Skip to main content
Top
Published in: Malaria Journal 1/2016

Open Access 01-12-2016 | Research

An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa

Authors: Esther Achieng Onyango, Oz Sahin, Alex Awiti, Cordia Chu, Brendan Mackey

Published in: Malaria Journal | Issue 1/2016

Login to get access

Abstract

Background

Malaria is one of the key research concerns in climate change-health relationships. Numerous risk assessments and modelling studies provide evidence that the transmission range of malaria will expand with rising temperatures, adversely impacting on vulnerable communities in the East African highlands. While there exist multiple lines of evidence for the influence of climate change on malaria transmission, there is insufficient understanding of the complex and interdependent factors that determine the risk and vulnerability of human populations at the community level. Moreover, existing studies have had limited focus on the nature of the impacts on vulnerable communities or how well they are prepared to cope. In order to address these gaps, a systems approach was used to present an integrated risk and vulnerability assessment framework for studies of community level risk and vulnerability to malaria due to climate change.

Results

Drawing upon published literature on existing frameworks, a systems approach was applied to characterize the factors influencing the interactions between climate change and malaria transmission. This involved structural analysis to determine influential, relay, dependent and autonomous variables in order to construct a detailed causal loop conceptual model that illustrates the relationships among key variables. An integrated assessment framework that considers indicators of both biophysical and social vulnerability was proposed based on the conceptual model.

Conclusions

A major conclusion was that this integrated assessment framework can be implemented using Bayesian Belief Networks, and applied at a community level using both quantitative and qualitative methods with stakeholder engagement. The approach enables a robust assessment of community level risk and vulnerability to malaria, along with contextually relevant and targeted adaptation strategies for dealing with malaria transmission that incorporate both scientific and community perspectives.
Literature
1.
go back to reference WHO. Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. Geneva: World Health Organization; 2014. WHO. Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. Geneva: World Health Organization; 2014.
2.
go back to reference WHO. World malaria report 2014. Geneva: World Health Organization; 2014. WHO. World malaria report 2014. Geneva: World Health Organization; 2014.
4.
go back to reference IPCC. Climate Change 2013. The physical science basis. In: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. IPCC. Climate Change 2013. The physical science basis. In: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013.
6.
go back to reference Ermert V, Fink AH, Paeth H. The potential effects of climate change on malaria transmission in Africa using bias-corrected regionalised climate projections and a simple malaria seasonality model. Clim Change. 2013;120:741–54.CrossRef Ermert V, Fink AH, Paeth H. The potential effects of climate change on malaria transmission in Africa using bias-corrected regionalised climate projections and a simple malaria seasonality model. Clim Change. 2013;120:741–54.CrossRef
7.
go back to reference Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, et al. Impact of climate change on global malaria distribution. Proc Natl Acad Sci USA. 2014;111:3286–91.CrossRefPubMedPubMedCentral Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, et al. Impact of climate change on global malaria distribution. Proc Natl Acad Sci USA. 2014;111:3286–91.CrossRefPubMedPubMedCentral
8.
go back to reference Tonnang HEZ, Tchouassi DP, Juarez HS, Igweta LK, Djouaka RF. Zoom in at African country level: potential climate induced changes in areas of suitability for survival of malaria vectors. Int J Health Geogr. 2014;13:12.CrossRefPubMedPubMedCentral Tonnang HEZ, Tchouassi DP, Juarez HS, Igweta LK, Djouaka RF. Zoom in at African country level: potential climate induced changes in areas of suitability for survival of malaria vectors. Int J Health Geogr. 2014;13:12.CrossRefPubMedPubMedCentral
9.
go back to reference Githeko AK, Ndegwa W. Predicting malaria epidemics in the Kenyan highlands using climate data: a tool for decision makers. Glob Change Hum Health. 2001;2:54–63.CrossRef Githeko AK, Ndegwa W. Predicting malaria epidemics in the Kenyan highlands using climate data: a tool for decision makers. Glob Change Hum Health. 2001;2:54–63.CrossRef
10.
go back to reference Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci. 2008;275:123–32.CrossRefPubMed Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci. 2008;275:123–32.CrossRefPubMed
11.
go back to reference Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA. 2010;107:15135–9.CrossRefPubMedPubMedCentral Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA. 2010;107:15135–9.CrossRefPubMedPubMedCentral
12.
go back to reference Omumbo JA, Lyon B, Waweru SM, Connor SJ, Thomson MC. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate. Malar J. 2011;10:12.CrossRefPubMedPubMedCentral Omumbo JA, Lyon B, Waweru SM, Connor SJ, Thomson MC. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate. Malar J. 2011;10:12.CrossRefPubMedPubMedCentral
13.
go back to reference Chaves LF, Hashizume M, Satake A, Minakawa N. Regime shifts and heterogeneous trends in malaria time series from Western Kenya highlands. Parasitology. 2012;139:14–25.CrossRefPubMed Chaves LF, Hashizume M, Satake A, Minakawa N. Regime shifts and heterogeneous trends in malaria time series from Western Kenya highlands. Parasitology. 2012;139:14–25.CrossRefPubMed
14.
go back to reference Hashizume M, Terao T, Minakawa N. The Indian Ocean dipole and malaria risk in the highlands of western Kenya. Proc Natl Acad Sci USA. 2009;106:1857–62.CrossRefPubMedPubMedCentral Hashizume M, Terao T, Minakawa N. The Indian Ocean dipole and malaria risk in the highlands of western Kenya. Proc Natl Acad Sci USA. 2009;106:1857–62.CrossRefPubMedPubMedCentral
15.
go back to reference Wandiga SO, Opondo M, Olago D, Githeko A, Githui F, Marshall M, et al. Vulnerability to epidemic malaria in the highlands of Lake Victoria basin: the role of climate change/variability, hydrology and socio-economic factors. Clim Change. 2009;99:473–97.CrossRef Wandiga SO, Opondo M, Olago D, Githeko A, Githui F, Marshall M, et al. Vulnerability to epidemic malaria in the highlands of Lake Victoria basin: the role of climate change/variability, hydrology and socio-economic factors. Clim Change. 2009;99:473–97.CrossRef
16.
go back to reference Zhou G, Minakawa N, Githeko AK, Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA. 2004;101:2375–80.CrossRefPubMedPubMedCentral Zhou G, Minakawa N, Githeko AK, Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA. 2004;101:2375–80.CrossRefPubMedPubMedCentral
17.
go back to reference Githeko AK, Ogallo L, Lemnge M, Okia M, Ototo EN. Development and validation of climate and ecosystem-based early malaria epidemic prediction models in East Africa. Malar J. 2014;13:329.CrossRefPubMedPubMedCentral Githeko AK, Ogallo L, Lemnge M, Okia M, Ototo EN. Development and validation of climate and ecosystem-based early malaria epidemic prediction models in East Africa. Malar J. 2014;13:329.CrossRefPubMedPubMedCentral
18.
go back to reference Patz JA, Olson SH, Uejio CK, Gibbs HK. Disease emergence from global climate and land use change. Med Clin N Am. 2008;92:1473–91.CrossRefPubMed Patz JA, Olson SH, Uejio CK, Gibbs HK. Disease emergence from global climate and land use change. Med Clin N Am. 2008;92:1473–91.CrossRefPubMed
19.
go back to reference Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land use. Science. 2005;309:570–4.CrossRefPubMed Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land use. Science. 2005;309:570–4.CrossRefPubMed
20.
go back to reference Leemans R, Eickhout B. Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. Glob Environ Change. 2004;14:219–28.CrossRef Leemans R, Eickhout B. Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. Glob Environ Change. 2004;14:219–28.CrossRef
22.
go back to reference Kirtman B, Power SB, Adedoyin AJ, Boer GJ, Bojariu R, Camilloni I, et al. Near-term climate change: projections and predictability. In: Delecluse P, Palmer T, Shepherd T, Zwiers F, editors. Climate change 2013: the physical science basis. Cambridge: Cambridge University Press; 2013. p. 953–1028. Kirtman B, Power SB, Adedoyin AJ, Boer GJ, Bojariu R, Camilloni I, et al. Near-term climate change: projections and predictability. In: Delecluse P, Palmer T, Shepherd T, Zwiers F, editors. Climate change 2013: the physical science basis. Cambridge: Cambridge University Press; 2013. p. 953–1028.
23.
24.
go back to reference Eriksen SH, Kelly PM. Developing credible vulnerability indicators for climate adaptation policy assessment. Mitig Adapt Strateg Glob Change. 2007;12:495–524.CrossRef Eriksen SH, Kelly PM. Developing credible vulnerability indicators for climate adaptation policy assessment. Mitig Adapt Strateg Glob Change. 2007;12:495–524.CrossRef
25.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207–11.CrossRefPubMedPubMedCentral Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207–11.CrossRefPubMedPubMedCentral
28.
go back to reference Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc Biol Sci. 2011;278:1661–9.CrossRefPubMed Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc Biol Sci. 2011;278:1661–9.CrossRefPubMed
29.
go back to reference Mbogo CM, Mwangangi JM, Nzovu J, Gu W, Yan G, Gunter JT, et al. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg. 2003;68:734–42.PubMed Mbogo CM, Mwangangi JM, Nzovu J, Gu W, Yan G, Gunter JT, et al. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg. 2003;68:734–42.PubMed
30.
go back to reference Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. Malar J. 2010;9:328.CrossRefPubMedPubMedCentral Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. Malar J. 2010;9:328.CrossRefPubMedPubMedCentral
31.
go back to reference Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML. Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malar J. 2008;7:40.CrossRefPubMedPubMedCentral Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML. Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malar J. 2008;7:40.CrossRefPubMedPubMedCentral
32.
go back to reference Sewe M, Rocklöv J, Williamson J, Hamel M, Nyaguara A, Odhiambo F, et al. The association of weather variability and under five malaria mortality in KEMRI/CDC HDSS in western Kenya 2003 to 2008: a time series analysis. Int J Environ Res Public Health. 2015;12:1983–97.CrossRefPubMedPubMedCentral Sewe M, Rocklöv J, Williamson J, Hamel M, Nyaguara A, Odhiambo F, et al. The association of weather variability and under five malaria mortality in KEMRI/CDC HDSS in western Kenya 2003 to 2008: a time series analysis. Int J Environ Res Public Health. 2015;12:1983–97.CrossRefPubMedPubMedCentral
33.
go back to reference Ernst KC, Lindblade KA, Koech D, Sumba PO, Kuwuor DO, John CC, et al. Environmental, socio-demographic and behavioural determinants of malaria risk in the western Kenyan highlands. A case-control study. Trop Med Int Health. 2009;14:1258–65.CrossRefPubMedPubMedCentral Ernst KC, Lindblade KA, Koech D, Sumba PO, Kuwuor DO, John CC, et al. Environmental, socio-demographic and behavioural determinants of malaria risk in the western Kenyan highlands. A case-control study. Trop Med Int Health. 2009;14:1258–65.CrossRefPubMedPubMedCentral
34.
go back to reference Carlson JC, Byrd BD, Omlin FX. Field assessments in western Kenya link malaria vectors to environmentally disturbed habitats during the dry season. BMC Public Health. 2004;4:33.CrossRefPubMedPubMedCentral Carlson JC, Byrd BD, Omlin FX. Field assessments in western Kenya link malaria vectors to environmentally disturbed habitats during the dry season. BMC Public Health. 2004;4:33.CrossRefPubMedPubMedCentral
35.
go back to reference Paaijmans KP, Blanford JI, Crane RG, Mann ME, Ning L, Schreiber KV, et al. Downscaling reveals diverse effects of anthropogenic climate warming on the potential for local environments to support malaria transmission. Clim Change. 2014;125:479–88.CrossRef Paaijmans KP, Blanford JI, Crane RG, Mann ME, Ning L, Schreiber KV, et al. Downscaling reveals diverse effects of anthropogenic climate warming on the potential for local environments to support malaria transmission. Clim Change. 2014;125:479–88.CrossRef
36.
go back to reference Drakeley CJ, Carneiro I, Reyburn H, Malima R, Lusingu JP, Cox J, et al. Altitude-dependent and -independent variations in Plasmodium falciparum prevalence in northeastern Tanzania. J Infect Dis. 2005;191:1589–98.CrossRefPubMed Drakeley CJ, Carneiro I, Reyburn H, Malima R, Lusingu JP, Cox J, et al. Altitude-dependent and -independent variations in Plasmodium falciparum prevalence in northeastern Tanzania. J Infect Dis. 2005;191:1589–98.CrossRefPubMed
37.
go back to reference Ebi KL. Healthy people 2100: modeling population health impacts of climate change. Clim Change. 2007;88:5–19.CrossRef Ebi KL. Healthy people 2100: modeling population health impacts of climate change. Clim Change. 2007;88:5–19.CrossRef
38.
go back to reference WHO. Protecting health from climate change: vulnerability and adaptation assessment. Geneva: World Health Organization; 2010. WHO. Protecting health from climate change: vulnerability and adaptation assessment. Geneva: World Health Organization; 2010.
40.
go back to reference IPCC. Climate change 2014: impacts, adaptation and vulnerability, part A: global and sectoral aspects. In: Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2014. IPCC. Climate change 2014: impacts, adaptation and vulnerability, part A: global and sectoral aspects. In: Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2014.
42.
go back to reference Hagenlocher M, Castro MC. Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model. Popul Health Metr. 2015;13:1–14.CrossRef Hagenlocher M, Castro MC. Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model. Popul Health Metr. 2015;13:1–14.CrossRef
43.
go back to reference Bizimana JP, Kienberger S, Hagenlocher M, Twarabamenye E. Modelling homogeneous regions of social vulnerability to malaria in Rwanda. Geospat Health. 2016;11:129–46.CrossRef Bizimana JP, Kienberger S, Hagenlocher M, Twarabamenye E. Modelling homogeneous regions of social vulnerability to malaria in Rwanda. Geospat Health. 2016;11:129–46.CrossRef
44.
go back to reference Sterman J. Business dynamics: systems thinking and modeling for a complex world. Boston: Irwin/McGraw-Hill; 2000. Sterman J. Business dynamics: systems thinking and modeling for a complex world. Boston: Irwin/McGraw-Hill; 2000.
45.
go back to reference Voinov AA. Systems science and modeling for ecological economics. London: Academic Press; 2010. Voinov AA. Systems science and modeling for ecological economics. London: Academic Press; 2010.
46.
go back to reference Chan NY, Ebi KL, Smith F, Wilson TF, Smith AE. An integrated assessment framework for climate change and infectious diseases. Environ Health Perspect. 1999;107:329–37.CrossRefPubMedPubMedCentral Chan NY, Ebi KL, Smith F, Wilson TF, Smith AE. An integrated assessment framework for climate change and infectious diseases. Environ Health Perspect. 1999;107:329–37.CrossRefPubMedPubMedCentral
47.
go back to reference Lindsay SW, Martens WJ. Malaria in the African highlands: past, present and future. Bull World Health Organ. 1998;76:33–45.PubMedPubMedCentral Lindsay SW, Martens WJ. Malaria in the African highlands: past, present and future. Bull World Health Organ. 1998;76:33–45.PubMedPubMedCentral
48.
go back to reference Protopopoff N, Van Bortel W, Speybroeck N, Van Geertruyden JP, Baza D, D’Alessandro U, et al. Ranking malaria risk factors to guide malaria control efforts in African highlands. PLoS ONE. 2009;4:e8022.CrossRefPubMedPubMedCentral Protopopoff N, Van Bortel W, Speybroeck N, Van Geertruyden JP, Baza D, D’Alessandro U, et al. Ranking malaria risk factors to guide malaria control efforts in African highlands. PLoS ONE. 2009;4:e8022.CrossRefPubMedPubMedCentral
49.
go back to reference Bates I, Fenton C, Gruber J, Lalloo D, Medina LA, Squire SB, et al. Vulnerability to malaria, tuberculosis, and HIV/AIDS infection and disease, Part 1: determinants operating at individual and household level. Lancet Infect Dis. 2004;4:267–77.CrossRefPubMed Bates I, Fenton C, Gruber J, Lalloo D, Medina LA, Squire SB, et al. Vulnerability to malaria, tuberculosis, and HIV/AIDS infection and disease, Part 1: determinants operating at individual and household level. Lancet Infect Dis. 2004;4:267–77.CrossRefPubMed
50.
go back to reference Bates I, Fenton C, Gruber J, Lalloo D, Lara AM, Squire SB, et al. Vulnerability to malaria, tuberculosis, and HIV/AIDS infection and disease, Part II: determinants operating at environmental and institutional level. Lancet Infect Dis. 2004;4:368–75.CrossRefPubMed Bates I, Fenton C, Gruber J, Lalloo D, Lara AM, Squire SB, et al. Vulnerability to malaria, tuberculosis, and HIV/AIDS infection and disease, Part II: determinants operating at environmental and institutional level. Lancet Infect Dis. 2004;4:368–75.CrossRefPubMed
51.
go back to reference Godet M. Creating futures: scenario planning as a strategic management tool. Paris: Economica; 2001. Godet M. Creating futures: scenario planning as a strategic management tool. Paris: Economica; 2001.
52.
go back to reference IPCC. Climate change 2014: impacts, adaptation, and vulnerability, part B: regional aspects. In: Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2014. IPCC. Climate change 2014: impacts, adaptation, and vulnerability, part B: regional aspects. In: Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2014.
53.
go back to reference Dickin SK, Schuster-Wallace CJ. Assessing changing vulnerability to dengue in northeastern Brazil using a water-associated disease index approach. Glob Environ Change. 2014;29:155–64.CrossRef Dickin SK, Schuster-Wallace CJ. Assessing changing vulnerability to dengue in northeastern Brazil using a water-associated disease index approach. Glob Environ Change. 2014;29:155–64.CrossRef
54.
go back to reference Lyth A, Holbrook NJ. Assessing an indirect health implication of a changing climate: Ross river virus in a temperate island state. Clim Risk Manag. 2015;10:77–94.CrossRef Lyth A, Holbrook NJ. Assessing an indirect health implication of a changing climate: Ross river virus in a temperate island state. Clim Risk Manag. 2015;10:77–94.CrossRef
55.
go back to reference Fenton N, Neil M. Risk assessment and decision analysis with Bayesian networks. Boca Raton: CRC Press; 2013. Fenton N, Neil M. Risk assessment and decision analysis with Bayesian networks. Boca Raton: CRC Press; 2013.
56.
go back to reference Landuyt D, Broekx S, D’hondt R, Engelen G, Aertsens J, Goethals PLM. A review of Bayesian belief networks in ecosystem service modelling. Environ Model Softw. 2013;46:1–11.CrossRef Landuyt D, Broekx S, D’hondt R, Engelen G, Aertsens J, Goethals PLM. A review of Bayesian belief networks in ecosystem service modelling. Environ Model Softw. 2013;46:1–11.CrossRef
57.
go back to reference Imbahale SS, Paaijmans KP, Mukabana WR, van Lammeren R, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 2011;10:1.CrossRef Imbahale SS, Paaijmans KP, Mukabana WR, van Lammeren R, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 2011;10:1.CrossRef
58.
go back to reference Lyons CL, Coetzee M, Terblanche JS, Chown SL. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malar J. 2012;11:226.CrossRefPubMedPubMedCentral Lyons CL, Coetzee M, Terblanche JS, Chown SL. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malar J. 2012;11:226.CrossRefPubMedPubMedCentral
59.
go back to reference Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE. 2013;8:e79276.CrossRefPubMedPubMedCentral Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE. 2013;8:e79276.CrossRefPubMedPubMedCentral
60.
go back to reference Gilioli G, Mariani L. Sensitivity of Anopheles gambiae population dynamics to meteo-hydrological variability: a mechanistic approach. Malar J. 2011;10:294.CrossRefPubMedPubMedCentral Gilioli G, Mariani L. Sensitivity of Anopheles gambiae population dynamics to meteo-hydrological variability: a mechanistic approach. Malar J. 2011;10:294.CrossRefPubMedPubMedCentral
61.
go back to reference Colón-gonzález FJ, Tompkins AM, Biondi R, Bizimana JP, Namanya DB. Assessing the effects of air temperature and rainfall on malaria incidence: an epidemiological study across Rwanda and Uganda. Geospat Health. 2016;11:379.CrossRefPubMed Colón-gonzález FJ, Tompkins AM, Biondi R, Bizimana JP, Namanya DB. Assessing the effects of air temperature and rainfall on malaria incidence: an epidemiological study across Rwanda and Uganda. Geospat Health. 2016;11:379.CrossRefPubMed
62.
go back to reference Tuno N, Okeka W, Minakawa N, Takagi M, Yan G. Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western Kenya highland forest. J Med Entomol. 2005;42:270–7.CrossRefPubMed Tuno N, Okeka W, Minakawa N, Takagi M, Yan G. Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western Kenya highland forest. J Med Entomol. 2005;42:270–7.CrossRefPubMed
63.
go back to reference Munga S, Minakawa N, Zhou G, Mushinzimana E, Barrack O-OJ, Githeko AK, et al. Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands. Am J Trop Med Hyg. 2006;74:69–75.PubMed Munga S, Minakawa N, Zhou G, Mushinzimana E, Barrack O-OJ, Githeko AK, et al. Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands. Am J Trop Med Hyg. 2006;74:69–75.PubMed
64.
go back to reference Paaijmans K. Weather, water and malaria mosquito larvae. Wageningen: Wageningen Universiteit; 2008. Paaijmans K. Weather, water and malaria mosquito larvae. Wageningen: Wageningen Universiteit; 2008.
65.
go back to reference Chaves LF, Satake A, Hashizume M, Minakawa N. Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission. J Infect Dis. 2012;205:1885–91.CrossRefPubMed Chaves LF, Satake A, Hashizume M, Minakawa N. Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission. J Infect Dis. 2012;205:1885–91.CrossRefPubMed
66.
67.
go back to reference McCann RS, Messina JP, MacFarlane DW, Bayoh MN, Vulule JM, Gimnig JE, et al. Modeling larval malaria vector habitat locations using landscape features and cumulative precipitation measures. Int J Health Geogr. 2014;13:17.CrossRefPubMedPubMedCentral McCann RS, Messina JP, MacFarlane DW, Bayoh MN, Vulule JM, Gimnig JE, et al. Modeling larval malaria vector habitat locations using landscape features and cumulative precipitation measures. Int J Health Geogr. 2014;13:17.CrossRefPubMedPubMedCentral
68.
go back to reference Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko AK, et al. Spatial distribution of anopheline larval habitats in western Kenyan highlands. Effects of land cover types and topography. Am J Trop Med Hyg. 2005;73:157–65.PubMed Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko AK, et al. Spatial distribution of anopheline larval habitats in western Kenyan highlands. Effects of land cover types and topography. Am J Trop Med Hyg. 2005;73:157–65.PubMed
69.
go back to reference Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Life-table analysis of Anopheles arabiensis in western Kenya highlands. Effects of land covers on larval and adult survivorship. Am J Trop Med Hyg. 2007;77:660–6.PubMed Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Life-table analysis of Anopheles arabiensis in western Kenya highlands. Effects of land covers on larval and adult survivorship. Am J Trop Med Hyg. 2007;77:660–6.PubMed
70.
go back to reference Afrane YA, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in western Kenya highlands. J Med Entomol. 2005;42:974–80.CrossRefPubMed Afrane YA, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in western Kenya highlands. J Med Entomol. 2005;42:974–80.CrossRefPubMed
71.
go back to reference Omukunda E, Githeko A, Ndong’a MF, Mushinzimana E, Atieli H, Wamae P. Malaria vector population dynamics in highland and lowland regions of western Kenya. J Vector Borne Dis. 2013;50:85–92.PubMed Omukunda E, Githeko A, Ndong’a MF, Mushinzimana E, Atieli H, Wamae P. Malaria vector population dynamics in highland and lowland regions of western Kenya. J Vector Borne Dis. 2013;50:85–92.PubMed
73.
go back to reference Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am J Trop Med Hyg. 2006;74:772–8.PubMed Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am J Trop Med Hyg. 2006;74:772–8.PubMed
74.
go back to reference Afrane YA, Little TJ, Lawson BW, Githeko AK, Yan G. Deforestation and vectorial capacity of Anopheles gambiae Giles mosquitoes in malaria transmission, Kenya. Emerg Infect Dis. 2008;14:1533–8.CrossRefPubMedPubMedCentral Afrane YA, Little TJ, Lawson BW, Githeko AK, Yan G. Deforestation and vectorial capacity of Anopheles gambiae Giles mosquitoes in malaria transmission, Kenya. Emerg Infect Dis. 2008;14:1533–8.CrossRefPubMedPubMedCentral
75.
go back to reference Brooker S, Clarke S, Njagi JK, Polack S, Mugo B, Estambale B, et al. Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop Med Int Health. 2004;9:757–66.CrossRefPubMed Brooker S, Clarke S, Njagi JK, Polack S, Mugo B, Estambale B, et al. Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop Med Int Health. 2004;9:757–66.CrossRefPubMed
76.
go back to reference Munga S, Yakob L, Mushinzimana E, Zhou G, Ouna T, Minakawa N, et al. Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa. Am J Trop Med Hyg. 2009;81:1079–84.CrossRefPubMedPubMedCentral Munga S, Yakob L, Mushinzimana E, Zhou G, Ouna T, Minakawa N, et al. Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa. Am J Trop Med Hyg. 2009;81:1079–84.CrossRefPubMedPubMedCentral
77.
go back to reference Zhou G, Munga S, Minakawa N, Githeko AK, Yan G. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg. 2007;77:29–35.PubMed Zhou G, Munga S, Minakawa N, Githeko AK, Yan G. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg. 2007;77:29–35.PubMed
78.
go back to reference Githeko AK, Ototo EN, Guiyun Y. Progress towards understanding the ecology and epidemiology of malaria in the western Kenya highlands: opportunities and challenges for control under climate change risk. Acta Trop. 2012;121:19–25.CrossRefPubMed Githeko AK, Ototo EN, Guiyun Y. Progress towards understanding the ecology and epidemiology of malaria in the western Kenya highlands: opportunities and challenges for control under climate change risk. Acta Trop. 2012;121:19–25.CrossRefPubMed
79.
go back to reference Wanjala CL, Waitumbi J, Zhou G, Githeko AK. Identification of malaria transmission and epidemic hotspots in the western Kenya highlands: its application to malaria epidemic prediction. Parasites Vectors. 2011;4:1–13.CrossRef Wanjala CL, Waitumbi J, Zhou G, Githeko AK. Identification of malaria transmission and epidemic hotspots in the western Kenya highlands: its application to malaria epidemic prediction. Parasites Vectors. 2011;4:1–13.CrossRef
80.
go back to reference Tompkins AM, Caporaso L. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using coupled model intercomparison project phase 5 earth system models. Geospat Health. 2016;11:380.PubMed Tompkins AM, Caporaso L. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using coupled model intercomparison project phase 5 earth system models. Geospat Health. 2016;11:380.PubMed
81.
go back to reference Omukunda E, Githeko A, Ndong’a MF, Mushinzimana E, Yan G. Effect of swamp cultivation on distribution of anopheline larval habitats in Western Kenya. J Vector Borne Dis. 2012;49:61–71.PubMedPubMedCentral Omukunda E, Githeko A, Ndong’a MF, Mushinzimana E, Yan G. Effect of swamp cultivation on distribution of anopheline larval habitats in Western Kenya. J Vector Borne Dis. 2012;49:61–71.PubMedPubMedCentral
82.
go back to reference Patz JA, Githeko AK, McCarty JP, Hussein S, Confalonieri UE, de Wet N. Climate change and infectious diseases. In: Mcmichael AJ, Campbell-Lendrum DH, Corvalán CF, Ebi KL, Githeko AK, Scheraga JD, et al., editors. Climate change and human health: risks and responses, vol. 2. Geneva: WHO Press; 2003. p. 103–32. Patz JA, Githeko AK, McCarty JP, Hussein S, Confalonieri UE, de Wet N. Climate change and infectious diseases. In: Mcmichael AJ, Campbell-Lendrum DH, Corvalán CF, Ebi KL, Githeko AK, Scheraga JD, et al., editors. Climate change and human health: risks and responses, vol. 2. Geneva: WHO Press; 2003. p. 103–32.
83.
go back to reference Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect. 2004;112:1092–8.CrossRefPubMedPubMedCentral Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect. 2004;112:1092–8.CrossRefPubMedPubMedCentral
84.
go back to reference Ye-Ebiyo Y, Pollack RJ, Spielman A. Enhanced development in nature of larval Anopheles arabiensis mosquitoes feeding on maize pollen. Am J Trop Med Hyg. 2000;63:90–3.PubMed Ye-Ebiyo Y, Pollack RJ, Spielman A. Enhanced development in nature of larval Anopheles arabiensis mosquitoes feeding on maize pollen. Am J Trop Med Hyg. 2000;63:90–3.PubMed
85.
go back to reference Gleckler PJ, Santer BD, Domingues CM, Pierce DW, Barnett TP, Church JA, et al. Human-induced global ocean warming on multidecadal timescales. Nat Clim Change. 2012;2:524–9. Gleckler PJ, Santer BD, Domingues CM, Pierce DW, Barnett TP, Church JA, et al. Human-induced global ocean warming on multidecadal timescales. Nat Clim Change. 2012;2:524–9.
86.
go back to reference Himeidan YE, Zhou G, Yakob L, Afrane Y, Munga S, Atieli H, et al. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands. Malar J. 2009;8:234.CrossRefPubMedPubMedCentral Himeidan YE, Zhou G, Yakob L, Afrane Y, Munga S, Atieli H, et al. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands. Malar J. 2009;8:234.CrossRefPubMedPubMedCentral
87.
go back to reference Chaves LF, Koenraadt CJM. Climate change and highland malaria: fresh air for a hot debate. Q Rev Biol. 2010;85:27–55.CrossRefPubMed Chaves LF, Koenraadt CJM. Climate change and highland malaria: fresh air for a hot debate. Q Rev Biol. 2010;85:27–55.CrossRefPubMed
88.
go back to reference Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78:1136–47.PubMedPubMedCentral Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78:1136–47.PubMedPubMedCentral
89.
go back to reference Bodker R, Kisinza W, Malima R, Msangeni H, Lindsay S. Resurgence of malaria in the Usambara mountains Tanzania-an epidemic of drug-resistant parasites. Glob Change Hum Health. 2000;1:134–50.CrossRef Bodker R, Kisinza W, Malima R, Msangeni H, Lindsay S. Resurgence of malaria in the Usambara mountains Tanzania-an epidemic of drug-resistant parasites. Glob Change Hum Health. 2000;1:134–50.CrossRef
90.
go back to reference Ruiz D, Brun C, Connor SJ, Omumbo JA, Lyon B, Thomson MC. Testing a multi-malaria-model ensemble against 30 years of data in the Kenyan highlands. Malar J. 2014;13:206.CrossRefPubMedPubMedCentral Ruiz D, Brun C, Connor SJ, Omumbo JA, Lyon B, Thomson MC. Testing a multi-malaria-model ensemble against 30 years of data in the Kenyan highlands. Malar J. 2014;13:206.CrossRefPubMedPubMedCentral
Metadata
Title
An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa
Authors
Esther Achieng Onyango
Oz Sahin
Alex Awiti
Cordia Chu
Brendan Mackey
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2016
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-016-1600-3

Other articles of this Issue 1/2016

Malaria Journal 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.