Skip to main content
Top
Published in: Diabetologia 11/2016

01-11-2016 | Commentary

An alternative effector gene at the type 2 diabetes-associated TCF7L2 locus?

Author: Martijn van de Bunt

Published in: Diabetologia | Issue 11/2016

Login to get access

Excerpt

After a decade of genome-wide association studies of ever increasing size, there are currently around 100 regions of the genome that are robustly implicated in the risk for developing type 2 diabetes [1]. Now the challenge is to translate these statistical associations into new biological understanding and, subsequently, novel opportunities for prevention and treatment. Across all the genetic regions implicated in type 2 diabetes risk, comparisons with physiological information from individuals without diabetes allow us to point at a primary role for defects in insulin processing and secretion [2]. However, identifying the molecular mechanisms involved at individual loci has proven more challenging. One of the major hurdles is that the majority of genetic variants associated with type 2 diabetes are in non-coding regions of the genome and therefore do not often have an obvious functional consequence. …
Literature
2.
go back to reference Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171CrossRefPubMedPubMedCentral Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171CrossRefPubMedPubMedCentral
3.
go back to reference Lyssenko V, Lupi R, Marchetti P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155–2163CrossRefPubMedPubMedCentral Lyssenko V, Lupi R, Marchetti P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155–2163CrossRefPubMedPubMedCentral
4.
go back to reference da Silva Xavier G, Loder MK, McDonald A et al (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58:894–905CrossRefPubMedPubMedCentral da Silva Xavier G, Loder MK, McDonald A et al (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58:894–905CrossRefPubMedPubMedCentral
5.
go back to reference Boj SF, van Es JH, Huch M et al (2012) Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151:1595–1607CrossRefPubMed Boj SF, van Es JH, Huch M et al (2012) Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151:1595–1607CrossRefPubMed
6.
go back to reference Xia Q, Chesi A, Manduchi E et al (2016) The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia. doi:10.1007/s00125-016-4077-2 Xia Q, Chesi A, Manduchi E et al (2016) The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia. doi:10.​1007/​s00125-016-4077-2
7.
go back to reference Yi F, Brubaker PL, Jin T (2005) TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 280:1457–1464CrossRefPubMed Yi F, Brubaker PL, Jin T (2005) TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 280:1457–1464CrossRefPubMed
8.
go back to reference Bowman TA, O’Keeffe KR, D’Aquila T et al (2016) Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Mol Metab 5:210–220CrossRefPubMedPubMedCentral Bowman TA, O’Keeffe KR, D’Aquila T et al (2016) Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Mol Metab 5:210–220CrossRefPubMedPubMedCentral
9.
go back to reference Koscielny G, Yaikhom G, Iyer V et al (2014) The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 42:D802–D809CrossRefPubMed Koscielny G, Yaikhom G, Iyer V et al (2014) The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 42:D802–D809CrossRefPubMed
11.
go back to reference Rosengren AH, Braun M, Mahdi T et al (2012) Reduced insulin exocytosis in human pancreatic beta-cells with gene variants linked to type 2 diabetes. Diabetes 61:1726–1733CrossRefPubMedPubMedCentral Rosengren AH, Braun M, Mahdi T et al (2012) Reduced insulin exocytosis in human pancreatic beta-cells with gene variants linked to type 2 diabetes. Diabetes 61:1726–1733CrossRefPubMedPubMedCentral
12.
go back to reference van de Bunt M, Manning Fox JE, Dai X et al (2015) Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet 11:e1005694CrossRefPubMedPubMedCentral van de Bunt M, Manning Fox JE, Dai X et al (2015) Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet 11:e1005694CrossRefPubMedPubMedCentral
Metadata
Title
An alternative effector gene at the type 2 diabetes-associated TCF7L2 locus?
Author
Martijn van de Bunt
Publication date
01-11-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 11/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4103-4

Other articles of this Issue 11/2016

Diabetologia 11/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.