer registry data (> 20 yrs), are established for such projections. In many countries (including Germany), however, nationwide long-term data are not yet available. General guidance on statistical approaches for projections using rather short-term data is challenging and software to enable researchers to easily compare approaches is lacking.

Methods

To enable a comparative analysis of the performance of statistical approaches to cancer incidence projection, we developed an R package (incAnalysis), supporting in particular Bayesian models fitted by Integrated Nested Laplace Approximations (INLA). Its use is demonstrated by an extensive empirical evaluation of operating characteristics (bias, coverage and precision) of potentially applicable models differing by complexity. Observed long-term data from three cancer registries (SEER-9, NORDCAN, Saarland) was used for benchmarking.

Results

Overall, coverage was high (mostly > 90%) for Bayesian APC models (BAPC), whereas less complex models showed differences in coverage dependent on projection-period. Intercept-only models yielded values below 20% for coverage. Bias increased and precision decreased for longer projection periods (> 15 years) for all except intercept-only models. Precision was lowest for complex models such as BAPC models, generalized additive models with multivariate smoothers and generalized linear models with age x period interaction effects.

Conclusion

The incAnalysis R package allows a straightforward comparison of cancer incidence rate projection approaches. Further detailed and targeted investigations into model performance in addition to the presented empirical results are recommended to derive guidance on appropriate statistical projection methods in a given setting.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brown LD, Cai TT, DasGupta A, Agresti A, Coull BA, Casella G, Corcoran C, Mehta C, Ghosh M, Santner TJ, et al. Interval estimation for a binomial proportion - comment - rejoinder. Stat Sci. 2001;16(2):101–33. Brown LD, Cai TT, DasGupta A, Agresti A, Coull BA, Casella G, Corcoran C, Mehta C, Ghosh M, Santner TJ, et al. Interval estimation for a binomial proportion - comment - rejoinder. Stat Sci. 2001;16(2):101–33.
2.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.CrossRef
3.
go back to reference Moller B, Fekjaer H, Hakulinen T, Sigvaldason H, Storm HH, Talback M, Haldorsen T. Prediction of cancer incidence in the Nordic countries: empirical comparison of different approaches. Stat Med. 2003;22(17):2751–66.PubMedCrossRef Moller B, Fekjaer H, Hakulinen T, Sigvaldason H, Storm HH, Talback M, Haldorsen T. Prediction of cancer incidence in the Nordic countries: empirical comparison of different approaches. Stat Med. 2003;22(17):2751–66.PubMedCrossRef
4.
5.
go back to reference Moller H, Fairley L, Coupland V, Okello C, Green M, Forman D, Moller B, Bray F. The future burden of cancer in England: incidence and numbers of new patients in 2020. Br J Cancer. 2007;96(9):1484–8.PubMedPubMedCentralCrossRef Moller H, Fairley L, Coupland V, Okello C, Green M, Forman D, Moller B, Bray F. The future burden of cancer in England: incidence and numbers of new patients in 2020. Br J Cancer. 2007;96(9):1484–8.PubMedPubMedCentralCrossRef
6.
go back to reference Nowatzki J, Moller B, Demers A. Projection of future cancer incidence and new cancer cases in Manitoba, 2006-2025. Chronic Dis Can. 2011;31(2):71–8.PubMedCrossRef Nowatzki J, Moller B, Demers A. Projection of future cancer incidence and new cancer cases in Manitoba, 2006-2025. Chronic Dis Can. 2011;31(2):71–8.PubMedCrossRef
7.
go back to reference Dyba T, Hakulinen T, Paivarinta L. A simple non-linear model in incidence prediction. Stat Med. 1997;16(20):2297–309.PubMedCrossRef Dyba T, Hakulinen T, Paivarinta L. A simple non-linear model in incidence prediction. Stat Med. 1997;16(20):2297–309.PubMedCrossRef
8.
go back to reference Hakulinen T, Dyba T. Precision of incidence predictions based on Poisson distributed observations. Stat Med. 1994;13(15):1513–23.PubMedCrossRef Hakulinen T, Dyba T. Precision of incidence predictions based on Poisson distributed observations. Stat Med. 1994;13(15):1513–23.PubMedCrossRef
9.
go back to reference Stock C, Mons U, Brenner H. Projection of cancer incidence rates and case numbers until 2030: A probabilistic approach applied to German cancer registry data (1999-2013). Cancer Epidemiol. 2018;(57):110–9. Stock C, Mons U, Brenner H. Projection of cancer incidence rates and case numbers until 2030: A probabilistic approach applied to German cancer registry data (1999-2013). Cancer Epidemiol. 2018;(57):110–9.
10.
go back to reference Clements MS, Armstrong BK, Moolgavkar SH. Lung cancer rate predictions using generalized additive models. Biostatistics. 2005;6(4):576–89.PubMedCrossRef Clements MS, Armstrong BK, Moolgavkar SH. Lung cancer rate predictions using generalized additive models. Biostatistics. 2005;6(4):576–89.PubMedCrossRef
11.
go back to reference Engeland A, Haldorsen T, Tretli S, Hakulinen T, Horte LG, Luostarinen T, Schou G, Sigvaldason H, Storm HH, Tulinius H, et al. Prediction of cancer mortality in the Nordic countries up to the years 2000 and 2010, on the basis of relative survival analysis. A collaborative study of the five Nordic Cancer registries. APMIS Suppl. 1995;49:1–161.PubMed Engeland A, Haldorsen T, Tretli S, Hakulinen T, Horte LG, Luostarinen T, Schou G, Sigvaldason H, Storm HH, Tulinius H, et al. Prediction of cancer mortality in the Nordic countries up to the years 2000 and 2010, on the basis of relative survival analysis. A collaborative study of the five Nordic Cancer registries. APMIS Suppl. 1995;49:1–161.PubMed
12.
go back to reference Smith TR, Wakefield J. A review and comparison of age-period-cohort models for Cancer incidence. Stat Sci. 2016;31(4):591–610.CrossRef Smith TR, Wakefield J. A review and comparison of age-period-cohort models for Cancer incidence. Stat Sci. 2016;31(4):591–610.CrossRef
13.
go back to reference Kupper LL, Janis JM, Salama IA, Yoshizawa CN, Greenberg BG. Age-period-cohort analysis - an illustration of the problems in assessing interaction in one observation per cell Data. Commun Stat-Theor M. 1983;12(23):2779–807.CrossRef Kupper LL, Janis JM, Salama IA, Yoshizawa CN, Greenberg BG. Age-period-cohort analysis - an illustration of the problems in assessing interaction in one observation per cell Data. Commun Stat-Theor M. 1983;12(23):2779–807.CrossRef
14.
go back to reference O’Brien RM. Constrained estimators and age-period-cohort models. Sociol Methods Res. 2011;40(3):419–52.CrossRef O’Brien RM. Constrained estimators and age-period-cohort models. Sociol Methods Res. 2011;40(3):419–52.CrossRef
15.
16.
go back to reference Moller B, Fekjaer H, Hakulinen T, Tryggvadottir L, Storm HH, Talback M, Haldorsen T. Prediction of cancer incidence in the Nordic countries up to the year 2020. Eur J Cancer Prev. 2002;11(Suppl 1):S1–96.PubMed Moller B, Fekjaer H, Hakulinen T, Tryggvadottir L, Storm HH, Talback M, Haldorsen T. Prediction of cancer incidence in the Nordic countries up to the year 2020. Eur J Cancer Prev. 2002;11(Suppl 1):S1–96.PubMed
17.
go back to reference Whiteman DC, Green AC, Olsen CM. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71.PubMedCrossRef Whiteman DC, Green AC, Olsen CM. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71.PubMedCrossRef
18.
go back to reference Havulinna AS. Bayesian age-period-cohort models with versatile interactions and long-term predictions: mortality and population in Finland 1878-2050. Stat Med. 2014;33(5):845–56.PubMedCrossRef Havulinna AS. Bayesian age-period-cohort models with versatile interactions and long-term predictions: mortality and population in Finland 1878-2050. Stat Med. 2014;33(5):845–56.PubMedCrossRef
19.
go back to reference Riebler A, Held L. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations. Biom J. 2017;59(3):531–49.PubMedCrossRef Riebler A, Held L. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations. Biom J. 2017;59(3):531–49.PubMedCrossRef
20.
go back to reference Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. JSTOR. 2009;71(2):319–92. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. JSTOR. 2009;71(2):319–92.
21.
go back to reference Rue H, Riebler A, Sorbye SH, Illian JB, Simpson DP, Lindgren FK. Bayesian computing with INLA: a review. Annu Rev Stat Appl. 2017;4:395–421.CrossRef Rue H, Riebler A, Sorbye SH, Illian JB, Simpson DP, Lindgren FK. Bayesian computing with INLA: a review. Annu Rev Stat Appl. 2017;4:395–421.CrossRef
22.
go back to reference Wood SN. Generalized additive models: an introduction with R, second edition edn. Boca Raton: Chapman and Hall/CRC Texts in Statistical Science; 2017.CrossRef Wood SN. Generalized additive models: an introduction with R, second edition edn. Boca Raton: Chapman and Hall/CRC Texts in Statistical Science; 2017.CrossRef
23.
go back to reference Boulesteix AL, Binder H, Abrahamowicz M, Sauerbrei W. Simulation panel of the SI: on the necessity and design of studies comparing statistical methods. Biom J. 2018;60(1):216–8.PubMedCrossRef Boulesteix AL, Binder H, Abrahamowicz M, Sauerbrei W. Simulation panel of the SI: on the necessity and design of studies comparing statistical methods. Biom J. 2018;60(1):216–8.PubMedCrossRef
24.
go back to reference Crüwell S, Stefan AM, Evans NJ. Robust standards in cognitive science. Computational Brain & Behavior. 2019;2(3):255–65.CrossRef Crüwell S, Stefan AM, Evans NJ. Robust standards in cognitive science. Computational Brain & Behavior. 2019;2(3):255–65.CrossRef
25.
go back to reference Mangul S, Martin LS, Hill BL, Lam AK, Distler MG, Zelikovsky A, Eskin E, Flint J. Systematic benchmarking of omics computational tools. Nat Commun. 2019;10(1):1393.PubMedPubMedCentralCrossRef Mangul S, Martin LS, Hill BL, Lam AK, Distler MG, Zelikovsky A, Eskin E, Flint J. Systematic benchmarking of omics computational tools. Nat Commun. 2019;10(1):1393.PubMedPubMedCentralCrossRef
27.
go back to reference Engholm G, Ferlay J, Christensen N, Bray F, Gjerstorff M, Klint A, Kotlum J, Olafsdottir E, Pukkala E, Storm H. NORDCAN--a Nordic tool for cancer information, planning, quality control and research. Acta Oncol. 2010;49(5):725–36.PubMedCrossRef Engholm G, Ferlay J, Christensen N, Bray F, Gjerstorff M, Klint A, Kotlum J, Olafsdottir E, Pukkala E, Storm H. NORDCAN--a Nordic tool for cancer information, planning, quality control and research. Acta Oncol. 2010;49(5):725–36.PubMedCrossRef
31.
go back to reference Wood SN. Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics. 2006;62(4):1025–36.PubMedCrossRef Wood SN. Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics. 2006;62(4):1025–36.PubMedCrossRef
32.
go back to reference Ramsay JO. Monotone regression splines in action. Stat Sci. 1988;3(4):425–41.CrossRef Ramsay JO. Monotone regression splines in action. Stat Sci. 1988;3(4):425–41.CrossRef
33.
go back to reference Bauer C, Wakefield J, Rue H, Self S, Feng ZJ, Wang Y. Bayesian penalized spline models for the analysis of spatio-temporal count data. Stat Med. 2016;35(11):1848–65.PubMedCrossRef Bauer C, Wakefield J, Rue H, Self S, Feng ZJ, Wang Y. Bayesian penalized spline models for the analysis of spatio-temporal count data. Stat Med. 2016;35(11):1848–65.PubMedCrossRef
34.
go back to reference Baker A, Bray I. Bayesian projections: what are the effects of excluding data from younger age groups? Am J Epidemiol. 2005;162(8):798–805.PubMedCrossRef Baker A, Bray I. Bayesian projections: what are the effects of excluding data from younger age groups? Am J Epidemiol. 2005;162(8):798–805.PubMedCrossRef
Metadata
Title
An R package for an integrated evaluation of statistical approaches to cancer incidence projection
Authors
Maximilian Knoll
Jennifer Furkel
Jürgen Debus
Amir Abdollahi
André Karch
Christian Stock
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2020
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-020-01133-5

Other articles of this Issue 1/2020

BMC Medical Research Methodology 1/2020 Go to the issue