Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 3/2023

Open Access 29-10-2022 | Amyotrophic Lateral Sclerosis | Original Article

Role of brain 2-[18F]fluoro-2-deoxy-D-glucose-positron-emission tomography as survival predictor in amyotrophic lateral sclerosis

Authors: Antonio Canosa, Alessio Martino, Umberto Manera, Rosario Vasta, Maurizio Grassano, Francesca Palumbo, Sara Cabras, Francesca Di Pede, Vincenzo Arena, Cristina Moglia, Alessandro Giuliani, Andrea Calvo, Adriano Chiò, Marco Pagani

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 3/2023

Login to get access

Abstract

Purpose

The identification of prognostic tools in amyotrophic lateral sclerosis (ALS) would improve the design of clinical trials, the management of patients, and life planning. We aimed to evaluate the accuracy of brain 2-[18F]fluoro-2-deoxy-D-glucose-positron-emission tomography (2-[18F]FDG-PET) as an independent predictor of survival in ALS.

Methods

A prospective cohort study enrolled 418 ALS patients, who underwent brain 2-[18F]FDG-PET at diagnosis and whose survival time was available. We discretized the survival time in a finite number of classes in a data-driven fashion by employing a k-means-like strategy. We identified “hot brain regions” with maximal power in discriminating survival classes, by evaluating the Laplacian scores in a class-aware fashion. We retained the top-m features for each class to train the classification systems (i.e., a support vector machine, SVM), using 10% of the ALS cohort as test set.

Results

Data were discretized in three survival profiles: 0–2 years, 2–5 years, and > 5 years. SVM resulted in an error rate < 20% for two out of three classes separately. As for class one, the discriminant clusters included left caudate body and anterior cingulate cortex. The most discriminant regions were bilateral cerebellar pyramid in class two, and right cerebellar dentate nucleus, and left cerebellar nodule in class three.

Conclusion

Brain 2-[18F]FDG-PET along with artificial intelligence was able to predict with high accuracy the survival time range in our ALS cohort. Healthcare professionals can benefit from this prognostic tool for planning patients’ management and follow-up. 2-[18F]FDG-PET represents a promising biomarker for individual patients’ stratification in clinical trials. The lack of a multicentre external validation of the model warrants further studies to evaluate its generalization capability.
Appendix
Available only for authorised users
Literature
1.
go back to reference van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al. Amyotrophic lateral sclerosis. Lancet Lond Engl. 2017;390:2084–98.CrossRef van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al. Amyotrophic lateral sclerosis. Lancet Lond Engl. 2017;390:2084–98.CrossRef
2.
go back to reference Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, et al. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Mot Neuron Dis. 2009;10:310–23. Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, et al. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Mot Neuron Dis. 2009;10:310–23.
3.
go back to reference Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1. Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1.
4.
go back to reference Nguyen C, Caga J, Mahoney CJ, Kiernan MC, Huynh W. Behavioural changes predict poorer survival in amyotrophic lateral sclerosis. Brain Cogn. 2021;150:105710.CrossRef Nguyen C, Caga J, Mahoney CJ, Kiernan MC, Huynh W. Behavioural changes predict poorer survival in amyotrophic lateral sclerosis. Brain Cogn. 2021;150:105710.CrossRef
5.
go back to reference Xu L, He B, Zhang Y, Chen L, Fan D, Zhan S, et al. Prognostic models for amyotrophic lateral sclerosis: a systematic review. J Neurol. 2021;268(9):3361–70.CrossRef Xu L, He B, Zhang Y, Chen L, Fan D, Zhan S, et al. Prognostic models for amyotrophic lateral sclerosis: a systematic review. J Neurol. 2021;268(9):3361–70.CrossRef
6.
go back to reference Van Laere K, Vanhee A, Verschueren J, De Coster L, Driesen A, Dupont P, et al. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study. JAMA Neurol. 2014;71:553–61.CrossRef Van Laere K, Vanhee A, Verschueren J, De Coster L, Driesen A, Dupont P, et al. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study. JAMA Neurol. 2014;71:553–61.CrossRef
7.
go back to reference Van Weehaeghe D, Ceccarini J, Delva A, Robberecht W, Van Damme P, Van Laere K. Prospective validation of 18F-FDG brain PET discriminant analysis methods in the diagnosis of amyotrophic lateral sclerosis. J Nucl Med Off Publ Soc Nucl Med. 2016;57:1238–43. Van Weehaeghe D, Ceccarini J, Delva A, Robberecht W, Van Damme P, Van Laere K. Prospective validation of 18F-FDG brain PET discriminant analysis methods in the diagnosis of amyotrophic lateral sclerosis. J Nucl Med Off Publ Soc Nucl Med. 2016;57:1238–43.
8.
go back to reference Zanovello M, Sorarù G, Campi C, Anglani M, Spimpolo A, Berti S, et al. Brain stem glucose hypermetabolism in amyotrophic lateral sclerosis/frontotemporal dementia and shortened survival: an 18F-FDG PET/MRI study. J Nucl Med Off Publ Soc Nucl Med. 2022;63:777–84. Zanovello M, Sorarù G, Campi C, Anglani M, Spimpolo A, Berti S, et al. Brain stem glucose hypermetabolism in amyotrophic lateral sclerosis/frontotemporal dementia and shortened survival: an 18F-FDG PET/MRI study. J Nucl Med Off Publ Soc Nucl Med. 2022;63:777–84.
9.
go back to reference van der Burgh HK, Schmidt R, Westeneng H-J, de Reus MA, van den Berg LH, van den Heuvel MP. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage Clin. 2017;13:361–9.CrossRef van der Burgh HK, Schmidt R, Westeneng H-J, de Reus MA, van den Berg LH, van den Heuvel MP. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage Clin. 2017;13:361–9.CrossRef
10.
go back to reference Agosta F, Spinelli EG, Riva N, Fontana A, Basaia S, Canu E, et al. Survival prediction models in motor neuron disease. Eur J Neurol. 2019;26:1143–52.CrossRef Agosta F, Spinelli EG, Riva N, Fontana A, Basaia S, Canu E, et al. Survival prediction models in motor neuron disease. Eur J Neurol. 2019;26:1143–52.CrossRef
11.
go back to reference Balendra R, Jones A, Jivraj N, Knights C, Ellis CM, Burman R, et al. Estimating clinical stage of amyotrophic lateral sclerosis from the ALS functional rating scale. Amyotroph Lateral Scler Front Degener. 2014;15:279–84.CrossRef Balendra R, Jones A, Jivraj N, Knights C, Ellis CM, Burman R, et al. Estimating clinical stage of amyotrophic lateral sclerosis from the ALS functional rating scale. Amyotroph Lateral Scler Front Degener. 2014;15:279–84.CrossRef
12.
go back to reference Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.CrossRef Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.CrossRef
13.
go back to reference Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12:575–93.CrossRef Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12:575–93.CrossRef
14.
go back to reference Ho SY, Wong L, Goh WWB. Avoid oversimplifications in machine learning: going beyond the class-prediction accuracy. Patterns N Y N. 2020;1:100025.CrossRef Ho SY, Wong L, Goh WWB. Avoid oversimplifications in machine learning: going beyond the class-prediction accuracy. Patterns N Y N. 2020;1:100025.CrossRef
15.
go back to reference He X, Cai D, Niyogi P. Laplacian score for feature selection. In: proceedings of the 18th international conference on neural information processing systems. NIPS’05. Vancouver, British Columbia, Canada: MIT Press, 2005, pp. 507–514. He X, Cai D, Niyogi P. Laplacian score for feature selection. In: proceedings of the 18th international conference on neural information processing systems. NIPS’05. Vancouver, British Columbia, Canada: MIT Press, 2005, pp. 507–514.
16.
go back to reference Vapnik VN. Statistical learning theory. New York: Wiley; 1998. Vapnik VN. Statistical learning theory. New York: Wiley; 1998.
17.
go back to reference Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Proc 25th Int Conf Neural Inf Process Syst -, vol. 2. Red Hook, NY, USA: Curran Associates Inc.; 2012. p. 2951–9. Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Proc 25th Int Conf Neural Inf Process Syst -, vol. 2. Red Hook, NY, USA: Curran Associates Inc.; 2012. p. 2951–9.
18.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.CrossRef Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.CrossRef
19.
go back to reference Westeneng H-J, Debray TPA, Visser AE, van Eijk RPA, Rooney JPK, Calvo A, et al. Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol. 2018;17:423–33.CrossRef Westeneng H-J, Debray TPA, Visser AE, van Eijk RPA, Rooney JPK, Calvo A, et al. Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol. 2018;17:423–33.CrossRef
20.
go back to reference Lunetta C, Lizio A, Melazzini MG, Maestri E, Sansone VA. Amyotrophic lateral sclerosis survival score (ALS-SS): a simple scoring system for early prediction of patient survival. Amyotroph Lateral Scler Front Degener. 2015;17:93–100.CrossRef Lunetta C, Lizio A, Melazzini MG, Maestri E, Sansone VA. Amyotrophic lateral sclerosis survival score (ALS-SS): a simple scoring system for early prediction of patient survival. Amyotroph Lateral Scler Front Degener. 2015;17:93–100.CrossRef
21.
go back to reference Chiò A, Mazzini L, Mora G. Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology. 2020;167:107986.CrossRef Chiò A, Mazzini L, Mora G. Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology. 2020;167:107986.CrossRef
22.
go back to reference van Eijk RPA, Kliest T, van den Berg LH. Current trends in the clinical trial landscape for amyotrophic lateral sclerosis. Curr Opin Neurol. 2020;33:655–61.CrossRef van Eijk RPA, Kliest T, van den Berg LH. Current trends in the clinical trial landscape for amyotrophic lateral sclerosis. Curr Opin Neurol. 2020;33:655–61.CrossRef
23.
go back to reference van den Berg LH, Sorenson E, Gronseth G, Macklin EA, Andrews J, Baloh RH, et al. Revised Airlie house consensus guidelines for design and implementation of ALS clinical trials. Neurology. 2019;92:e1610–23.CrossRef van den Berg LH, Sorenson E, Gronseth G, Macklin EA, Andrews J, Baloh RH, et al. Revised Airlie house consensus guidelines for design and implementation of ALS clinical trials. Neurology. 2019;92:e1610–23.CrossRef
24.
go back to reference Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol. 2013;74:20–38.CrossRef Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol. 2013;74:20–38.CrossRef
25.
go back to reference Braak H, Del Tredici K. Anterior cingulate cortex TDP-43 pathology in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2018;77:74–83.CrossRef Braak H, Del Tredici K. Anterior cingulate cortex TDP-43 pathology in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2018;77:74–83.CrossRef
26.
go back to reference Pagani M, Chio A, Valentini MC, Oberg J, Nobili F, Calvo A, et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology. 2014;83:1067–74.CrossRef Pagani M, Chio A, Valentini MC, Oberg J, Nobili F, Calvo A, et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology. 2014;83:1067–74.CrossRef
27.
go back to reference Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, et al. Consensus paper. Cerebellar reserve: from cerebellar physiology to cerebellar disorders. Cerebellum Lond Engl. 2020;19:131–53.CrossRef Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, et al. Consensus paper. Cerebellar reserve: from cerebellar physiology to cerebellar disorders. Cerebellum Lond Engl. 2020;19:131–53.CrossRef
28.
go back to reference Ibáñez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology. 1998;50:1585–93.CrossRef Ibáñez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology. 1998;50:1585–93.CrossRef
29.
go back to reference Cutillo CM, Sharma KR, Foschini L, Kundu S, Mackintosh M, Mandl KD, et al. Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency. NPJ Digit Med. 2020;3:47.CrossRef Cutillo CM, Sharma KR, Foschini L, Kundu S, Mackintosh M, Mandl KD, et al. Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency. NPJ Digit Med. 2020;3:47.CrossRef
Metadata
Title
Role of brain 2-[18F]fluoro-2-deoxy-D-glucose-positron-emission tomography as survival predictor in amyotrophic lateral sclerosis
Authors
Antonio Canosa
Alessio Martino
Umberto Manera
Rosario Vasta
Maurizio Grassano
Francesca Palumbo
Sara Cabras
Francesca Di Pede
Vincenzo Arena
Cristina Moglia
Alessandro Giuliani
Andrea Calvo
Adriano Chiò
Marco Pagani
Publication date
29-10-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 3/2023
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05987-3

Other articles of this Issue 3/2023

European Journal of Nuclear Medicine and Molecular Imaging 3/2023 Go to the issue