Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2020

Open Access 01-12-2020 | Research article

Adequacy of risk of bias assessment in surgical vs non-surgical trials in Cochrane reviews: a methodological study

Authors: Ognjen Barcot, Matija Boric, Svjetlana Dosenovic, Marija Cavar, Antonia Jelicic Kadic, Tina Poklepovic Pericic, Ivana Vukicevic, Ivana Vuka, Livia Puljak

Published in: BMC Medical Research Methodology | Issue 1/2020

Login to get access

Abstract

Background

Bias in randomized controlled trials (RCTs) can lead to underestimation or overestimation of the true effects of interventions. Surgical RCTs may suffer from the risk of bias (RoB) that is avoidable in trials of other interventions, and vice versa. We aimed to compare the adequacy of RoB assessments in surgical versus non-surgical RCTs included in Cochrane reviews and to assess the most common differences in those RoB assessments. Due to specificities of surgical trials, i.e. difficulties associated with blinding of surgical interventions, we hypothesized that assessments of surgical trials may be more adequate, compared to RCTs of non-surgical interventions.

Methods

This was a methodological study, analyzing methods of published Cochrane systematic reviews. Data were extracted from RoB tables in Cochrane reviews (judgments and accompanying explanatory comment) for the following four RoB domains used in the 2011 Cochrane RoB tool: randomization, allocation concealment, blinding of participants and personnel, and blinding of outcome assessors. We defined adequate assessments as those that were in line with instructions from the Cochrane Handbook for Systematic Reviews of Interventions. The prevalence of adequate assessments was compared in surgical versus non-surgical trials. The most common differences in both groups of reviews were presented.

Results

In 729 analyzed Cochrane reviews, there were 10,537 included trials. The prevalence of adequate RoB judgments made by Cochrane authors ranged from 87.9, 95%CI (87.3 to 88.6%) for randomization to 70.7, 95%CI (69.8 to 71.5%) for blinding of participants and personnel. For all analyzed RoB domains, the prevalence of adequate RoB domains was higher in surgical trials than in non-surgical trials. For two RoB domains assessing blinding, this difference between surgical and non-surgical trials was statistically significant (P < 0.001), while the difference was not significant for the RoB domain regarding randomization (P = 0.124) and allocation concealment (P = 0.039, β < 0.8).

Conclusions

RoB judgments were more in line with instructions from the Cochrane Handbook when Cochrane reviews assessed surgical trials, compared to those that analyzed non-surgical interventions. However, further steps are warranted to scrutinize RoB assessment in trials of both surgical and non-surgical interventions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Koletsi D, Spineli LM, Lempesi E, Pandis N. Risk of bias and magnitude of effect in orthodontic randomized controlled trials: a meta-epidemiological review. Eur J Orthod. 2016;38(3):308–12.CrossRef Koletsi D, Spineli LM, Lempesi E, Pandis N. Risk of bias and magnitude of effect in orthodontic randomized controlled trials: a meta-epidemiological review. Eur J Orthod. 2016;38(3):308–12.CrossRef
2.
go back to reference Bialy L, Vandermeer B, Lacaze-Masmonteil T, Dryden DM, Hartling L. A meta-epidemiological study to examine the association between bias and treatment effects in neonatal trials. Evid Based Child Health. 2014;9(4):1052–9.CrossRef Bialy L, Vandermeer B, Lacaze-Masmonteil T, Dryden DM, Hartling L. A meta-epidemiological study to examine the association between bias and treatment effects in neonatal trials. Evid Based Child Health. 2014;9(4):1052–9.CrossRef
3.
go back to reference Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N. Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur J Cancer. 2014;50(7):1330–44.CrossRef Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N. Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur J Cancer. 2014;50(7):1330–44.CrossRef
4.
go back to reference Oomens MA, Heymans MW, Forouzanfar T. Risk of bias in research in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2013;51(8):913–9.CrossRef Oomens MA, Heymans MW, Forouzanfar T. Risk of bias in research in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2013;51(8):913–9.CrossRef
5.
go back to reference Voineskos SH, Coroneos CJ, Ziolkowski NI, Kaur MN, Banfield L, Meade MO, Thoma A, Chung KC, Bhandari M. A systematic review of surgical randomized controlled trials: part I. risk of Bias and outcomes: common pitfalls plastic surgeons can overcome. Plast Reconstr Surg. 2016;137(2):696–706.CrossRef Voineskos SH, Coroneos CJ, Ziolkowski NI, Kaur MN, Banfield L, Meade MO, Thoma A, Chung KC, Bhandari M. A systematic review of surgical randomized controlled trials: part I. risk of Bias and outcomes: common pitfalls plastic surgeons can overcome. Plast Reconstr Surg. 2016;137(2):696–706.CrossRef
6.
go back to reference Gurusamy KS, Gluud C, Nikolova D, Davidson BR. Assessment of risk of bias in randomized clinical trials in surgery. Br J Surg. 2009;96(4):342–9.CrossRef Gurusamy KS, Gluud C, Nikolova D, Davidson BR. Assessment of risk of bias in randomized clinical trials in surgery. Br J Surg. 2009;96(4):342–9.CrossRef
7.
go back to reference Barcot O, Boric M, Dosenovic S, Poklepovic Pericic T, Cavar M, Puljak L. Risk of bias assessments for blinding of participants and personnel in Cochrane reviews were frequently inadequate. J Clin Epidemiol. 2019;113:104–13.CrossRef Barcot O, Boric M, Dosenovic S, Poklepovic Pericic T, Cavar M, Puljak L. Risk of bias assessments for blinding of participants and personnel in Cochrane reviews were frequently inadequate. J Clin Epidemiol. 2019;113:104–13.CrossRef
8.
go back to reference Barcot O, Boric M, Poklepovic Pericic T, Cavar M, Dosenovic S, Vuka I, Puljak L. Risk of bias judgments for random sequence generation in Cochrane systematic reviews were frequently not in line with Cochrane handbook. BMC Med Res Methodol. 2019;19(1):170.CrossRef Barcot O, Boric M, Poklepovic Pericic T, Cavar M, Dosenovic S, Vuka I, Puljak L. Risk of bias judgments for random sequence generation in Cochrane systematic reviews were frequently not in line with Cochrane handbook. BMC Med Res Methodol. 2019;19(1):170.CrossRef
9.
go back to reference Konsgen N, Barcot O, Hess S, Puljak L, Goossen K, Rombey T, Pieper D. Inter-review agreement of risk-of-bias judgments varied in Cochrane reviews. J Clin Epidemiol. 2020;120:25–32.CrossRef Konsgen N, Barcot O, Hess S, Puljak L, Goossen K, Rombey T, Pieper D. Inter-review agreement of risk-of-bias judgments varied in Cochrane reviews. J Clin Epidemiol. 2020;120:25–32.CrossRef
10.
go back to reference Propadalo I, Tranfic M, Vuka I, Barcot O, Pericic TP, Puljak L. In Cochrane reviews, risk of bias assessments for allocation concealment were frequently not in line with Cochrane's handbook guidance. J Clin Epidemiol. 2019;106:10–7.CrossRef Propadalo I, Tranfic M, Vuka I, Barcot O, Pericic TP, Puljak L. In Cochrane reviews, risk of bias assessments for allocation concealment were frequently not in line with Cochrane's handbook guidance. J Clin Epidemiol. 2019;106:10–7.CrossRef
11.
go back to reference Saric F, Barcot O, Puljak L. Risk of bias assessments for selective reporting were inadequate in the majority of Cochrane reviews. J Clin Epidemiol. 2019;112:53–8.CrossRef Saric F, Barcot O, Puljak L. Risk of bias assessments for selective reporting were inadequate in the majority of Cochrane reviews. J Clin Epidemiol. 2019;112:53–8.CrossRef
12.
go back to reference Babic A, Pijuk A, Brazdilova L, Georgieva Y, Raposo Pereira MA, Poklepovic Pericic T, Puljak L. The judgement of biases included in the category “other bias” in Cochrane systematic reviews of interventions: a systematic survey. BMC Med Res Methodol. 2019;19(1):77.CrossRef Babic A, Pijuk A, Brazdilova L, Georgieva Y, Raposo Pereira MA, Poklepovic Pericic T, Puljak L. The judgement of biases included in the category “other bias” in Cochrane systematic reviews of interventions: a systematic survey. BMC Med Res Methodol. 2019;19(1):77.CrossRef
13.
go back to reference Babic A, Tokalic R, Amilcar Silva Cunha J, Novak I, Suto J, Vidak M, Miosic I, Vuka I, Poklepovic Pericic T, Puljak L. Assessments of attrition bias in Cochrane systematic reviews are highly inconsistent and thus hindering trial comparability. BMC Med Res Methodol. 2019;19(1):76.CrossRef Babic A, Tokalic R, Amilcar Silva Cunha J, Novak I, Suto J, Vidak M, Miosic I, Vuka I, Poklepovic Pericic T, Puljak L. Assessments of attrition bias in Cochrane systematic reviews are highly inconsistent and thus hindering trial comparability. BMC Med Res Methodol. 2019;19(1):76.CrossRef
14.
go back to reference Babic A, Vuka I, Saric F, Proloscic I, Slapnicar E, Cavar J, Poklepovic Pericic T, Pieper D, Puljak L. Overall bias methods and their use in sensitivity analysis of Cochrane reviews were not consistent. J Clin Epidemiol. 2019;119:57–64.CrossRef Babic A, Vuka I, Saric F, Proloscic I, Slapnicar E, Cavar J, Poklepovic Pericic T, Pieper D, Puljak L. Overall bias methods and their use in sensitivity analysis of Cochrane reviews were not consistent. J Clin Epidemiol. 2019;119:57–64.CrossRef
15.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S. The Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–9.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S. The Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–9.CrossRef
16.
go back to reference Barcot O, Dosenovic S, Boric M, Pericic TP, Cavar M, Kadic AJ, Puljak L. Assessing risk of bias judgments for blinding of outcome assessors in Cochrane reviews. J Comp Eff Res. 2020;9(8):585–93.CrossRef Barcot O, Dosenovic S, Boric M, Pericic TP, Cavar M, Kadic AJ, Puljak L. Assessing risk of bias judgments for blinding of outcome assessors in Cochrane reviews. J Comp Eff Res. 2020;9(8):585–93.CrossRef
18.
go back to reference Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014;34(5):502–8.CrossRef Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014;34(5):502–8.CrossRef
19.
go back to reference Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46.CrossRef Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46.CrossRef
20.
go back to reference Puljak L, Ramic I, Naharro CA, Brezova J, Lin YC, Surdila AA, Tomajkova E, Medeiros IF, Nikolovska M, Pericic TP, et al. Cochrane risk of bias tool was used inadequately in the majority of non-Cochrane systematic reviews. J Clin Epidemiol. 2020;123:114–9.CrossRef Puljak L, Ramic I, Naharro CA, Brezova J, Lin YC, Surdila AA, Tomajkova E, Medeiros IF, Nikolovska M, Pericic TP, et al. Cochrane risk of bias tool was used inadequately in the majority of non-Cochrane systematic reviews. J Clin Epidemiol. 2020;123:114–9.CrossRef
21.
go back to reference Karanicolas PJ, Farrokhyar F, Bhandari M. Practical tips for surgical research: blinding: who, what, when, why, how? Can J Surg. 2010;53(5):345–8.PubMedPubMedCentral Karanicolas PJ, Farrokhyar F, Bhandari M. Practical tips for surgical research: blinding: who, what, when, why, how? Can J Surg. 2010;53(5):345–8.PubMedPubMedCentral
22.
go back to reference Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Bmj. 2019;366:l4898.CrossRef Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Bmj. 2019;366:l4898.CrossRef
Metadata
Title
Adequacy of risk of bias assessment in surgical vs non-surgical trials in Cochrane reviews: a methodological study
Authors
Ognjen Barcot
Matija Boric
Svjetlana Dosenovic
Marija Cavar
Antonia Jelicic Kadic
Tina Poklepovic Pericic
Ivana Vukicevic
Ivana Vuka
Livia Puljak
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2020
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-020-01123-7

Other articles of this Issue 1/2020

BMC Medical Research Methodology 1/2020 Go to the issue