Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2014

Open Access 01-12-2014 | Research article

Amyloid peptides ABri and ADan show differential neurotoxicity in transgenic Drosophila models of familial British and Danish dementia

Authors: María S Marcora, Agata C Fernández-Gamba, Luz A Avendaño, Cecilia Rotondaro, Osvaldo L Podhajcer, Rubén Vidal, Laura Morelli, María F Ceriani, Eduardo M Castaño

Published in: Molecular Neurodegeneration | Issue 1/2014

Login to get access

Abstract

Background

Familial British and Familial Danish dementias (FBD and FDD, respectively) are associated with mutations in the BRI2 gene. Processing of the mutated BRI2 protein leads to the accumulation in the brain of the 34-mer amyloid Bri (ABri) and amyloid Dan (ADan) peptides, accompanied by neurofibrillary tangles. Recently, transgenic mice successfully reproduced different aspects of FDD, while modeling of FBD in vivo has been more difficult. In this work we have modeled FBD and FDD in Drosophila and tested the hypothesis that ABri and ADan are differentially neurotoxic.

Results

By using site-directed insertion, we generated transgenic lines carrying ABri, ADan, Bri2-23 (the normal product of wild-type BRI2 processing) and amyloid-β (Aβ) 1–42 as a well-characterized neurotoxic peptide, alone or with a His-tag. Therefore, we avoided random insertion effects and were able to compare levels of accumulation accurately. Peptides were expressed with the GAL4-Upstream Activating Sequence (UAS) system using specific drivers. Despite low levels of expression, toxicity in the eye was characterized by mild disorganization of ommatidia and amyloid peptides accumulation. The highest toxicity was seen for ADan, followed by Aβ42 and ABri. Pan-neuronal expression in the CNS revealed an age-dependent toxicity of amyloid peptides as determined by the ability of flies to climb in a geotaxis paradigm when compared to Bri2-23. This effect was stronger for ADan, detected at 7 days post-eclosion, and followed by ABri and Aβ42, whose toxicity became evident after 15 and 21 days, respectively. Histological analysis showed mild vacuolization and thioflavine-S-negative deposits of amyloid peptides. In contrast, the over-expression of amyloid peptides in the specific subset of lateral neurons that control circadian locomotor activity showed no toxicity.

Conclusions

Our results support the differential neurotoxicity of ADan and ABri in the Drosophila eye and CNS at low expression levels. Such differences may be partially attributed to rates of aggregation and accumulation. In the CNS, both peptides appear to be more neurotoxic than wild-type Aβ42. These Drosophila models will allow a systematic and unambiguous comparison of differences and similarities in the mechanisms of toxicity of diverse amyloid peptides associated with dementia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vidal R, Frangione B, Rostagno A, Mead S, Révész T, Plant G, et al: A stop-codon mutation in the BRI gene associated with familial British dementia. Nature. 1999, 24: 776-781. Vidal R, Frangione B, Rostagno A, Mead S, Révész T, Plant G, et al: A stop-codon mutation in the BRI gene associated with familial British dementia. Nature. 1999, 24: 776-781.
2.
go back to reference Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, et al: A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci U S A. 2000, 97: 4920-4925. 10.1073/pnas.080076097.PubMedCentralCrossRefPubMed Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, et al: A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci U S A. 2000, 97: 4920-4925. 10.1073/pnas.080076097.PubMedCentralCrossRefPubMed
3.
go back to reference Mead S, James-Galton M, Revesz T, Doshi RB, Harwood G, Pan EL, et al: Familial British dementia with amyloid angiopathy: early clinical, neuropsychological and imaging findings. Brain. 2000, 123: 975-991. 10.1093/brain/123.5.975.CrossRefPubMed Mead S, James-Galton M, Revesz T, Doshi RB, Harwood G, Pan EL, et al: Familial British dementia with amyloid angiopathy: early clinical, neuropsychological and imaging findings. Brain. 2000, 123: 975-991. 10.1093/brain/123.5.975.CrossRefPubMed
4.
go back to reference Strömgren E, Dalby A, Dalby MA, Ranheim B: Cataract, deafness, cerebellar ataxia, psychosis and dementia: a new syndrome. Acta Neurol Scand. 1970, 46: 261-262.CrossRefPubMed Strömgren E, Dalby A, Dalby MA, Ranheim B: Cataract, deafness, cerebellar ataxia, psychosis and dementia: a new syndrome. Acta Neurol Scand. 1970, 46: 261-262.CrossRefPubMed
5.
go back to reference Holton JL, Lashley T, Ghiso J, Braendgaard H, Vidal R, Guerin CJ, et al: Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta. J Neuropathol Exp Neurol. 2002, 61: 254-267.PubMed Holton JL, Lashley T, Ghiso J, Braendgaard H, Vidal R, Guerin CJ, et al: Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta. J Neuropathol Exp Neurol. 2002, 61: 254-267.PubMed
6.
go back to reference Holton JL, Ghiso J, Lashley T, Rostagno A, Guerin CJ, Gibb G, et al: Regional distribution of amyloid-Bri deposition and its association with neurofibrillary degeneration in familial British dementia. Am J Pathol. 2001, 158: 515-526. 10.1016/S0002-9440(10)63993-4.PubMedCentralCrossRefPubMed Holton JL, Ghiso J, Lashley T, Rostagno A, Guerin CJ, Gibb G, et al: Regional distribution of amyloid-Bri deposition and its association with neurofibrillary degeneration in familial British dementia. Am J Pathol. 2001, 158: 515-526. 10.1016/S0002-9440(10)63993-4.PubMedCentralCrossRefPubMed
7.
go back to reference Glenner GG, Wong CW: Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984, 210: 885-890.CrossRef Glenner GG, Wong CW: Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984, 210: 885-890.CrossRef
8.
go back to reference Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985, 82: 4245-4249. 10.1073/pnas.82.12.4245.PubMedCentralCrossRefPubMed Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985, 82: 4245-4249. 10.1073/pnas.82.12.4245.PubMedCentralCrossRefPubMed
9.
go back to reference Creemers JWM, Chu S, Thinakaran G, Sisodia SS: Proteolytic processing of familial British dementia-associated BRI variants: evidence for enhanced intracellular accumulation of amyloidogenic peptides. J Biol Chem. 2002, 277: 1872-1877. 10.1074/jbc.M108739200.CrossRefPubMed Creemers JWM, Chu S, Thinakaran G, Sisodia SS: Proteolytic processing of familial British dementia-associated BRI variants: evidence for enhanced intracellular accumulation of amyloidogenic peptides. J Biol Chem. 2002, 277: 1872-1877. 10.1074/jbc.M108739200.CrossRefPubMed
10.
go back to reference Sánchez-Pulido L, Devos D, Valencia A: BRICHOS: a conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem Sci. 2002, 27: 329-332. 10.1016/S0968-0004(02)02134-5.CrossRefPubMed Sánchez-Pulido L, Devos D, Valencia A: BRICHOS: a conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem Sci. 2002, 27: 329-332. 10.1016/S0968-0004(02)02134-5.CrossRefPubMed
11.
go back to reference Garringer HJ, Murrell J, D’Adamio L, Ghetti B, Vidal R: Modeling familial British and Danish dementia. Brain Struct Funct. 2010, 214: 235-244. 10.1007/s00429-009-0221-9.CrossRefPubMed Garringer HJ, Murrell J, D’Adamio L, Ghetti B, Vidal R: Modeling familial British and Danish dementia. Brain Struct Funct. 2010, 214: 235-244. 10.1007/s00429-009-0221-9.CrossRefPubMed
12.
go back to reference El-Agnaf OM, Nagala S, Patel BP, Austen BM: Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol. 2001, 310: 157-168. 10.1006/jmbi.2001.4743.CrossRefPubMed El-Agnaf OM, Nagala S, Patel BP, Austen BM: Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol. 2001, 310: 157-168. 10.1006/jmbi.2001.4743.CrossRefPubMed
13.
go back to reference Gibson G, Gunasekera N, Lee M, Lelyveld V, El-Agnaf OM, Wright A, Austen BM: Oligomerization and neurotoxicity of the amyloid ADan peptide implicated in familial Danish dementia. J Neurochem. 2004, 88: 281-290.CrossRefPubMed Gibson G, Gunasekera N, Lee M, Lelyveld V, El-Agnaf OM, Wright A, Austen BM: Oligomerization and neurotoxicity of the amyloid ADan peptide implicated in familial Danish dementia. J Neurochem. 2004, 88: 281-290.CrossRefPubMed
14.
go back to reference Vidal R, Barbeito AG, Miravalle L, Ghetti B: Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2. Brain Pathol. 2009, 19: 58-68. 10.1111/j.1750-3639.2008.00164.x.PubMedCentralCrossRefPubMed Vidal R, Barbeito AG, Miravalle L, Ghetti B: Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2. Brain Pathol. 2009, 19: 58-68. 10.1111/j.1750-3639.2008.00164.x.PubMedCentralCrossRefPubMed
15.
go back to reference Garringer HJ, Murrell J, Sammeta N, Gnezda A, Ghetti B, Vidal R: Increased tau phosphorylation and tau truncation, and decreased synaptophysin levels in mutant BRI2/tau transgenic mice. PLoS ONE. 2013, 8: e56426-10.1371/journal.pone.0056426.PubMedCentralCrossRefPubMed Garringer HJ, Murrell J, Sammeta N, Gnezda A, Ghetti B, Vidal R: Increased tau phosphorylation and tau truncation, and decreased synaptophysin levels in mutant BRI2/tau transgenic mice. PLoS ONE. 2013, 8: e56426-10.1371/journal.pone.0056426.PubMedCentralCrossRefPubMed
16.
go back to reference Giliberto L, Matsuda S, Vidal R, D’Adamio L: Generation and initial characterization of FDD knock in mice. PLoS ONE. 2009, 4: e7900-10.1371/journal.pone.0007900.PubMedCentralCrossRefPubMed Giliberto L, Matsuda S, Vidal R, D’Adamio L: Generation and initial characterization of FDD knock in mice. PLoS ONE. 2009, 4: e7900-10.1371/journal.pone.0007900.PubMedCentralCrossRefPubMed
17.
go back to reference Coomaraswamya J, Kilgera E, Wölfinga H, Schäfera C, Kaesera SA, Wegenast-Brauna BM, et al: Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2010, 107: 7969-7974. 10.1073/pnas.1001056107.CrossRef Coomaraswamya J, Kilgera E, Wölfinga H, Schäfera C, Kaesera SA, Wegenast-Brauna BM, et al: Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2010, 107: 7969-7974. 10.1073/pnas.1001056107.CrossRef
18.
go back to reference Pickford F, Coomaraswamy J, Jucker M, McGowan E: Modeling familial British dementia in transgenic mice. Brain Pathol. 2006, 16: 80-85. 10.1111/j.1750-3639.2006.tb00564.x.CrossRefPubMed Pickford F, Coomaraswamy J, Jucker M, McGowan E: Modeling familial British dementia in transgenic mice. Brain Pathol. 2006, 16: 80-85. 10.1111/j.1750-3639.2006.tb00564.x.CrossRefPubMed
19.
go back to reference Tamayev R, Giliberto L, Li W, d’Abramo C, Arancio O, Vidal R, et al: Memory deficits due to familial British dementia BRI2 mutation are caused by loss of BRI2 function rather than amyloidosis. J Neurosci. 2010, 30: 14915-14924. 10.1523/JNEUROSCI.3917-10.2010.PubMedCentralCrossRefPubMed Tamayev R, Giliberto L, Li W, d’Abramo C, Arancio O, Vidal R, et al: Memory deficits due to familial British dementia BRI2 mutation are caused by loss of BRI2 function rather than amyloidosis. J Neurosci. 2010, 30: 14915-14924. 10.1523/JNEUROSCI.3917-10.2010.PubMedCentralCrossRefPubMed
20.
go back to reference Fotinopoulou A, Tsachaki M, Vlavaki M, Poulopoulos A, Rostagno A, Frangione B, et al: BRI2 interacts with amyloid precursor protein (APP) and regulates amyloid beta (Aβ) production. J Biol Chem. 2005, 280: 30768-30772. 10.1074/jbc.C500231200.CrossRefPubMed Fotinopoulou A, Tsachaki M, Vlavaki M, Poulopoulos A, Rostagno A, Frangione B, et al: BRI2 interacts with amyloid precursor protein (APP) and regulates amyloid beta (Aβ) production. J Biol Chem. 2005, 280: 30768-30772. 10.1074/jbc.C500231200.CrossRefPubMed
21.
go back to reference Kim J, Miller VM, Levites Y, West KJ, Zwizinski CW, Moore BD, et al: BRI2 (ITM2b) inhibits Aβ deposition in vivo. J Neurosci. 2008, 28: 6030-6036. 10.1523/JNEUROSCI.0891-08.2008.PubMedCentralCrossRefPubMed Kim J, Miller VM, Levites Y, West KJ, Zwizinski CW, Moore BD, et al: BRI2 (ITM2b) inhibits Aβ deposition in vivo. J Neurosci. 2008, 28: 6030-6036. 10.1523/JNEUROSCI.0891-08.2008.PubMedCentralCrossRefPubMed
22.
go back to reference Chandran J, Lewis P: Mad fly disease. J Neurosci. 2007, 27: 971-972. 10.1523/JNEUROSCI.5427-06.2007.CrossRefPubMed Chandran J, Lewis P: Mad fly disease. J Neurosci. 2007, 27: 971-972. 10.1523/JNEUROSCI.5427-06.2007.CrossRefPubMed
24.
go back to reference Lanson NA, Pandey UB: FUS-related proteinopathies: lessons from animal models. Brain Res. 2012, 1462: 44-60.CrossRefPubMed Lanson NA, Pandey UB: FUS-related proteinopathies: lessons from animal models. Brain Res. 2012, 1462: 44-60.CrossRefPubMed
25.
go back to reference Jaiswal M, Sandoval H, Zhang K, Bayat V, Bellen HJ: Probing mechanisms that underlie human neurodegenerative diseases in Drosophila. Annu Rev Genet. 2012, 46: 371-396. 10.1146/annurev-genet-110711-155456.PubMedCentralCrossRefPubMed Jaiswal M, Sandoval H, Zhang K, Bayat V, Bellen HJ: Probing mechanisms that underlie human neurodegenerative diseases in Drosophila. Annu Rev Genet. 2012, 46: 371-396. 10.1146/annurev-genet-110711-155456.PubMedCentralCrossRefPubMed
26.
go back to reference Greeve I, Kretzschmar D, Tschäpe JA, Beyn A, Brellinger C, Schweizer M, et al: Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci. 2004, 24: 3899-3906. 10.1523/JNEUROSCI.0283-04.2004.CrossRefPubMed Greeve I, Kretzschmar D, Tschäpe JA, Beyn A, Brellinger C, Schweizer M, et al: Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci. 2004, 24: 3899-3906. 10.1523/JNEUROSCI.0283-04.2004.CrossRefPubMed
27.
go back to reference Finelli A, Kelkar A, Song HJ, Yang H, Konsolaki M: A model for studying Alzheimer’s Aβ42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci. 2004, 26: 365-375. 10.1016/j.mcn.2004.03.001.CrossRefPubMed Finelli A, Kelkar A, Song HJ, Yang H, Konsolaki M: A model for studying Alzheimer’s Aβ42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci. 2004, 26: 365-375. 10.1016/j.mcn.2004.03.001.CrossRefPubMed
28.
go back to reference Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolakis M, Zhong Y: Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004, 101: 6623-6628. 10.1073/pnas.0400895101.PubMedCentralCrossRefPubMed Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolakis M, Zhong Y: Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004, 101: 6623-6628. 10.1073/pnas.0400895101.PubMedCentralCrossRefPubMed
29.
go back to reference Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA, Duthie FA, et al: Intraneuronal Aβ, non-amyloid aggregates and neurodegenertion in a Drosophila model of Alzheimer’s disease. Neuroscience. 2005, 132: 123-135. 10.1016/j.neuroscience.2004.12.025.CrossRefPubMed Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA, Duthie FA, et al: Intraneuronal Aβ, non-amyloid aggregates and neurodegenertion in a Drosophila model of Alzheimer’s disease. Neuroscience. 2005, 132: 123-135. 10.1016/j.neuroscience.2004.12.025.CrossRefPubMed
30.
go back to reference Iijima K, Chiang H, Hearn S, Hakker I, Gatt A, Shenton C, et al: Aβ42 mutants with different aggregation profiles induce distinct pathologies in Drosophila. PLoS One. 2008, 3: e1703-10.1371/journal.pone.0001703.PubMedCentralCrossRefPubMed Iijima K, Chiang H, Hearn S, Hakker I, Gatt A, Shenton C, et al: Aβ42 mutants with different aggregation profiles induce distinct pathologies in Drosophila. PLoS One. 2008, 3: e1703-10.1371/journal.pone.0001703.PubMedCentralCrossRefPubMed
31.
go back to reference Iijima AK, Hearn SA, Shenton C, Gatt A, Zhao LJ, Iijima K: Mitochondrial mislocalization underlies Aβ42-induced neuronal dysfunction in a Drosophila model of Alzheimer’s disease. PLoS One. 2009, 4: e8310-10.1371/journal.pone.0008310.PubMedCentralCrossRefPubMed Iijima AK, Hearn SA, Shenton C, Gatt A, Zhao LJ, Iijima K: Mitochondrial mislocalization underlies Aβ42-induced neuronal dysfunction in a Drosophila model of Alzheimer’s disease. PLoS One. 2009, 4: e8310-10.1371/journal.pone.0008310.PubMedCentralCrossRefPubMed
32.
go back to reference Zhao XL, Wang WA, Tan JX, Huang JK, Zhang X, Zhang BZ, et al: Expression of beta-amyloid induced age-dependent presynaptic and axonal changes in Drosophila. J Neurosci. 2010, 30: 1512-1522. 10.1523/JNEUROSCI.3699-09.2010.CrossRefPubMed Zhao XL, Wang WA, Tan JX, Huang JK, Zhang X, Zhang BZ, et al: Expression of beta-amyloid induced age-dependent presynaptic and axonal changes in Drosophila. J Neurosci. 2010, 30: 1512-1522. 10.1523/JNEUROSCI.3699-09.2010.CrossRefPubMed
33.
go back to reference Huang JK, Ma PL, Ji SY, Zhao XL, Tan JX, Sun XJ, Huang FD: Age-dependent alterations in the presynaptic active zone in a Drosophila model of Alzheimer’s. Neurobiol Dis. 2013, 51: 161-167.CrossRefPubMed Huang JK, Ma PL, Ji SY, Zhao XL, Tan JX, Sun XJ, Huang FD: Age-dependent alterations in the presynaptic active zone in a Drosophila model of Alzheimer’s. Neurobiol Dis. 2013, 51: 161-167.CrossRefPubMed
34.
go back to reference Luheshi LM, Tartaglia GG, Brorsson AC, Pawar AP, Watson IE, Chiti F, et al: Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity. PLoS Biol. 2007, 5: e290-10.1371/journal.pbio.0050290.PubMedCentralCrossRefPubMed Luheshi LM, Tartaglia GG, Brorsson AC, Pawar AP, Watson IE, Chiti F, et al: Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity. PLoS Biol. 2007, 5: e290-10.1371/journal.pbio.0050290.PubMedCentralCrossRefPubMed
35.
go back to reference Iijima-Ando K, Hearn SA, Granger L, Shenton C, Gatt A, Chiang HC, et al: Overexpression of neprilysin reduces alzheimer amyloid-β42 (Aβ42)-induced neuron loss and intraneuronal Aβ42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J Biol Chem. 2008, 283: 19066-19076. 10.1074/jbc.M710509200.PubMedCentralCrossRefPubMed Iijima-Ando K, Hearn SA, Granger L, Shenton C, Gatt A, Chiang HC, et al: Overexpression of neprilysin reduces alzheimer amyloid-β42 (Aβ42)-induced neuron loss and intraneuronal Aβ42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J Biol Chem. 2008, 283: 19066-19076. 10.1074/jbc.M710509200.PubMedCentralCrossRefPubMed
36.
go back to reference Iijimaa K, Kanae Iijima-Ando K: Drosophila models of Alzheimer’s amyloidosis: the challenge of dissecting the complex mechanisms of toxicity of amyloid-β 42. J Alz Dis. 2008, 15: 523-540. Iijimaa K, Kanae Iijima-Ando K: Drosophila models of Alzheimer’s amyloidosis: the challenge of dissecting the complex mechanisms of toxicity of amyloid-β 42. J Alz Dis. 2008, 15: 523-540.
37.
go back to reference Cao W, Song HJ, Gangi T, Kelkar A, Antani I, Garza D, et al: Identification of novel genes that modify phenotypes induced by Alzheimer’s β-amyloid overexpression in Drosophila. Genetics. 2008, 178: 1457-1471. 10.1534/genetics.107.078394.PubMedCentralCrossRefPubMed Cao W, Song HJ, Gangi T, Kelkar A, Antani I, Garza D, et al: Identification of novel genes that modify phenotypes induced by Alzheimer’s β-amyloid overexpression in Drosophila. Genetics. 2008, 178: 1457-1471. 10.1534/genetics.107.078394.PubMedCentralCrossRefPubMed
38.
go back to reference Tan L, Schedl P, Song HJ, Garza D, Konsolaki M: The Toll → NFkB signaling pathway mediates the neuropathological effects of the human Alzheimer’s Aβ42 polypeptide in Drosophila. PLoS One. 2008, 3: e3966-10.1371/journal.pone.0003966.PubMedCentralCrossRefPubMed Tan L, Schedl P, Song HJ, Garza D, Konsolaki M: The Toll → NFkB signaling pathway mediates the neuropathological effects of the human Alzheimer’s Aβ42 polypeptide in Drosophila. PLoS One. 2008, 3: e3966-10.1371/journal.pone.0003966.PubMedCentralCrossRefPubMed
39.
go back to reference Chiang HC, Wang L, Xied Z, Yaua A, Zhonga Y: PI3 kinase signaling is involved in Aβ-induced memory loss in Drosophila. Proc Natl Acad Sci U S A. 2010, 107: 7060-7065. 10.1073/pnas.0909314107.PubMedCentralCrossRefPubMed Chiang HC, Wang L, Xied Z, Yaua A, Zhonga Y: PI3 kinase signaling is involved in Aβ-induced memory loss in Drosophila. Proc Natl Acad Sci U S A. 2010, 107: 7060-7065. 10.1073/pnas.0909314107.PubMedCentralCrossRefPubMed
40.
go back to reference Tare M, Modi RM, Nainaparampil JJ, Puli OR, Bedi S, Fernandez-Funez P, et al: Activation of JNK signaling mediates amyloid-β-dependent cell death. PLoS One. 2011, 6: e24361-10.1371/journal.pone.0024361.PubMedCentralCrossRefPubMed Tare M, Modi RM, Nainaparampil JJ, Puli OR, Bedi S, Fernandez-Funez P, et al: Activation of JNK signaling mediates amyloid-β-dependent cell death. PLoS One. 2011, 6: e24361-10.1371/journal.pone.0024361.PubMedCentralCrossRefPubMed
41.
go back to reference Rogers I, Kerr F, Martinez P, Hardy J, Lovestone S, Partridge L: Ageing increases vulnerability to Aβ42 toxicity in Drosophila. PLoS One. 2012, 7: e40569-10.1371/journal.pone.0040569.PubMedCentralCrossRefPubMed Rogers I, Kerr F, Martinez P, Hardy J, Lovestone S, Partridge L: Ageing increases vulnerability to Aβ42 toxicity in Drosophila. PLoS One. 2012, 7: e40569-10.1371/journal.pone.0040569.PubMedCentralCrossRefPubMed
42.
go back to reference Bischof J, Maeda RK, Hediger M, Karch F, Basler K: An optimized transgenesis system for Drosophila using germ-line-specific-C31 integrases. Proc Natl Acad Sci U S A. 2007, 104: 3312-3317. 10.1073/pnas.0611511104.PubMedCentralCrossRefPubMed Bischof J, Maeda RK, Hediger M, Karch F, Basler K: An optimized transgenesis system for Drosophila using germ-line-specific-C31 integrases. Proc Natl Acad Sci U S A. 2007, 104: 3312-3317. 10.1073/pnas.0611511104.PubMedCentralCrossRefPubMed
43.
go back to reference Kramer JM, Staveley BE: GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet Mol Res. 2003, 2: 43-47.PubMed Kramer JM, Staveley BE: GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet Mol Res. 2003, 2: 43-47.PubMed
44.
go back to reference Rezával C, Berni J, Gorostiza EA, Werbajh S, Fagilde MM, Fernández MP, et al: A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS One. 2008, 3: e3332-10.1371/journal.pone.0003332.PubMedCentralCrossRefPubMed Rezával C, Berni J, Gorostiza EA, Werbajh S, Fagilde MM, Fernández MP, et al: A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS One. 2008, 3: e3332-10.1371/journal.pone.0003332.PubMedCentralCrossRefPubMed
45.
go back to reference DiAngelo JR, Erion R, Crocker A, Sehgal A: The central clock neurons regulate lipid storage in Drosophila. PLoS One. 2011, 6: e19921-10.1371/journal.pone.0019921.PubMedCentralCrossRefPubMed DiAngelo JR, Erion R, Crocker A, Sehgal A: The central clock neurons regulate lipid storage in Drosophila. PLoS One. 2011, 6: e19921-10.1371/journal.pone.0019921.PubMedCentralCrossRefPubMed
46.
go back to reference Buchanan RL, Benzer S: Defective glia in the drosophila brain degeneration mutant drop-dead. Neuron. 1993, 10: 839-850. 10.1016/0896-6273(93)90200-B.CrossRefPubMed Buchanan RL, Benzer S: Defective glia in the drosophila brain degeneration mutant drop-dead. Neuron. 1993, 10: 839-850. 10.1016/0896-6273(93)90200-B.CrossRefPubMed
47.
go back to reference Lang M, Wang L, Fan Q, Xiao G, Wang X, Zhong Y, et al: Genetic inhibition of solute-linked carrier 39 family transporter 1 ameliorates Aβ pathology in a Drosophila model of Alzheimer’s disease. PLoS Genet. 2012, 8: e1002683-10.1371/journal.pgen.1002683.PubMedCentralCrossRefPubMed Lang M, Wang L, Fan Q, Xiao G, Wang X, Zhong Y, et al: Genetic inhibition of solute-linked carrier 39 family transporter 1 ameliorates Aβ pathology in a Drosophila model of Alzheimer’s disease. PLoS Genet. 2012, 8: e1002683-10.1371/journal.pgen.1002683.PubMedCentralCrossRefPubMed
48.
go back to reference Choi SI, Vidal R, Frangione B, Levy E: Axonal transport of British and Danish amyloid peptides via secretory vesicles. FASEB J. 2004, 18: 373-375.PubMed Choi SI, Vidal R, Frangione B, Levy E: Axonal transport of British and Danish amyloid peptides via secretory vesicles. FASEB J. 2004, 18: 373-375.PubMed
49.
go back to reference Gargano JW, Martin I, Bhandari P, Grotewiel MS: Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol. 2005, 40: 386-395. 10.1016/j.exger.2005.02.005.CrossRefPubMed Gargano JW, Martin I, Bhandari P, Grotewiel MS: Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol. 2005, 40: 386-395. 10.1016/j.exger.2005.02.005.CrossRefPubMed
Metadata
Title
Amyloid peptides ABri and ADan show differential neurotoxicity in transgenic Drosophila models of familial British and Danish dementia
Authors
María S Marcora
Agata C Fernández-Gamba
Luz A Avendaño
Cecilia Rotondaro
Osvaldo L Podhajcer
Rubén Vidal
Laura Morelli
María F Ceriani
Eduardo M Castaño
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2014
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-9-5

Other articles of this Issue 1/2014

Molecular Neurodegeneration 1/2014 Go to the issue

Reviewer acknowledgement

Reviewer acknowledgement