Skip to main content
Top
Published in: Experimental & Translational Stroke Medicine 1/2013

Open Access 01-12-2013 | Review

An experimental protocol for in vivo imaging of neuronal structural plasticity with 2-photon microscopy in mice

Authors: Christian Stetter, Markus Hirschberg, Bernhard Nieswandt, Ralf-Ingo Ernestus, Manfred Heckmann, Anna-Leena Sirén

Published in: Experimental & Translational Stroke Medicine | Issue 1/2013

Login to get access

Abstract

Introduction

Structural plasticity with synapse formation and elimination is a key component of memory capacity and may be critical for functional recovery after brain injury. Here we describe in detail two surgical techniques to create a cranial window in mice and show crucial points in the procedure for long-term repeated in vivo imaging of synaptic structural plasticity in the mouse neocortex.

Methods

Transgenic Thy1-YFP(H) mice expressing yellow-fluorescent protein (YFP) in layer-5 pyramidal neurons were prepared under anesthesia for in vivo imaging of dendritic spines in the parietal cortex either with an open-skull glass or thinned skull window. After a recovery period of 14 days, imaging sessions of 45–60 min in duration were started under fluothane anesthesia. To reduce respiration-induced movement artifacts, the skull was glued to a stainless steel plate fixed to metal base. The animals were set under a two-photon microscope with multifocal scanhead splitter (TriMScope, LaVision BioTec) and the Ti-sapphire laser was tuned to the optimal excitation wavelength for YFP (890 nm). Images were acquired by using a 20×, 0.95 NA, water-immersion objective (Olympus) in imaging depth of 100–200 μm from the pial surface. Two-dimensional projections of three-dimensional image stacks containing dendritic segments of interest were saved for further analysis. At the end of the last imaging session, the mice were decapitated and the brains removed for histological analysis.

Results

Repeated in vivo imaging of dendritic spines of the layer-5 pyramidal neurons was successful using both open-skull glass and thinned skull windows. Both window techniques were associated with low phototoxicity after repeated sessions of imaging.

Conclusions

Repeated imaging of dendritic spines in vivo allows monitoring of long-term structural dynamics of synapses. When carefully controlled for influence of repeated anesthesia and phototoxicity, the method will be suitable to study changes in synaptic structural plasticity after brain injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Denk W, Strickler JH, Webb WW: Two-photon laser scanning fluorescence microscopy. Science 1990, 248: 73–76. 10.1126/science.2321027PubMedCrossRef Denk W, Strickler JH, Webb WW: Two-photon laser scanning fluorescence microscopy. Science 1990, 248: 73–76. 10.1126/science.2321027PubMedCrossRef
2.
go back to reference Lichtman JW, Fraser SE: The neuronal naturalist: watching neurons in their native habitat. Nat Neurosci 2001,4(Suppl):1215–1220.PubMedCrossRef Lichtman JW, Fraser SE: The neuronal naturalist: watching neurons in their native habitat. Nat Neurosci 2001,4(Suppl):1215–1220.PubMedCrossRef
3.
go back to reference Misgeld T, Kerschensteiner M: In vivo imaging of the diseased nervous system. Nat Rev Neurosci 2006, 7: 449–463.PubMedCrossRef Misgeld T, Kerschensteiner M: In vivo imaging of the diseased nervous system. Nat Rev Neurosci 2006, 7: 449–463.PubMedCrossRef
4.
go back to reference Sigler A, Murphy TH: In vivo 2-photon imaging of fine structure in the rodent brain: before, during, and after stroke. Stroke 2010, 41: S117-S123. 10.1161/STROKEAHA.110.594648PubMedCrossRef Sigler A, Murphy TH: In vivo 2-photon imaging of fine structure in the rodent brain: before, during, and after stroke. Stroke 2010, 41: S117-S123. 10.1161/STROKEAHA.110.594648PubMedCrossRef
5.
go back to reference Svoboda K, Yasuda R: Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 2006, 50: 823–839. 10.1016/j.neuron.2006.05.019PubMedCrossRef Svoboda K, Yasuda R: Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 2006, 50: 823–839. 10.1016/j.neuron.2006.05.019PubMedCrossRef
6.
go back to reference Tian GF, Takano T, Lin JH, Wang X, Bekar L, Nedergaard M: Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Adv Drug Deliv Rev 2006, 58: 773–787. 10.1016/j.addr.2006.07.001PubMedCrossRef Tian GF, Takano T, Lin JH, Wang X, Bekar L, Nedergaard M: Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Adv Drug Deliv Rev 2006, 58: 773–787. 10.1016/j.addr.2006.07.001PubMedCrossRef
7.
go back to reference Scheibe S, Dorostkar MM, Seebacher C, Uhl R, Lison F, Herms J: 4D in in vivo 2-photon laser scanning fluorescence microscopy with sample motion in 6 degrees of freedom. J Neurosci Methods 2011, 200: 47–53. 10.1016/j.jneumeth.2011.06.013PubMedCrossRef Scheibe S, Dorostkar MM, Seebacher C, Uhl R, Lison F, Herms J: 4D in in vivo 2-photon laser scanning fluorescence microscopy with sample motion in 6 degrees of freedom. J Neurosci Methods 2011, 200: 47–53. 10.1016/j.jneumeth.2011.06.013PubMedCrossRef
8.
go back to reference Jung CK, Herms J: Structural Dynamics of Dendritic Spines are Influenced by an Environmental Enrichment: An In Vivo Imaging Study. Cereb Cortex 2012. first published online: October 18, 2012. 10.1093/cercor/bhs317 Jung CK, Herms J: Structural Dynamics of Dendritic Spines are Influenced by an Environmental Enrichment: An In Vivo Imaging Study. Cereb Cortex 2012. first published online: October 18, 2012. 10.1093/cercor/bhs317
9.
go back to reference Niesner R, Andresen V, Neumann J, Spiecker H, Gunzer M: The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys J 2007, 93: 2519–2529. 10.1529/biophysj.106.102459PubMedCentralPubMedCrossRef Niesner R, Andresen V, Neumann J, Spiecker H, Gunzer M: The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys J 2007, 93: 2519–2529. 10.1529/biophysj.106.102459PubMedCentralPubMedCrossRef
10.
go back to reference Schwarzmaier SM, Zimmermann R, McGarry NB, Trabold R, Kim SW, Plesnila N: In vivo temporal and spatial profile of leukocyte adhesion and migration after experimental traumatic brain injury in mice. J Neuroinflammation 2013, 10: 32. 10.1186/1742-2094-10-32PubMedCentralPubMedCrossRef Schwarzmaier SM, Zimmermann R, McGarry NB, Trabold R, Kim SW, Plesnila N: In vivo temporal and spatial profile of leukocyte adhesion and migration after experimental traumatic brain injury in mice. J Neuroinflammation 2013, 10: 32. 10.1186/1742-2094-10-32PubMedCentralPubMedCrossRef
11.
go back to reference Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ: In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J Neurophysiol 2004, 92: 3121–3133. 10.1152/jn.00234.2004PubMedCentralPubMedCrossRef Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ: In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J Neurophysiol 2004, 92: 3121–3133. 10.1152/jn.00234.2004PubMedCentralPubMedCrossRef
12.
go back to reference Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW: In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 2004, 91: 1908–1912. 10.1152/jn.01007.2003PubMedCrossRef Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW: In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 2004, 91: 1908–1912. 10.1152/jn.01007.2003PubMedCrossRef
13.
go back to reference Mizrahi A, Crowley JC, Shtoyerman E, Katz LC: High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci 2004, 24: 3147–3151. 10.1523/JNEUROSCI.5218-03.2004PubMedCrossRef Mizrahi A, Crowley JC, Shtoyerman E, Katz LC: High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci 2004, 24: 3147–3151. 10.1523/JNEUROSCI.5218-03.2004PubMedCrossRef
14.
go back to reference Chen X, Leischner U, Varga Z, Jia H, Deca D, Rochefort NL, Konnerth A: LOTOS-based two-photon calcium imaging of dendritic spines in vivo. Nat Protoc 2012, 7: 1818–1829. 10.1038/nprot.2012.106PubMedCrossRef Chen X, Leischner U, Varga Z, Jia H, Deca D, Rochefort NL, Konnerth A: LOTOS-based two-photon calcium imaging of dendritic spines in vivo. Nat Protoc 2012, 7: 1818–1829. 10.1038/nprot.2012.106PubMedCrossRef
15.
go back to reference Margolis DJ, Lutcke H, Schulz K, Haiss F, Weber B, Kugler S, Hasan MT, Helmchen F: Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat Neurosci 2012, 15: 1539–1546. 10.1038/nn.3240PubMedCrossRef Margolis DJ, Lutcke H, Schulz K, Haiss F, Weber B, Kugler S, Hasan MT, Helmchen F: Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat Neurosci 2012, 15: 1539–1546. 10.1038/nn.3240PubMedCrossRef
16.
go back to reference De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K: Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 2006, 49: 861–875. 10.1016/j.neuron.2006.02.017PubMedCrossRef De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K: Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 2006, 49: 861–875. 10.1016/j.neuron.2006.02.017PubMedCrossRef
17.
go back to reference Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000, 28: 41–51. 10.1016/S0896-6273(00)00084-2PubMedCrossRef Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000, 28: 41–51. 10.1016/S0896-6273(00)00084-2PubMedCrossRef
18.
go back to reference Hechler D, Nitsch R, Hendrix S: Green-fluorescent-protein-expressing mice as models for the study of axonal growth and regeneration in vitro. Brain Res Rev 2006, 52: 160–169. 10.1016/j.brainresrev.2006.01.005PubMedCrossRef Hechler D, Nitsch R, Hendrix S: Green-fluorescent-protein-expressing mice as models for the study of axonal growth and regeneration in vitro. Brain Res Rev 2006, 52: 160–169. 10.1016/j.brainresrev.2006.01.005PubMedCrossRef
19.
go back to reference Lam CK, Yoo T, Hiner B, Liu Z, Grutzendler J: Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature 2010, 465: 478–482. 10.1038/nature09001PubMedCentralPubMedCrossRef Lam CK, Yoo T, Hiner B, Liu Z, Grutzendler J: Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature 2010, 465: 478–482. 10.1038/nature09001PubMedCentralPubMedCrossRef
20.
go back to reference Zuo Y, Lubischer JL, Kang H, Tian L, Mikesh M, Marks A, Scofield VL, Maika S, Newman C, Krieg P, Thompson WJ: Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination. J Neurosci 2004, 24: 10999–11009. 10.1523/JNEUROSCI.3934-04.2004PubMedCrossRef Zuo Y, Lubischer JL, Kang H, Tian L, Mikesh M, Marks A, Scofield VL, Maika S, Newman C, Krieg P, Thompson WJ: Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination. J Neurosci 2004, 24: 10999–11009. 10.1523/JNEUROSCI.3934-04.2004PubMedCrossRef
21.
go back to reference Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K: Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002, 420: 788–794. 10.1038/nature01273PubMedCrossRef Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K: Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002, 420: 788–794. 10.1038/nature01273PubMedCrossRef
22.
go back to reference Xu HT, Pan F, Yang G, Gan WB: Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 2007, 10: 549–551. 10.1038/nn1883PubMedCrossRef Xu HT, Pan F, Yang G, Gan WB: Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 2007, 10: 549–551. 10.1038/nn1883PubMedCrossRef
23.
go back to reference Piston DW: Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol 1999, 9: 66–69. 10.1016/S0962-8924(98)01432-9PubMedCrossRef Piston DW: Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol 1999, 9: 66–69. 10.1016/S0962-8924(98)01432-9PubMedCrossRef
Metadata
Title
An experimental protocol for in vivo imaging of neuronal structural plasticity with 2-photon microscopy in mice
Authors
Christian Stetter
Markus Hirschberg
Bernhard Nieswandt
Ralf-Ingo Ernestus
Manfred Heckmann
Anna-Leena Sirén
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Experimental & Translational Stroke Medicine / Issue 1/2013
Electronic ISSN: 2040-7378
DOI
https://doi.org/10.1186/2040-7378-5-9

Other articles of this Issue 1/2013

Experimental & Translational Stroke Medicine 1/2013 Go to the issue