Skip to main content
Top
Published in: Infectious Diseases and Therapy 1/2021

01-03-2021 | Amphotericin B | Review

Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections

Authors: Francelise B. Cavassin, João Luiz Baú-Carneiro, Rogério R. Vilas-Boas, Flávio Queiroz-Telles

Published in: Infectious Diseases and Therapy | Issue 1/2021

Login to get access

Abstract

Introduced in the late 1950s, polyenes represent the oldest family of antifungal drugs. The discovery of amphotericin B and its therapeutic uses is considered one of the most important scientific milestones of the twentieth century . Despite its toxic potential, it remains useful in the treatment of invasive fungal diseases owing to its broad spectrum of activity, low resistance rate, and excellent clinical and pharmacological action. The well-reported and defined toxicity of the conventional drug has meant that much attention has been paid to the development of new products that could minimize this effect. As a result, lipid-based formulations of amphotericin B have emerged and, even keeping the active principle in common, present distinct characteristics that may influence therapeutic results. This study presents an overview of the pharmacological properties of the different formulations for systemic use of amphotericin B available for the treatment of invasive fungal infections, highlighting the characteristics related to their chemical, pharmacokinetic structures, drug–target interactions, stability, and others, and points out the most relevant aspects for clinical practice.
Literature
1.
go back to reference Dutcher JD, Gold W, Pagano JF, Vandeputte J. Amphotericin B, Its Production, and Its Salts, in United States Patent Office, U.S.P. Office, Editor. 1959, James D. Dutcher: United States of America. p. 11. Dutcher JD, Gold W, Pagano JF, Vandeputte J. Amphotericin B, Its Production, and Its Salts, in United States Patent Office, U.S.P. Office, Editor. 1959, James D. Dutcher: United States of America. p. 11.
2.
go back to reference Al-Mohsen I, Hughes WT. Systemic antifungal therapy: Past, present and future. Ann Saudi Med. 1998;18(1):28–38.PubMedCrossRef Al-Mohsen I, Hughes WT. Systemic antifungal therapy: Past, present and future. Ann Saudi Med. 1998;18(1):28–38.PubMedCrossRef
3.
go back to reference Utz JP, Treger A, Mc CN, Emmons CW. Amphotericin B: intravenous use in 21 patients with systemic fungal diseases. Antibiot Annu. 1958;6:628–34.PubMed Utz JP, Treger A, Mc CN, Emmons CW. Amphotericin B: intravenous use in 21 patients with systemic fungal diseases. Antibiot Annu. 1958;6:628–34.PubMed
4.
go back to reference Utz JP. Amphotericin B toxicity. General Side Effects. Ann Intern Med. 1964;61:340–3.PubMed Utz JP. Amphotericin B toxicity. General Side Effects. Ann Intern Med. 1964;61:340–3.PubMed
5.
go back to reference Maddux BD, Whiting RB. Toxic synergism of disopyramide and hyperkalemia. Chest. 1980;78(4):654–6.PubMedCrossRef Maddux BD, Whiting RB. Toxic synergism of disopyramide and hyperkalemia. Chest. 1980;78(4):654–6.PubMedCrossRef
6.
go back to reference Medoff G, Kobayashi GS. Strategies in the treatment of systemic fungal infections. N Engl J Med. 1980;302(3):145–55.PubMedCrossRef Medoff G, Kobayashi GS. Strategies in the treatment of systemic fungal infections. N Engl J Med. 1980;302(3):145–55.PubMedCrossRef
7.
go back to reference Timmers GJ, Zweegman S, Simoons-Smit AM, van Loenen AC, Touw D, Huijgens PC. Amphotericin B colloidal dispersion (Amphocil) vs fluconazole for the prevention of fungal infections in neutropenic patients: data of a prematurely stopped clinical trial. Bone Marrow Transpl. 2000;25(8):879–84.CrossRef Timmers GJ, Zweegman S, Simoons-Smit AM, van Loenen AC, Touw D, Huijgens PC. Amphotericin B colloidal dispersion (Amphocil) vs fluconazole for the prevention of fungal infections in neutropenic patients: data of a prematurely stopped clinical trial. Bone Marrow Transpl. 2000;25(8):879–84.CrossRef
8.
go back to reference Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73(9):919–34.PubMedCrossRef Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73(9):919–34.PubMedCrossRef
9.
go back to reference Chang Y-L, Yu S-J, Heitman J, Wellington M, Chen Y-L. New facets of antifungal therapy. Virulence. 2017;8(2):222–36.PubMedCrossRef Chang Y-L, Yu S-J, Heitman J, Wellington M, Chen Y-L. New facets of antifungal therapy. Virulence. 2017;8(2):222–36.PubMedCrossRef
10.
go back to reference Rowen JL, Tate JM. Management of neonatal candidiasis. Neonatal Candidiasis Study Group. Pediatr Infect Dis J. 1998;17(11):1007–11.PubMedCrossRef Rowen JL, Tate JM. Management of neonatal candidiasis. Neonatal Candidiasis Study Group. Pediatr Infect Dis J. 1998;17(11):1007–11.PubMedCrossRef
11.
go back to reference Stevens DA, Shatsky SA. Intrathecal amphotericin in the management of coccidioidal meningitis. Semin Respir Infect. 2001;16(4):263–9.PubMedCrossRef Stevens DA, Shatsky SA. Intrathecal amphotericin in the management of coccidioidal meningitis. Semin Respir Infect. 2001;16(4):263–9.PubMedCrossRef
12.
go back to reference Bishara J, Weinberger M, Lin AY, Pitlik S. Amphotericin B–not so terrible. Ann Pharmacother. 2001;35(3):308–10.PubMedCrossRef Bishara J, Weinberger M, Lin AY, Pitlik S. Amphotericin B–not so terrible. Ann Pharmacother. 2001;35(3):308–10.PubMedCrossRef
14.
go back to reference Donovick R, Gold W, Pagano JF, Stout HA. Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu. 1955;3:579–86.PubMed Donovick R, Gold W, Pagano JF, Stout HA. Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu. 1955;3:579–86.PubMed
16.
go back to reference Cornely OA, Alastruey-Izquierdo A, Arenz D, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019;19(12):e405–21.PubMedCrossRefPubMedCentral Cornely OA, Alastruey-Izquierdo A, Arenz D, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019;19(12):e405–21.PubMedCrossRefPubMedCentral
17.
go back to reference Hoenigl M, Gangneux J-P, Segal E, et al. Global guidelines and initiatives from the European Confederation of Medical Mycology to improve patient care and research worldwide: New leadership is about working together. Mycoses. 2018;61(11):885–94.PubMedCrossRef Hoenigl M, Gangneux J-P, Segal E, et al. Global guidelines and initiatives from the European Confederation of Medical Mycology to improve patient care and research worldwide: New leadership is about working together. Mycoses. 2018;61(11):885–94.PubMedCrossRef
20.
go back to reference Filippin FB, Souza LC. Therapeutic efficacy of amphotericin B lipid formulations. Braz J Pharm Sci. 2006;42(2):27. Filippin FB, Souza LC. Therapeutic efficacy of amphotericin B lipid formulations. Braz J Pharm Sci. 2006;42(2):27.
21.
go back to reference Almeida MVAd. Amphotericin B and its lipid formulations, in Faculty of Health Sciences. 2013, University Fernando Pessoa. p. 58. Almeida MVAd. Amphotericin B and its lipid formulations, in Faculty of Health Sciences. 2013, University Fernando Pessoa. p. 58.
22.
go back to reference Martinez R. An update on the use of antifungal agents. Braz J Pneumol. 2006;32(5):12. Martinez R. An update on the use of antifungal agents. Braz J Pneumol. 2006;32(5):12.
23.
go back to reference O'Neil MJ. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 14 ed. Journal of the American Chemical Society. 2007: American Chemical Society, p. 2197. O'Neil MJ. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 14 ed. Journal of the American Chemical Society. 2007: American Chemical Society, p. 2197.
24.
go back to reference Adler-Moore JP, Gangneux JP, Pappas PG. Comparison between liposomal formulations of amphotericin B. Med Mycol. 2016;54(3):223–31.PubMedCrossRef Adler-Moore JP, Gangneux JP, Pappas PG. Comparison between liposomal formulations of amphotericin B. Med Mycol. 2016;54(3):223–31.PubMedCrossRef
25.
go back to reference Bergold AMGS. New antifungic drugs: a review. Visão Acadêmica 2004;5(2):13. Bergold AMGS. New antifungic drugs: a review. Visão Acadêmica 2004;5(2):13.
26.
go back to reference Finkelstein A, Holz R. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Membranes. 1973;2:377–408.PubMed Finkelstein A, Holz R. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Membranes. 1973;2:377–408.PubMed
27.
go back to reference Georgopapadakou NH. Antifungals: mechanism of action and resistance, established and novel drugs. Curr Opin Microbiol. 1998;1(5):547–57.PubMedCrossRef Georgopapadakou NH. Antifungals: mechanism of action and resistance, established and novel drugs. Curr Opin Microbiol. 1998;1(5):547–57.PubMedCrossRef
28.
go back to reference Mesa-Arango AC, Scorzoni L, Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol. 2012;3:286.PubMedPubMedCentralCrossRef Mesa-Arango AC, Scorzoni L, Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol. 2012;3:286.PubMedPubMedCentralCrossRef
29.
go back to reference Sidrim JJC, Rocha MFG. Micologia médica à luz de autores contemporâneos. 1 ed. Guanabara Koogan. p. 396. Sidrim JJC, Rocha MFG. Micologia médica à luz de autores contemporâneos. 1 ed. Guanabara Koogan. p. 396.
30.
go back to reference Baginski M, Sternal K, Czub J, Borowski E. Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic. Acta Biochim Pol. 2005;52(3):655–8.PubMedCrossRef Baginski M, Sternal K, Czub J, Borowski E. Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic. Acta Biochim Pol. 2005;52(3):655–8.PubMedCrossRef
31.
go back to reference Chopra R, Blair S, Strang J, Cervi P, Patterson KG, Goldstone AH. Liposomal amphotericin B (AmBisome) in the treatment of fungal infections in neutropenic patients. J Antimicrob Chemother. 1991;28 Suppl B:93–104. Chopra R, Blair S, Strang J, Cervi P, Patterson KG, Goldstone AH. Liposomal amphotericin B (AmBisome) in the treatment of fungal infections in neutropenic patients. J Antimicrob Chemother. 1991;28 Suppl B:93–104.
32.
go back to reference Hospenthal D, Gretzinger K, Rogers A. Treatment of a murine model of systemic candidiasis with liposomal amphotericin B bearing antibody to Candida albicans. J Med Microbiol. 1989;30(3):193–7.PubMedCrossRef Hospenthal D, Gretzinger K, Rogers A. Treatment of a murine model of systemic candidiasis with liposomal amphotericin B bearing antibody to Candida albicans. J Med Microbiol. 1989;30(3):193–7.PubMedCrossRef
33.
go back to reference Hospenthal DR, Rogers AL, Mills GL. Development of amphotericin B liposomes bearing antibody specific to Candida albicans. Mycopathologia. 1988;101(1):37–45.PubMedCrossRef Hospenthal DR, Rogers AL, Mills GL. Development of amphotericin B liposomes bearing antibody specific to Candida albicans. Mycopathologia. 1988;101(1):37–45.PubMedCrossRef
34.
go back to reference Jung SH, Lim DH, Jung SH, et al. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci. 2009;37(3–4):313–20.PubMedCrossRef Jung SH, Lim DH, Jung SH, et al. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci. 2009;37(3–4):313–20.PubMedCrossRef
35.
go back to reference Lopez-Berestein G, Mehta R, Hopfer RL, et al. Treatment and prophylaxis of disseminated infection due to Candida albicans in mice with liposomeencapsulated amphotericin B. J Infect Dis. 1983;147(5):939–45.PubMedCrossRef Lopez-Berestein G, Mehta R, Hopfer RL, et al. Treatment and prophylaxis of disseminated infection due to Candida albicans in mice with liposomeencapsulated amphotericin B. J Infect Dis. 1983;147(5):939–45.PubMedCrossRef
36.
go back to reference Moribe K, Maruyama K, Iwatsuru M. Molecular localization and state of amphotericin B in PEG liposomes. Int J Pharm. 1999;193(1):97–106.PubMedCrossRef Moribe K, Maruyama K, Iwatsuru M. Molecular localization and state of amphotericin B in PEG liposomes. Int J Pharm. 1999;193(1):97–106.PubMedCrossRef
37.
go back to reference Wasan KM, Brazeau GA, Keyhani A, Hayman AC, Lopez-Berestein G. Roles of liposome composition and temperature in distribution of amphotericin B in serum lipoproteins. Antimicrob Agents Chemother. 1993;37(2):246–50.PubMedPubMedCentralCrossRef Wasan KM, Brazeau GA, Keyhani A, Hayman AC, Lopez-Berestein G. Roles of liposome composition and temperature in distribution of amphotericin B in serum lipoproteins. Antimicrob Agents Chemother. 1993;37(2):246–50.PubMedPubMedCentralCrossRef
38.
go back to reference Balakrishnan AR, Easwaran KR. Lipid-amphotericin B complex structure in solution: a possible first step in the aggregation process in cell membranes. Biochemistry. 1993;32(15):4139–44.PubMedCrossRef Balakrishnan AR, Easwaran KR. Lipid-amphotericin B complex structure in solution: a possible first step in the aggregation process in cell membranes. Biochemistry. 1993;32(15):4139–44.PubMedCrossRef
39.
go back to reference Janoff AS, Boni LT, Popescu MC, et al. Unusual lipid structures selectively reduce the toxicity of amphotericin B. Proc Natl Acad Sci USA. 1988;85(16):6122–6.PubMedCrossRefPubMedCentral Janoff AS, Boni LT, Popescu MC, et al. Unusual lipid structures selectively reduce the toxicity of amphotericin B. Proc Natl Acad Sci USA. 1988;85(16):6122–6.PubMedCrossRefPubMedCentral
40.
go back to reference Tadini MC, de Freitas Pinheiro AM, Carrão DB, et al. Method validation and nanoparticle characterization assays for an innovative amphothericin B formulation to reach increased stability and safety in infectious diseases. J Pharm Biomed Anal. 2017;145:576–85. Tadini MC, de Freitas Pinheiro AM, Carrão DB, et al. Method validation and nanoparticle characterization assays for an innovative amphothericin B formulation to reach increased stability and safety in infectious diseases. J Pharm Biomed Anal. 2017;145:576–85.
41.
go back to reference Chavanet P, Clement C, Duong M, et al. Toxicity and efficacy of conventional amphotericin B deoxycholate versus escalating doses of amphotericin B deoxycholate–-fat emulsion in HIV-infected patients with oral candidosis. Clin Microbiol Infect. 1997;3(4):455–61.PubMedCrossRef Chavanet P, Clement C, Duong M, et al. Toxicity and efficacy of conventional amphotericin B deoxycholate versus escalating doses of amphotericin B deoxycholate–-fat emulsion in HIV-infected patients with oral candidosis. Clin Microbiol Infect. 1997;3(4):455–61.PubMedCrossRef
42.
go back to reference Chavanet PY, Garry I, Charlier N, et al. Trial of glucose versus fat emulsion in preparation of amphotericin for use in HIV infected patients with candidiasis. BMJ. 1992;305(6859):921–5.PubMedPubMedCentralCrossRef Chavanet PY, Garry I, Charlier N, et al. Trial of glucose versus fat emulsion in preparation of amphotericin for use in HIV infected patients with candidiasis. BMJ. 1992;305(6859):921–5.PubMedPubMedCentralCrossRef
43.
go back to reference Davis SS, Washington C, West P, et al. Lipid emulsions as drug delivery systems. Ann NY Acad Sci. 1987;507:75–88.PubMedCrossRef Davis SS, Washington C, West P, et al. Lipid emulsions as drug delivery systems. Ann NY Acad Sci. 1987;507:75–88.PubMedCrossRef
44.
go back to reference Kirsh R, Goldstein R, Tarloff J, et al. An emulsion formulation of amphotericin B improves the therapeutic index when treating systemic murine candidiasis. J Infect Dis. 1988;158(5):1065–70.PubMedCrossRef Kirsh R, Goldstein R, Tarloff J, et al. An emulsion formulation of amphotericin B improves the therapeutic index when treating systemic murine candidiasis. J Infect Dis. 1988;158(5):1065–70.PubMedCrossRef
45.
go back to reference Miyazaki T, Kohno S, Yasuoka A, et al. A lipid emulsion formulation of ampiootericin B for the treatment of murine candidiasis and cryptococcosis. Chemotherapy. 1990;38(6):548–51. Miyazaki T, Kohno S, Yasuoka A, et al. A lipid emulsion formulation of ampiootericin B for the treatment of murine candidiasis and cryptococcosis. Chemotherapy. 1990;38(6):548–51.
46.
go back to reference Richter AR, Feitosa JPA, Paula HCB, Goycoolea FM, de Paula RCM. Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: synthesis, characterization and amphotericin B encapsulation. Colloids Surf B Biointerfaces. 2018;164:201–9.PubMedCrossRef Richter AR, Feitosa JPA, Paula HCB, Goycoolea FM, de Paula RCM. Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: synthesis, characterization and amphotericin B encapsulation. Colloids Surf B Biointerfaces. 2018;164:201–9.PubMedCrossRef
47.
go back to reference Souza AC, Nascimento AL, de Vasconcelos NM, et al. Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. Eur J Med Chem. 2015;95:267–76.PubMedCrossRef Souza AC, Nascimento AL, de Vasconcelos NM, et al. Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. Eur J Med Chem. 2015;95:267–76.PubMedCrossRef
48.
go back to reference Asthana S, Jaiswal AK, Gupta PK, Pawar VK, Dube A, Chourasia MK. Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob Agents Chemother. 2013;57(4):1714–22.PubMedPubMedCentralCrossRef Asthana S, Jaiswal AK, Gupta PK, Pawar VK, Dube A, Chourasia MK. Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob Agents Chemother. 2013;57(4):1714–22.PubMedPubMedCentralCrossRef
49.
go back to reference Shaarani S, Hamid SS, Mohd Kaus NH. The Influence of Pluronic F68 and F127 Nanocarrier on Physicochemical Properties, In vitro Release, and Antiproliferative Activity of Thymoquinone Drug. Pharmacognosy Res. 2017;9(1):12–20. Shaarani S, Hamid SS, Mohd Kaus NH. The Influence of Pluronic F68 and F127 Nanocarrier on Physicochemical Properties, In vitro Release, and Antiproliferative Activity of Thymoquinone Drug. Pharmacognosy Res. 2017;9(1):12–20.
50.
go back to reference Groll AH, Giri N, Petraitis V, et al. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis. 2000;182(1):274–82.PubMedCrossRef Groll AH, Giri N, Petraitis V, et al. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis. 2000;182(1):274–82.PubMedCrossRef
51.
go back to reference Pappas PG, Kauffman CA, Andes DR, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.PubMedCrossRef Pappas PG, Kauffman CA, Andes DR, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.PubMedCrossRef
52.
go back to reference Adedoyin A, Bernardo JF, Swenson CE, et al. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies. Antimicrob Agents Chemother. 1997;41(10):2201–8.PubMedPubMedCentralCrossRef Adedoyin A, Bernardo JF, Swenson CE, et al. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies. Antimicrob Agents Chemother. 1997;41(10):2201–8.PubMedPubMedCentralCrossRef
53.
go back to reference Martino R, Cortés M, Subirá M, Parody R, Moreno E, Sierra J. Efficacy and toxicity of intermediate-dose amphotericin B lipid complex as a primary or salvage treatment of fungal infections in patients with hematological malignancies. Leukemia Lymphoma. 2005;46(10):1429–35.PubMedCrossRef Martino R, Cortés M, Subirá M, Parody R, Moreno E, Sierra J. Efficacy and toxicity of intermediate-dose amphotericin B lipid complex as a primary or salvage treatment of fungal infections in patients with hematological malignancies. Leukemia Lymphoma. 2005;46(10):1429–35.PubMedCrossRef
54.
go back to reference Oravcová E, Mistrík M, Sakalová A, et al. Amphotericin B lipid complex to treat invasive fungal infections in cancer patients: report of efficacy and safety in 20 patients. Chemotherapy. 1995;41(6):473–6.PubMedCrossRef Oravcová E, Mistrík M, Sakalová A, et al. Amphotericin B lipid complex to treat invasive fungal infections in cancer patients: report of efficacy and safety in 20 patients. Chemotherapy. 1995;41(6):473–6.PubMedCrossRef
55.
go back to reference Sharkey PK, Graybill JR, Johnson ES, et al. Amphotericin B lipid complex compared with amphotericin B in the treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis. 1996;22(2):315–21.PubMedCrossRef Sharkey PK, Graybill JR, Johnson ES, et al. Amphotericin B lipid complex compared with amphotericin B in the treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis. 1996;22(2):315–21.PubMedCrossRef
56.
go back to reference Subirà M, Martino R, Gómez L, Martí JM, Estany C, Sierra J. Low-dose amphotericin B lipid complex vs. conventional amphotericin B for empirical antifungal therapy of neutropenic fever in patients with hematologic malignancies--a randomized, controlled trial. Eur J Haematol. 2004;72(5):342–7. Subirà M, Martino R, Gómez L, Martí JM, Estany C, Sierra J. Low-dose amphotericin B lipid complex vs. conventional amphotericin B for empirical antifungal therapy of neutropenic fever in patients with hematologic malignancies--a randomized, controlled trial. Eur J Haematol. 2004;72(5):342–7.
57.
go back to reference Walsh TJ, Finberg RW, Arndt C, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med. 1999;340(10):764–71. Walsh TJ, Finberg RW, Arndt C, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med. 1999;340(10):764–71.
58.
go back to reference Walsh TJ, Hiemenz JW, Seibel NL, et al. Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis. 1998;26(6):1383–96.PubMedCrossRef Walsh TJ, Hiemenz JW, Seibel NL, et al. Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis. 1998;26(6):1383–96.PubMedCrossRef
59.
go back to reference Wingard JR. Efficacy of amphotericin B lipid complex injection (ABLC) in bone marrow transplant recipients with life-threatening systemic mycoses. Bone Marrow Transpl. 1997;19(4):343–7.CrossRef Wingard JR. Efficacy of amphotericin B lipid complex injection (ABLC) in bone marrow transplant recipients with life-threatening systemic mycoses. Bone Marrow Transpl. 1997;19(4):343–7.CrossRef
60.
go back to reference Arrieta AC, Shea K, Dhar V, et al. Once-weekly liposomal amphotericin B as Candida prophylaxis in very low birth weight premature infants: a prospective, randomized, open-label, placebo-controlled pilot study. Clin Ther. 2010;32(2):265–71.PubMedCrossRef Arrieta AC, Shea K, Dhar V, et al. Once-weekly liposomal amphotericin B as Candida prophylaxis in very low birth weight premature infants: a prospective, randomized, open-label, placebo-controlled pilot study. Clin Ther. 2010;32(2):265–71.PubMedCrossRef
61.
go back to reference Bodhe PV, Kotwani RN, Kirodian BG, Kshirsagar NA, Pandya SK. Open label, randomised, comparative phase III safety and efficacy study with conventional amphotericin B and liposomal amphotericin B in patients with systemic fungal infection. J Assoc Phys India. 2002;50(5):662–70. Bodhe PV, Kotwani RN, Kirodian BG, Kshirsagar NA, Pandya SK. Open label, randomised, comparative phase III safety and efficacy study with conventional amphotericin B and liposomal amphotericin B in patients with systemic fungal infection. J Assoc Phys India. 2002;50(5):662–70.
62.
go back to reference Cordonnier C, Pautas C, Maury S, et al. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: a randomized, controlled trial. Clin Infect Dis. 2009;48(8):1042–51.PubMedCrossRef Cordonnier C, Pautas C, Maury S, et al. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: a randomized, controlled trial. Clin Infect Dis. 2009;48(8):1042–51.PubMedCrossRef
63.
go back to reference Cornely OA, Maertens J, Bresnik M, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis. 2007;44(10):1289–97.PubMedCrossRef Cornely OA, Maertens J, Bresnik M, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis. 2007;44(10):1289–97.PubMedCrossRef
64.
go back to reference Ellis M, Spence D, de Pauw B, et al. An EORTC international multicenter randomized trial (EORTC number 19923) comparing two dosages of liposomal amphotericin B for treatment of invasive aspergillosis. Clin Infect Dis. 1998;27(6):1406–12.PubMedCrossRef Ellis M, Spence D, de Pauw B, et al. An EORTC international multicenter randomized trial (EORTC number 19923) comparing two dosages of liposomal amphotericin B for treatment of invasive aspergillosis. Clin Infect Dis. 1998;27(6):1406–12.PubMedCrossRef
65.
go back to reference Jadhav MP, Shinde VM, Chandrakala S, et al. A randomized comparative trial evaluating the safety and efficacy of liposomal amphotericin B (Fungisome) versus conventional amphotericin B in the empirical treatment of febrile neutropenia in India. Indian J Cancer. 2012;49(1):107–13.PubMedCrossRef Jadhav MP, Shinde VM, Chandrakala S, et al. A randomized comparative trial evaluating the safety and efficacy of liposomal amphotericin B (Fungisome) versus conventional amphotericin B in the empirical treatment of febrile neutropenia in India. Indian J Cancer. 2012;49(1):107–13.PubMedCrossRef
66.
go back to reference Johnson PC, Wheat LJ, Cloud GA, et al. Safety and efficacy of liposomal amphotericin B compared with conventional amphotericin B for induction therapy of histoplasmosis in patients with AIDS. Ann Intern Med. 2002;137(2):105–9.PubMedCrossRef Johnson PC, Wheat LJ, Cloud GA, et al. Safety and efficacy of liposomal amphotericin B compared with conventional amphotericin B for induction therapy of histoplasmosis in patients with AIDS. Ann Intern Med. 2002;137(2):105–9.PubMedCrossRef
67.
go back to reference Meunier F, Prentice HG, Ringdén O. Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial. J Antimicrob Chemother. 1991;28 Suppl B:83–91. Meunier F, Prentice HG, Ringdén O. Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial. J Antimicrob Chemother. 1991;28 Suppl B:83–91.
68.
go back to reference Penack O, Schwartz S, Martus P, et al. Low-dose liposomal amphotericin B in the prevention of invasive fungal infections in patients with prolonged neutropenia: results from a randomized, single-center trial. Ann Oncol. 2006;17(8):1306–12.PubMedCrossRef Penack O, Schwartz S, Martus P, et al. Low-dose liposomal amphotericin B in the prevention of invasive fungal infections in patients with prolonged neutropenia: results from a randomized, single-center trial. Ann Oncol. 2006;17(8):1306–12.PubMedCrossRef
69.
go back to reference Ringdén O, Meunier F, Tollemar J et al. Efficacy of amphotericin B encapsulated in liposomes (AmBisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemother 1991;28 Suppl B:73–82. Ringdén O, Meunier F, Tollemar J et al. Efficacy of amphotericin B encapsulated in liposomes (AmBisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemother 1991;28 Suppl B:73–82.
70.
go back to reference Shah T, Lai WK, Gow P, Leeming J, Mutimer D. Low-dose amphotericin for prevention of serious fungal infection following liver transplantation. Transpl Infect Dis. 2005;7(3–4):126–32.PubMedCrossRef Shah T, Lai WK, Gow P, Leeming J, Mutimer D. Low-dose amphotericin for prevention of serious fungal infection following liver transplantation. Transpl Infect Dis. 2005;7(3–4):126–32.PubMedCrossRef
71.
go back to reference Sunakawa K, Tsukimoto I, Tsunematsu Y, et al. Evaluation of the safety and efficacy of liposomal amphotericin B (L-AMB) in children. J Infect Chemother. 2012;18(4):456–65.PubMedCrossRef Sunakawa K, Tsukimoto I, Tsunematsu Y, et al. Evaluation of the safety and efficacy of liposomal amphotericin B (L-AMB) in children. J Infect Chemother. 2012;18(4):456–65.PubMedCrossRef
72.
go back to reference de Lalla F, Pellizzer G, Vaglia A, et al. Amphotericin B as primary therapy for cryptococcosis in patients with AIDS: reliability of relatively high doses administered over a relatively short period. Clin Infect Dis. 1995;20(2):263–6.PubMedCrossRef de Lalla F, Pellizzer G, Vaglia A, et al. Amphotericin B as primary therapy for cryptococcosis in patients with AIDS: reliability of relatively high doses administered over a relatively short period. Clin Infect Dis. 1995;20(2):263–6.PubMedCrossRef
73.
go back to reference Joly V, Aubry P, Ndayiragide A, et al. Randomized comparison of amphotericin B deoxycholate dissolved in dextrose or Intralipid for the treatment of AIDS-associated cryptococcal meningitis. Clin Infect Dis. 1996;23(3):556–62.PubMedCrossRef Joly V, Aubry P, Ndayiragide A, et al. Randomized comparison of amphotericin B deoxycholate dissolved in dextrose or Intralipid for the treatment of AIDS-associated cryptococcal meningitis. Clin Infect Dis. 1996;23(3):556–62.PubMedCrossRef
74.
go back to reference Pappas PG, Chetchotisakd P, Larsen RA, et al. A phase II randomized trial of amphotericin B alone or combined with fluconazole in the treatment of HIV-associated cryptococcal meningitis. Clin Infect Dis. 2009;48(12):1775–83.PubMedCrossRef Pappas PG, Chetchotisakd P, Larsen RA, et al. A phase II randomized trial of amphotericin B alone or combined with fluconazole in the treatment of HIV-associated cryptococcal meningitis. Clin Infect Dis. 2009;48(12):1775–83.PubMedCrossRef
75.
go back to reference Riley DK, Pavia AT, Beatty PG, et al. The prophylactic use of low-dose amphotericin B in bone marrow transplant patients. Am J Med. 1994;97(6):509–14.PubMedCrossRef Riley DK, Pavia AT, Beatty PG, et al. The prophylactic use of low-dose amphotericin B in bone marrow transplant patients. Am J Med. 1994;97(6):509–14.PubMedCrossRef
76.
go back to reference Schwartz S, Ruhnke M, Ribaud P, Reed E, Troke P, Thiel E. Poor efficacy of amphotericin B-based therapy in CNS aspergillosis. Mycoses. 2007;50(3):196–200.PubMedCrossRef Schwartz S, Ruhnke M, Ribaud P, Reed E, Troke P, Thiel E. Poor efficacy of amphotericin B-based therapy in CNS aspergillosis. Mycoses. 2007;50(3):196–200.PubMedCrossRef
77.
go back to reference Techapornroong M, Suankratay C. Alternate-day versus once-daily administration of amphotericin B in the treatment of cryptococcal meningitis: a randomized controlled trial. Scand J Infect Dis. 2007;39(10):896–901.PubMedCrossRef Techapornroong M, Suankratay C. Alternate-day versus once-daily administration of amphotericin B in the treatment of cryptococcal meningitis: a randomized controlled trial. Scand J Infect Dis. 2007;39(10):896–901.PubMedCrossRef
78.
go back to reference Aguado JM, Lumbreras C, González-Vidal D. Assessment of nephrotoxicity in patients receiving amphotericin B lipid complex: a pharmacosurveillance study in Spain. Clin Microbiol Infect. 2004;10(9):785–90.PubMedCrossRef Aguado JM, Lumbreras C, González-Vidal D. Assessment of nephrotoxicity in patients receiving amphotericin B lipid complex: a pharmacosurveillance study in Spain. Clin Microbiol Infect. 2004;10(9):785–90.PubMedCrossRef
79.
go back to reference Cannon JP, Garey KW, Danziger LH. A prospective and retrospective analysis of the nephrotoxicity and efficacy of lipid-based amphotericin B formulations. Pharmacotherapy. 2001;21(9):1107–14.PubMedCrossRef Cannon JP, Garey KW, Danziger LH. A prospective and retrospective analysis of the nephrotoxicity and efficacy of lipid-based amphotericin B formulations. Pharmacotherapy. 2001;21(9):1107–14.PubMedCrossRef
80.
go back to reference Hasibi M, Jafari S, Manshadi SA, et al. Efficacy of Intralipid infusion in reducing amphotericin-B-associated nephrotoxicity in head and neck invasive fungal infection: a randomized, controlled trial. Ear Nose Throat J. 2017;96(2):E18–e22.PubMedCrossRef Hasibi M, Jafari S, Manshadi SA, et al. Efficacy of Intralipid infusion in reducing amphotericin-B-associated nephrotoxicity in head and neck invasive fungal infection: a randomized, controlled trial. Ear Nose Throat J. 2017;96(2):E18–e22.PubMedCrossRef
81.
go back to reference Sorkine P, Nagar H, Weinbroum A, et al. Administration of amphotericin B in lipid emulsion decreases nephrotoxicity: results of a prospective, randomized, controlled study in critically ill patients. Crit Care Med. 1996;24(8):1311–5.PubMedCrossRef Sorkine P, Nagar H, Weinbroum A, et al. Administration of amphotericin B in lipid emulsion decreases nephrotoxicity: results of a prospective, randomized, controlled study in critically ill patients. Crit Care Med. 1996;24(8):1311–5.PubMedCrossRef
82.
go back to reference Arsura EL, Ismail Y, Freedman S, Karunakar AR. Amphotericin B-induced dilated cardiomyopathy. Am J Med. 1994;97(6):560–2.PubMedCrossRef Arsura EL, Ismail Y, Freedman S, Karunakar AR. Amphotericin B-induced dilated cardiomyopathy. Am J Med. 1994;97(6):560–2.PubMedCrossRef
83.
go back to reference Bandeira AC, Filho JM, de Almeida Ramos K. Reversible cardiomyopathy secondary to Amphotericin-B. Med Mycol Case Rep. 2016;13:19–21. Bandeira AC, Filho JM, de Almeida Ramos K. Reversible cardiomyopathy secondary to Amphotericin-B. Med Mycol Case Rep. 2016;13:19–21.
84.
go back to reference Barcia JP. Hyperkalemia associated with rapid infusion of conventional and lipid complex formulations of amphotericin B. Pharmacotherapy. 1998;18(4):874–6.PubMed Barcia JP. Hyperkalemia associated with rapid infusion of conventional and lipid complex formulations of amphotericin B. Pharmacotherapy. 1998;18(4):874–6.PubMed
85.
go back to reference Chung DK, Koenig MG. Reversible cardiac enlargement during treatment with amphotericin B and hydrocortisone. Report of three cases. Am Rev Respir Dis. 1971;103(6):831–41. Chung DK, Koenig MG. Reversible cardiac enlargement during treatment with amphotericin B and hydrocortisone. Report of three cases. Am Rev Respir Dis. 1971;103(6):831–41.
86.
go back to reference Craven PC, Gremillion DH. Risk factors of ventricular fibrillation during rapid amphotericin B infusion. Antimicrob Agents Chemother. 1985;27(5):868–71.PubMedPubMedCentralCrossRef Craven PC, Gremillion DH. Risk factors of ventricular fibrillation during rapid amphotericin B infusion. Antimicrob Agents Chemother. 1985;27(5):868–71.PubMedPubMedCentralCrossRef
87.
go back to reference Danaher PJ, Cao MK, Anstead GM, Dolan MJ, DeWitt CC. Reversible dilated cardiomyopathy related to amphotericin B therapy. J Antimicrob Chemother. 2004;53(1):115–7.PubMedCrossRef Danaher PJ, Cao MK, Anstead GM, Dolan MJ, DeWitt CC. Reversible dilated cardiomyopathy related to amphotericin B therapy. J Antimicrob Chemother. 2004;53(1):115–7.PubMedCrossRef
88.
go back to reference Groot OA, Trof RJ, Girbes AR, Swart NL, Beishuizen A. Acute refractory hyperkalaemia and fatal cardiac arrest related to administration of liposomal amphotericin B. Neth J Med. 2008;66(10):433–7.PubMed Groot OA, Trof RJ, Girbes AR, Swart NL, Beishuizen A. Acute refractory hyperkalaemia and fatal cardiac arrest related to administration of liposomal amphotericin B. Neth J Med. 2008;66(10):433–7.PubMed
89.
go back to reference Kullab SM, Patel PD, Lewis PO. Non-occlusive ST-segment elevated myocardial infarction following the administration of liposomal amphotericin B in the treatment of cryptococcal meningitis. J Clin Pharm Ther. 2020. Kullab SM, Patel PD, Lewis PO. Non-occlusive ST-segment elevated myocardial infarction following the administration of liposomal amphotericin B in the treatment of cryptococcal meningitis. J Clin Pharm Ther. 2020.
90.
go back to reference Moyssakis I, Vassilakopoulos TP, Sipsas NV, et al. Reversible dilated cardiomyopathy associated with amphotericin B treatment. Int J Antimicrob Agents. 2005;25(5):444–7.PubMedCrossRef Moyssakis I, Vassilakopoulos TP, Sipsas NV, et al. Reversible dilated cardiomyopathy associated with amphotericin B treatment. Int J Antimicrob Agents. 2005;25(5):444–7.PubMedCrossRef
91.
go back to reference Rowles DM, Fraser SL. Amphotericin B lipid complex (ABLC)-associated hypertension: case report and review. Clin Infect Dis. 1999;29(6):1564–5.PubMedCrossRef Rowles DM, Fraser SL. Amphotericin B lipid complex (ABLC)-associated hypertension: case report and review. Clin Infect Dis. 1999;29(6):1564–5.PubMedCrossRef
92.
go back to reference Sanches BF, Nunes P, Almeida H, Rebelo M. Atrioventricular block related to liposomal amphotericin B. BMJ Case Rep. 2014;2014. Sanches BF, Nunes P, Almeida H, Rebelo M. Atrioventricular block related to liposomal amphotericin B. BMJ Case Rep. 2014;2014.
93.
go back to reference Soares JR, Nunes MC, Leite AF, Falqueto EB, Lacerda BE, Ferrari TC. Reversible dilated cardiomyopathy associated with amphotericin B therapy. J Clin Pharm Ther. 2015;40(3):333–5.PubMedCrossRef Soares JR, Nunes MC, Leite AF, Falqueto EB, Lacerda BE, Ferrari TC. Reversible dilated cardiomyopathy associated with amphotericin B therapy. J Clin Pharm Ther. 2015;40(3):333–5.PubMedCrossRef
94.
go back to reference Bicanic T, Bottomley C, Loyse A, et al. Toxicity of Amphotericin B Deoxycholate-Based Induction Therapy in Patients with HIV-Associated Cryptococcal Meningitis. Antimicrob Agents Chemother. 2015;59(12):7224–31.PubMedPubMedCentralCrossRef Bicanic T, Bottomley C, Loyse A, et al. Toxicity of Amphotericin B Deoxycholate-Based Induction Therapy in Patients with HIV-Associated Cryptococcal Meningitis. Antimicrob Agents Chemother. 2015;59(12):7224–31.PubMedPubMedCentralCrossRef
95.
go back to reference Arning M, Dresen B, Aul C, Schneider W. Influence of infusion time on the acute toxicity of amphotericin B: results of a randomized doubleblind study. Recent Results Cancer Res. 1991;121:347–52.PubMedCrossRef Arning M, Dresen B, Aul C, Schneider W. Influence of infusion time on the acute toxicity of amphotericin B: results of a randomized doubleblind study. Recent Results Cancer Res. 1991;121:347–52.PubMedCrossRef
96.
go back to reference Ellis ME, al-Hokail AA, Clink HM et al. Double-blind randomized study of the effect of infusion rates on toxicity of amphotericin B. Antimicrob Agents Chemother. 1992;36(1):172–9. Ellis ME, al-Hokail AA, Clink HM et al. Double-blind randomized study of the effect of infusion rates on toxicity of amphotericin B. Antimicrob Agents Chemother. 1992;36(1):172–9.
97.
go back to reference Nicholl TA, Nimmo CR, Shepherd JD, Phillips P, Jewesson PJ. Amphotericin B infusion-related toxicity: comparison of two- and four-hour infusions. Ann Pharmacother. 1995;29(11):1081–7.PubMedCrossRef Nicholl TA, Nimmo CR, Shepherd JD, Phillips P, Jewesson PJ. Amphotericin B infusion-related toxicity: comparison of two- and four-hour infusions. Ann Pharmacother. 1995;29(11):1081–7.PubMedCrossRef
98.
go back to reference Wingard JR, White MH, Anaissie E, Raffalli J, Goodman J, Arrieta A. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin Infect Dis. 2000;31(5):1155–63. Wingard JR, White MH, Anaissie E, Raffalli J, Goodman J, Arrieta A. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin Infect Dis. 2000;31(5):1155–63.
99.
go back to reference Blau IW, Fauser AA. Review of comparative studies between conventional and liposomal amphotericin B (Ambisome) in neutropenic patients with fever of unknown origin and patients with systemic mycosis. Mycoses. 2000;43(9–10):325–32.PubMedCrossRef Blau IW, Fauser AA. Review of comparative studies between conventional and liposomal amphotericin B (Ambisome) in neutropenic patients with fever of unknown origin and patients with systemic mycosis. Mycoses. 2000;43(9–10):325–32.PubMedCrossRef
100.
go back to reference Falci DR, da Rosa FB, Pasqualotto AC. Comparison of nephrotoxicity associated to different lipid formulations of amphotericin B: a real-life study. Mycoses. 2015;58(2):104–12.PubMedCrossRef Falci DR, da Rosa FB, Pasqualotto AC. Comparison of nephrotoxicity associated to different lipid formulations of amphotericin B: a real-life study. Mycoses. 2015;58(2):104–12.PubMedCrossRef
101.
go back to reference Fleming RV, Kantarjian HM, Husni R et al. Comparison of amphotericin B lipid complex (ABLC) vs. ambisome in the treatment of suspected or documented fungal infections in patients with leukemia. Leuk Lymphoma. 2001;40(5–6):511–20. Fleming RV, Kantarjian HM, Husni R et al. Comparison of amphotericin B lipid complex (ABLC) vs. ambisome in the treatment of suspected or documented fungal infections in patients with leukemia. Leuk Lymphoma. 2001;40(5–6):511–20.
102.
go back to reference Hooshmand-Rad R, Chu A, Gotz V, Morris J, Batty S, Freifeld A. Use of amphotericin B lipid complex in elderly patients. J Infect. 2005;50(4):277–87.PubMedCrossRef Hooshmand-Rad R, Chu A, Gotz V, Morris J, Batty S, Freifeld A. Use of amphotericin B lipid complex in elderly patients. J Infect. 2005;50(4):277–87.PubMedCrossRef
103.
go back to reference Jeon GW, Koo SH, Lee JH, et al. A comparison of AmBisome to amphotericin B for treatment of systemic candidiasis in very low birth weight infants. Yonsei Med J. 2007;48(4):619–26.PubMedPubMedCentralCrossRef Jeon GW, Koo SH, Lee JH, et al. A comparison of AmBisome to amphotericin B for treatment of systemic candidiasis in very low birth weight infants. Yonsei Med J. 2007;48(4):619–26.PubMedPubMedCentralCrossRef
104.
go back to reference Leenders AC, Daenen S, Jansen RL, et al. Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropenia-associated invasive fungal infections. Br J Haematol. 1998;103(1):205–12.PubMedCrossRef Leenders AC, Daenen S, Jansen RL, et al. Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropenia-associated invasive fungal infections. Br J Haematol. 1998;103(1):205–12.PubMedCrossRef
105.
go back to reference Linder N, Klinger G, Shalit I, et al. Treatment of candidaemia in premature infants: comparison of three amphotericin B preparations. J Antimicrob Chemother. 2003;52(4):663–7.PubMedCrossRef Linder N, Klinger G, Shalit I, et al. Treatment of candidaemia in premature infants: comparison of three amphotericin B preparations. J Antimicrob Chemother. 2003;52(4):663–7.PubMedCrossRef
106.
go back to reference Goodwin SD, Cleary JD, Walawander CA, Taylor JW, Grasela TH Jr. Pretreatment regimens for adverse events related to infusion of amphotericin B. Clin Infect Dis. 1995;20(4):755–61.PubMedCrossRef Goodwin SD, Cleary JD, Walawander CA, Taylor JW, Grasela TH Jr. Pretreatment regimens for adverse events related to infusion of amphotericin B. Clin Infect Dis. 1995;20(4):755–61.PubMedCrossRef
107.
go back to reference Gigliotti F, Shenep JL, Lott L, Thornton D. Induction of prostaglandin synthesis as the mechanism responsible for the chills and fever produced by infusing amphotericin B. J Infect Dis. 1987;156(5):784–9.PubMedCrossRef Gigliotti F, Shenep JL, Lott L, Thornton D. Induction of prostaglandin synthesis as the mechanism responsible for the chills and fever produced by infusing amphotericin B. J Infect Dis. 1987;156(5):784–9.PubMedCrossRef
108.
go back to reference Saliba A, Beatty OA. Treatment of mycotic infections: hydrocortisone in the control of amphotericin-B toxicity. Dis Chest. 1962;41:214–9.PubMedCrossRef Saliba A, Beatty OA. Treatment of mycotic infections: hydrocortisone in the control of amphotericin-B toxicity. Dis Chest. 1962;41:214–9.PubMedCrossRef
109.
go back to reference Burks LC, Aisner J, Fortner CL, Wiernik PH. Meperidine for the treatment of shaking chills and fever. Arch Intern Med. 1980;140(4):483–4.PubMedCrossRef Burks LC, Aisner J, Fortner CL, Wiernik PH. Meperidine for the treatment of shaking chills and fever. Arch Intern Med. 1980;140(4):483–4.PubMedCrossRef
110.
go back to reference Roden MM, Nelson LD, Knudsen TA, et al. Triad of acute infusion-related reactions associated with liposomal amphotericin B: analysis of clinical and epidemiological characteristics. Clin Infect Dis. 2003;36(10):1213–20.PubMedCrossRef Roden MM, Nelson LD, Knudsen TA, et al. Triad of acute infusion-related reactions associated with liposomal amphotericin B: analysis of clinical and epidemiological characteristics. Clin Infect Dis. 2003;36(10):1213–20.PubMedCrossRef
111.
go back to reference Szebeni J, Baranyi L, Savay S, et al. Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am J Physiol Heart Circ Physiol. 2000;279(3):H1319–28.PubMedCrossRef Szebeni J, Baranyi L, Savay S, et al. Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am J Physiol Heart Circ Physiol. 2000;279(3):H1319–28.PubMedCrossRef
112.
go back to reference Wade RL, Chaudhari P, Natoli JL, Taylor RJ, Nathanson BH, Horn DL. Nephrotoxicity and other adverse events among inpatients receiving liposomal amphotericin B or amphotericin B lipid complex. Diagn Microbiol Infect Dis. 2013;76(3):361–7.PubMedCrossRef Wade RL, Chaudhari P, Natoli JL, Taylor RJ, Nathanson BH, Horn DL. Nephrotoxicity and other adverse events among inpatients receiving liposomal amphotericin B or amphotericin B lipid complex. Diagn Microbiol Infect Dis. 2013;76(3):361–7.PubMedCrossRef
113.
go back to reference Craddock C, Anson J, Chu P, et al. Best practice guidelines for the management of adverse events associated with amphotericin B lipid complex. Expert Opin Drug Saf. 2010;9(1):139–47.PubMedCrossRef Craddock C, Anson J, Chu P, et al. Best practice guidelines for the management of adverse events associated with amphotericin B lipid complex. Expert Opin Drug Saf. 2010;9(1):139–47.PubMedCrossRef
114.
go back to reference Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10;quiz 11–2. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10;quiz 11–2.
115.
go back to reference Drusano GL. Pharmacokinetics and Pharmacodynamics of Antimicrobials. Clin Infect Dis. 2007;45(Supplement_1):S89–95. Drusano GL. Pharmacokinetics and Pharmacodynamics of Antimicrobials. Clin Infect Dis. 2007;45(Supplement_1):S89–95.
116.
go back to reference Gonzalez JM, Rodriguez CA, Agudelo M, Zuluaga AF, Vesga O. Antifungal pharmacodynamics: Latin America’s perspective. Braz J Infect Dis. 2017;21(1):79–87.PubMedCrossRef Gonzalez JM, Rodriguez CA, Agudelo M, Zuluaga AF, Vesga O. Antifungal pharmacodynamics: Latin America’s perspective. Braz J Infect Dis. 2017;21(1):79–87.PubMedCrossRef
117.
go back to reference Andes D, Stamsted T, Conklin R. Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother. 2001;45(3):922–6.PubMedPubMedCentralCrossRef Andes D, Stamsted T, Conklin R. Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother. 2001;45(3):922–6.PubMedPubMedCentralCrossRef
118.
go back to reference Hong Y, Shaw PJ, Nath CE, et al. Population pharmacokinetics of liposomal amphotericin B in pediatric patients with malignant diseases. Antimicrob Agents Chemother. 2006;50(3):935–42.PubMedPubMedCentralCrossRef Hong Y, Shaw PJ, Nath CE, et al. Population pharmacokinetics of liposomal amphotericin B in pediatric patients with malignant diseases. Antimicrob Agents Chemother. 2006;50(3):935–42.PubMedPubMedCentralCrossRef
119.
go back to reference National Institutes of Health. Amphotericin B. PubChem 2006 September 22, 2022;2006. National Institutes of Health. Amphotericin B. PubChem 2006 September 22, 2022;2006.
120.
go back to reference Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017;45(6):737–79.PubMedPubMedCentralCrossRef Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017;45(6):737–79.PubMedPubMedCentralCrossRef
121.
go back to reference Lepak AJ, Andes DR. Antifungal PK/PD considerations in fungal pulmonary infections. Semin Respir Crit Care Med. 2011;32(6):783–94.PubMedCrossRef Lepak AJ, Andes DR. Antifungal PK/PD considerations in fungal pulmonary infections. Semin Respir Crit Care Med. 2011;32(6):783–94.PubMedCrossRef
122.
go back to reference Ayestarán A, López RM, Montoro JB, et al. Pharmacokinetics of conventional formulation versus fat emulsion formulation of amphotericin B in a group of patients with neutropenia. Antimicrob Agents Chemother. 1996;40(3):609–12.PubMedPubMedCentralCrossRef Ayestarán A, López RM, Montoro JB, et al. Pharmacokinetics of conventional formulation versus fat emulsion formulation of amphotericin B in a group of patients with neutropenia. Antimicrob Agents Chemother. 1996;40(3):609–12.PubMedPubMedCentralCrossRef
123.
go back to reference Kan VL, Bennett JE, Amantea MA, et al. Comparative safety, tolerance, and pharmacokinetics of amphotericin B lipid complex and amphotericin B desoxycholate in healthy male volunteers. J Infect Dis. 1991;164(2):418–21.PubMedCrossRef Kan VL, Bennett JE, Amantea MA, et al. Comparative safety, tolerance, and pharmacokinetics of amphotericin B lipid complex and amphotericin B desoxycholate in healthy male volunteers. J Infect Dis. 1991;164(2):418–21.PubMedCrossRef
125.
go back to reference Atkinson AJ Jr, Bennett JE. Amphotericin B pharmacokinetics in humans. Antimicrob Agents Chemother. 1978;13(2):271–6. Atkinson AJ Jr, Bennett JE. Amphotericin B pharmacokinetics in humans. Antimicrob Agents Chemother. 1978;13(2):271–6.
126.
go back to reference Maharom P, Thamlikitkul V. Implementation of clinical practice policy on the continuous intravenous administration of amphotericin B deoxycholate. J Med Assoc Thai. 2006;89(Suppl 5):S118–24.PubMed Maharom P, Thamlikitkul V. Implementation of clinical practice policy on the continuous intravenous administration of amphotericin B deoxycholate. J Med Assoc Thai. 2006;89(Suppl 5):S118–24.PubMed
128.
go back to reference Stone NRH, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500. Stone NRH, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500.
129.
go back to reference Falci DR, Lunardi LW, Ramos CG, Bay MB, Aquino VR, Goldani LZ. Continuous infusion of amphotericin B deoxycholate in the treatment of cryptococcal meningoencephalitis: analysis of safety and fungicidal activity. Clin Infect Dis. 2010;50(5):e26–9.PubMedCrossRef Falci DR, Lunardi LW, Ramos CG, Bay MB, Aquino VR, Goldani LZ. Continuous infusion of amphotericin B deoxycholate in the treatment of cryptococcal meningoencephalitis: analysis of safety and fungicidal activity. Clin Infect Dis. 2010;50(5):e26–9.PubMedCrossRef
130.
go back to reference Chabot GG, Pazdur R, Valeriote FA, Baker LH. Pharmacokinetics and toxicity of continuous infusion amphotericin B in cancer patients. J Pharm Sci. 1989;78(4):307–10.PubMedCrossRef Chabot GG, Pazdur R, Valeriote FA, Baker LH. Pharmacokinetics and toxicity of continuous infusion amphotericin B in cancer patients. J Pharm Sci. 1989;78(4):307–10.PubMedCrossRef
131.
go back to reference Gondal JA, Swartz RP, Rahman A. Therapeutic evaluation of free and liposome-encapsulated amphotericin B in the treatment of systemic candidiasis in mice. Antimicrob Agents Chemother. 1989;33(9):1544–8.PubMedPubMedCentralCrossRef Gondal JA, Swartz RP, Rahman A. Therapeutic evaluation of free and liposome-encapsulated amphotericin B in the treatment of systemic candidiasis in mice. Antimicrob Agents Chemother. 1989;33(9):1544–8.PubMedPubMedCentralCrossRef
132.
go back to reference Van Etten EW, Otte-Lambillion M, Van Vianen W, Ten Kate MT, Bakker-Woudenberg AJ. Biodistribution of liposomal amphotericin B (AmBisome) and amphotericin B-desoxycholate (Fungizone) in uninfected immunocompetent mice and leucopenic mice infected with Candida albicans. J Antimicrob Chemother. 1995;35(4):509–19.PubMedCrossRef Van Etten EW, Otte-Lambillion M, Van Vianen W, Ten Kate MT, Bakker-Woudenberg AJ. Biodistribution of liposomal amphotericin B (AmBisome) and amphotericin B-desoxycholate (Fungizone) in uninfected immunocompetent mice and leucopenic mice infected with Candida albicans. J Antimicrob Chemother. 1995;35(4):509–19.PubMedCrossRef
133.
go back to reference Tollemar J, Ringdén O. Early pharmacokinetic and clinical results from a noncomparative multicentre trial of amphotericin B encapsulated in a small unilamellar liposome (AmBisome®). Drug Investig. 1992;4(3):232–8.CrossRef Tollemar J, Ringdén O. Early pharmacokinetic and clinical results from a noncomparative multicentre trial of amphotericin B encapsulated in a small unilamellar liposome (AmBisome®). Drug Investig. 1992;4(3):232–8.CrossRef
134.
go back to reference de Marie S, Janknegt R, Bakker-Woudenberg IA. Clinical use of liposomal and lipid-complexed amphotericin B. J Antimicrob Chemother. 1994;33(5):907–16.PubMedCrossRef de Marie S, Janknegt R, Bakker-Woudenberg IA. Clinical use of liposomal and lipid-complexed amphotericin B. J Antimicrob Chemother. 1994;33(5):907–16.PubMedCrossRef
135.
go back to reference Heinemann V, Kähny B, Debus A, Wachholz K, Jehn U. Pharmacokinetics of liposomal amphotericin B (AmBisome) versus other lipid-based formulations. Bone Marrow Transplant. 1994;14(Suppl 5):S8–9. Heinemann V, Kähny B, Debus A, Wachholz K, Jehn U. Pharmacokinetics of liposomal amphotericin B (AmBisome) versus other lipid-based formulations. Bone Marrow Transplant. 1994;14(Suppl 5):S8–9.
136.
go back to reference Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new “gold standard.” Clin Infect Dis. 2003;37(3):415–25.PubMedCrossRef Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new “gold standard.” Clin Infect Dis. 2003;37(3):415–25.PubMedCrossRef
137.
go back to reference Heinemann V, Bosse D, Jehn U, et al. Pharmacokinetics of liposomal amphotericin B (Ambisome) in critically ill patients. Antimicrob Agents Chemother. 1997;41(6):1275–80.PubMedPubMedCentralCrossRef Heinemann V, Bosse D, Jehn U, et al. Pharmacokinetics of liposomal amphotericin B (Ambisome) in critically ill patients. Antimicrob Agents Chemother. 1997;41(6):1275–80.PubMedPubMedCentralCrossRef
138.
go back to reference Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother. 2002;46(3):834–40.PubMedPubMedCentralCrossRef Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother. 2002;46(3):834–40.PubMedPubMedCentralCrossRef
139.
go back to reference Walsh TJ, Yeldandi V, McEvoy M, et al. Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients. Antimicrob Agents Chemother. 1998;42(9):2391–8.PubMedPubMedCentralCrossRef Walsh TJ, Yeldandi V, McEvoy M, et al. Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients. Antimicrob Agents Chemother. 1998;42(9):2391–8.PubMedPubMedCentralCrossRef
140.
go back to reference Nath CE, McLachlan AJ, Shaw PJ, Coakley JC, Earl JW. Amphotericin B dose optimization in children with malignant diseases. Chemotherapy. 2007;53(2):142–7.PubMedCrossRef Nath CE, McLachlan AJ, Shaw PJ, Coakley JC, Earl JW. Amphotericin B dose optimization in children with malignant diseases. Chemotherapy. 2007;53(2):142–7.PubMedCrossRef
141.
go back to reference Chéron M, Cybulska B, Mazerski J, Grzybowska J, CzerwiŃski A, Borowski E. Quantitative structure-activity relationships in amphotericin B derivatives. Biochem Pharmacol. 1988;37(5):827–36.PubMedCrossRef Chéron M, Cybulska B, Mazerski J, Grzybowska J, CzerwiŃski A, Borowski E. Quantitative structure-activity relationships in amphotericin B derivatives. Biochem Pharmacol. 1988;37(5):827–36.PubMedCrossRef
142.
go back to reference Belakhov VV, Shenin YD. Synthesis and antifungal activity of N-benzyl derivatives of amphotericin B. Pharm Chem J. 2007;41(7):362–6.CrossRef Belakhov VV, Shenin YD. Synthesis and antifungal activity of N-benzyl derivatives of amphotericin B. Pharm Chem J. 2007;41(7):362–6.CrossRef
143.
go back to reference Paquet V, Volmer AA, Carreira EM. Synthesis and in vitro biological properties of novel cationic derivatives of amphotericin B. Chem A Eur J. 2008;14(8):2465–81.CrossRef Paquet V, Volmer AA, Carreira EM. Synthesis and in vitro biological properties of novel cationic derivatives of amphotericin B. Chem A Eur J. 2008;14(8):2465–81.CrossRef
144.
go back to reference Bastos MM, Hoelz LVB, Boechat N, Oliveira Apd. Antileishmanial Chemotherapy: A Literature Review. Virtual de Quı´mica. 2016;8(6):32. Bastos MM, Hoelz LVB, Boechat N, Oliveira Apd. Antileishmanial Chemotherapy: A Literature Review. Virtual de Quı´mica. 2016;8(6):32.
145.
go back to reference Cereghetti DM, Carreira E. Amphotericin B: 50 Years of Chemistry and Biochemistry. ChemInform. 2006;37. Cereghetti DM, Carreira E. Amphotericin B: 50 Years of Chemistry and Biochemistry. ChemInform. 2006;37.
146.
147.
go back to reference Tevyashova AN, Olsufyeva EN, Solovieva SE, et al. Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob Agents Chemother. 2013;57(8):3815–22.PubMedPubMedCentralCrossRef Tevyashova AN, Olsufyeva EN, Solovieva SE, et al. Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob Agents Chemother. 2013;57(8):3815–22.PubMedPubMedCentralCrossRef
148.
go back to reference Palacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc Natl Acad Sci USA. 2011;108(17):6733–8.PubMedCrossRefPubMedCentral Palacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc Natl Acad Sci USA. 2011;108(17):6733–8.PubMedCrossRefPubMedCentral
149.
go back to reference Adler-Moore J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother. 2002;49(Suppl 1):21–30.PubMedCrossRef Adler-Moore J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother. 2002;49(Suppl 1):21–30.PubMedCrossRef
150.
go back to reference Perkins WR, Minchey SR, Boni LT, et al. Amphotericin B-phospholipid interactions responsible for reduced mammalian cell toxicity. Biochim Biophys Acta. 1992;1107(2):271–82.PubMedCrossRef Perkins WR, Minchey SR, Boni LT, et al. Amphotericin B-phospholipid interactions responsible for reduced mammalian cell toxicity. Biochim Biophys Acta. 1992;1107(2):271–82.PubMedCrossRef
151.
go back to reference Palacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc Natl Acad Sci. 2011;108(17):6733.PubMedCrossRefPubMedCentral Palacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc Natl Acad Sci. 2011;108(17):6733.PubMedCrossRefPubMedCentral
152.
153.
go back to reference Zhang Y-Q, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog. 2010;6(6):e1000939.PubMedPubMedCentralCrossRef Zhang Y-Q, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog. 2010;6(6):e1000939.PubMedPubMedCentralCrossRef
154.
go back to reference Palacios DS, Anderson TM, Burke MD. A post-PKS Oxidation of the amphotericin B skeleton predicted to be critical for channel formation is not required for potent antifungal activity. J Am Chem Soc. 2007;129(45):13804–5.PubMedPubMedCentralCrossRef Palacios DS, Anderson TM, Burke MD. A post-PKS Oxidation of the amphotericin B skeleton predicted to be critical for channel formation is not required for potent antifungal activity. J Am Chem Soc. 2007;129(45):13804–5.PubMedPubMedCentralCrossRef
155.
go back to reference Cotero BV, Rebolledo-Antúnez S, Ortega-Blake I. On the role of sterol in the formation of the amphotericin B channel. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1998;1375(1):43–51. Cotero BV, Rebolledo-Antúnez S, Ortega-Blake I. On the role of sterol in the formation of the amphotericin B channel. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1998;1375(1):43–51.
156.
go back to reference Vertut-Croquin A, Bolard J, Chabbert M, Gary-Bobo C. Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol- or ergosterol-containing phospholipid vesicles. A circular dichroism and permeability study. Biochemistry. 1983;22(12):2939–44. Vertut-Croquin A, Bolard J, Chabbert M, Gary-Bobo C. Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol- or ergosterol-containing phospholipid vesicles. A circular dichroism and permeability study. Biochemistry. 1983;22(12):2939–44.
157.
go back to reference Haido RMT, Barreto-Bergter E. Amphotericin B-induced damage of Trypanosoma cruzi epimastigotes. Chem Biol Interact. 1989;71(1):91–103.PubMedCrossRef Haido RMT, Barreto-Bergter E. Amphotericin B-induced damage of Trypanosoma cruzi epimastigotes. Chem Biol Interact. 1989;71(1):91–103.PubMedCrossRef
158.
go back to reference Sokol-Anderson ML, Brajtburg J, Medoff G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis. 1986;154(1):76–83.PubMedCrossRef Sokol-Anderson ML, Brajtburg J, Medoff G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis. 1986;154(1):76–83.PubMedCrossRef
159.
go back to reference Liu TT, Lee RE, Barker KS, et al. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother. 2005;49(6):2226–36.PubMedPubMedCentralCrossRef Liu TT, Lee RE, Barker KS, et al. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother. 2005;49(6):2226–36.PubMedPubMedCentralCrossRef
160.
go back to reference Sangalli-Leite F, Scorzoni L, Mesa-Arango AC, et al. Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes Infect. 2011;13(5):457–67.PubMedCrossRef Sangalli-Leite F, Scorzoni L, Mesa-Arango AC, et al. Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes Infect. 2011;13(5):457–67.PubMedCrossRef
161.
go back to reference Sharma M, Manoharlal R, Negi AS, Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res. 2010;10(5):570–8.PubMed Sharma M, Manoharlal R, Negi AS, Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res. 2010;10(5):570–8.PubMed
162.
go back to reference Al-Dhaheri RS, Douglas LJ. Apoptosis in Candida biofilms exposed to amphotericin B. J Med Microbiol. 2010;59(Pt 2):149–57.PubMedCrossRef Al-Dhaheri RS, Douglas LJ. Apoptosis in Candida biofilms exposed to amphotericin B. J Med Microbiol. 2010;59(Pt 2):149–57.PubMedCrossRef
163.
go back to reference Blum G, Perkhofer S, Haas H, et al. Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother. 2008;52(4):1553–5.PubMedPubMedCentralCrossRef Blum G, Perkhofer S, Haas H, et al. Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother. 2008;52(4):1553–5.PubMedPubMedCentralCrossRef
164.
go back to reference Mousavi SAA, Robson GD. Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. Microbiology (Reading). 2004;150(Pt 6):1937–45.CrossRef Mousavi SAA, Robson GD. Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. Microbiology (Reading). 2004;150(Pt 6):1937–45.CrossRef
165.
go back to reference Phillips AJ, Sudbery I, Ramsdale M. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci. 2003;100(24):14327.PubMedCrossRefPubMedCentral Phillips AJ, Sudbery I, Ramsdale M. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci. 2003;100(24):14327.PubMedCrossRefPubMedCentral
167.
go back to reference Vecchiarelli A, Verducci G, Perito S, Puccetti P, Marconi P, Bistoni F. Involvement of host macrophages in the immunoadjuvant activity of amphotericin B in a mouse fungal infection model. J Antibiot (Tokyo). 1986;39(6):846–55.CrossRef Vecchiarelli A, Verducci G, Perito S, Puccetti P, Marconi P, Bistoni F. Involvement of host macrophages in the immunoadjuvant activity of amphotericin B in a mouse fungal infection model. J Antibiot (Tokyo). 1986;39(6):846–55.CrossRef
168.
go back to reference Suschek CV, Bonmann E, Kapsokefalou A, et al. Revisiting an old antimicrobial drug: amphotericin B induces interleukin-1-converting enzyme as the main factor for inducible nitric-oxide synthase expression in activated endothelia. Mol Pharmacol. 2002;62(4):936–46.PubMedCrossRef Suschek CV, Bonmann E, Kapsokefalou A, et al. Revisiting an old antimicrobial drug: amphotericin B induces interleukin-1-converting enzyme as the main factor for inducible nitric-oxide synthase expression in activated endothelia. Mol Pharmacol. 2002;62(4):936–46.PubMedCrossRef
169.
go back to reference Shadkchan Y, Keisari Y, Segal E. Cytokines in mice treated with amphotericin B-intralipid. Med Mycol. 2004;42(2):123–8.PubMedCrossRef Shadkchan Y, Keisari Y, Segal E. Cytokines in mice treated with amphotericin B-intralipid. Med Mycol. 2004;42(2):123–8.PubMedCrossRef
170.
go back to reference Bellocchio S, Gaziano R, Bozza S, et al. Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. J Antimicrob Chemother. 2005;55(2):214–22.PubMedCrossRef Bellocchio S, Gaziano R, Bozza S, et al. Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. J Antimicrob Chemother. 2005;55(2):214–22.PubMedCrossRef
171.
go back to reference Arthington-Skaggs BA, Motley M, Warnock DW, Morrison CJ. Comparative evaluation of PASCO and national committee for clinical laboratory standards M27-A broth microdilution methods for antifungal drug susceptibility testing of yeasts. J Clin Microbiol. 2000;38(6):2254–60.PubMedPubMedCentralCrossRef Arthington-Skaggs BA, Motley M, Warnock DW, Morrison CJ. Comparative evaluation of PASCO and national committee for clinical laboratory standards M27-A broth microdilution methods for antifungal drug susceptibility testing of yeasts. J Clin Microbiol. 2000;38(6):2254–60.PubMedPubMedCentralCrossRef
172.
go back to reference Pfaller MA, Arikan S, Lozano-Chiu M, et al. Clinical evaluation of the ASTY colorimetric microdilution panel for antifungal susceptibility testing. J Clin Microbiol. 1998;36(9):2609–12.PubMedPubMedCentralCrossRef Pfaller MA, Arikan S, Lozano-Chiu M, et al. Clinical evaluation of the ASTY colorimetric microdilution panel for antifungal susceptibility testing. J Clin Microbiol. 1998;36(9):2609–12.PubMedPubMedCentralCrossRef
173.
go back to reference Pfaller MA, Bale M, Buschelman B, et al. Quality control guidelines for National Committee for Clinical Laboratory Standards recommended broth macrodilution testing of amphotericin B, fluconazole, and flucytosine. J Clin Microbiol. 1995;33(5):1104–7.PubMedPubMedCentralCrossRef Pfaller MA, Bale M, Buschelman B, et al. Quality control guidelines for National Committee for Clinical Laboratory Standards recommended broth macrodilution testing of amphotericin B, fluconazole, and flucytosine. J Clin Microbiol. 1995;33(5):1104–7.PubMedPubMedCentralCrossRef
174.
go back to reference Davey KG, Holmes AD, Johnson EM, Szekely A, Warnock DW. Comparative evaluation of FUNGITEST and broth microdilution methods for antifungal drug susceptibility testing of Candida species and Cryptococcus neoformans. J Clin Microbiol. 1998;36(4):926–30.PubMedPubMedCentralCrossRef Davey KG, Holmes AD, Johnson EM, Szekely A, Warnock DW. Comparative evaluation of FUNGITEST and broth microdilution methods for antifungal drug susceptibility testing of Candida species and Cryptococcus neoformans. J Clin Microbiol. 1998;36(4):926–30.PubMedPubMedCentralCrossRef
175.
go back to reference Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother. 2002;49(suppl_1):7–10. Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother. 2002;49(suppl_1):7–10.
176.
go back to reference Espinel-Ingroff A. In vitro activity of the new triazole voriconazole (UK-109,496) against opportunistic filamentous and dimorphic fungi and common and emerging yeast pathogens. J Clin Microbiol. 1998;36(1):198–202.PubMedPubMedCentralCrossRef Espinel-Ingroff A. In vitro activity of the new triazole voriconazole (UK-109,496) against opportunistic filamentous and dimorphic fungi and common and emerging yeast pathogens. J Clin Microbiol. 1998;36(1):198–202.PubMedPubMedCentralCrossRef
177.
go back to reference Arikan S, Lozano-Chiu M, Paetznick V, Nangia S, Rex JH. Microdilution susceptibility testing of amphotericin B, itraconazole, and voriconazole against clinical isolates of Aspergillus and Fusarium species. J Clin Microbiol. 1999;37(12):3946–51.PubMedPubMedCentralCrossRef Arikan S, Lozano-Chiu M, Paetznick V, Nangia S, Rex JH. Microdilution susceptibility testing of amphotericin B, itraconazole, and voriconazole against clinical isolates of Aspergillus and Fusarium species. J Clin Microbiol. 1999;37(12):3946–51.PubMedPubMedCentralCrossRef
178.
go back to reference Espinel-Ingroff A, Bartlett M, Bowden R, et al. Multicenter evaluation of proposed standardized procedure for antifungal susceptibility testing of filamentous fungi. J Clin Microbiol. 1997;35(1):139–43.PubMedPubMedCentralCrossRef Espinel-Ingroff A, Bartlett M, Bowden R, et al. Multicenter evaluation of proposed standardized procedure for antifungal susceptibility testing of filamentous fungi. J Clin Microbiol. 1997;35(1):139–43.PubMedPubMedCentralCrossRef
179.
go back to reference Wildfeuer A, Seidl HP, Paule I, Haberreiter A. In vitro activity of voriconazole against yeasts, moulds and dermatophytes in comparison with fluconazole, amphotericin B and griseofulvin. Arzneimittelforschung. 1997;47(11):1257–63.PubMed Wildfeuer A, Seidl HP, Paule I, Haberreiter A. In vitro activity of voriconazole against yeasts, moulds and dermatophytes in comparison with fluconazole, amphotericin B and griseofulvin. Arzneimittelforschung. 1997;47(11):1257–63.PubMed
180.
go back to reference McGinnis MR, Pasarell L, Sutton DA, Fothergill AW, Cooper CR Jr, Rinaldi MG. In vitro activity of voriconazole against selected fungi. Med Mycol. 1998;36(4):239–42.PubMedCrossRef McGinnis MR, Pasarell L, Sutton DA, Fothergill AW, Cooper CR Jr, Rinaldi MG. In vitro activity of voriconazole against selected fungi. Med Mycol. 1998;36(4):239–42.PubMedCrossRef
181.
go back to reference Johnson EM, Szekely A, Warnock DW. In vitro activity of Syn-2869, a novel triazole agent, against emerging and less common mold pathogens. Antimicrob Agents Chemother. 1999;43(5):1260–3.PubMedPubMedCentralCrossRef Johnson EM, Szekely A, Warnock DW. In vitro activity of Syn-2869, a novel triazole agent, against emerging and less common mold pathogens. Antimicrob Agents Chemother. 1999;43(5):1260–3.PubMedPubMedCentralCrossRef
182.
go back to reference Guarro J, Llop C, Aguilar C, Pujol I. Comparison of in vitro antifungal susceptibilities of conidia and hyphae of filamentous fungi. Antimicrob Agents Chemother. 1997;41(12):2760–2.PubMedPubMedCentralCrossRef Guarro J, Llop C, Aguilar C, Pujol I. Comparison of in vitro antifungal susceptibilities of conidia and hyphae of filamentous fungi. Antimicrob Agents Chemother. 1997;41(12):2760–2.PubMedPubMedCentralCrossRef
183.
184.
go back to reference Cuenca-Estrella M, Ruiz-Díez B, Martínez-Suárez JV, Monzón A, Rodríguez-Tudela JL. Comparative in-vitro activity of voriconazole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother. 1999;43(1):149–51.PubMedCrossRef Cuenca-Estrella M, Ruiz-Díez B, Martínez-Suárez JV, Monzón A, Rodríguez-Tudela JL. Comparative in-vitro activity of voriconazole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother. 1999;43(1):149–51.PubMedCrossRef
185.
go back to reference Espinel-Ingroff A, Dawson K, Pfaller M, et al. Comparative and collaborative evaluation of standardization of antifungal susceptibility testing for filamentous fungi. Antimicrob Agents Chemother. 1995;39(2):314–9.PubMedPubMedCentralCrossRef Espinel-Ingroff A, Dawson K, Pfaller M, et al. Comparative and collaborative evaluation of standardization of antifungal susceptibility testing for filamentous fungi. Antimicrob Agents Chemother. 1995;39(2):314–9.PubMedPubMedCentralCrossRef
186.
go back to reference Arendrup MC, Patterson TF. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J Infect Dis. 2017;216(suppl_3):S445–51. Arendrup MC, Patterson TF. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J Infect Dis. 2017;216(suppl_3):S445–51.
187.
go back to reference Falahati M, Nozari S, Makhdoomi A, Ghasemi Z, Nami S, Assadi M. Comparison of antifungal effect of nanosilver particles alone and in combination with current drugs on candida species isolated from women with recurrent vulvovaginal candidiasis. Eur J Exp Biol 2014;4. Falahati M, Nozari S, Makhdoomi A, Ghasemi Z, Nami S, Assadi M. Comparison of antifungal effect of nanosilver particles alone and in combination with current drugs on candida species isolated from women with recurrent vulvovaginal candidiasis. Eur J Exp Biol 2014;4.
188.
go back to reference Meyerhoff A. U.S. Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis. 1999;28(1):42–8; discussion 49–51. Meyerhoff A. U.S. Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis. 1999;28(1):42–8; discussion 49–51.
189.
go back to reference Solomon M, Pavlotsky F, Leshem E, Ephros M, Trau H, Schwartz E. Liposomal amphotericin B treatment of cutaneous leishmaniasis due to Leishmania tropica. J Eur Acad Dermatol Venereol. 2011;25(8):973–7.PubMedCrossRef Solomon M, Pavlotsky F, Leshem E, Ephros M, Trau H, Schwartz E. Liposomal amphotericin B treatment of cutaneous leishmaniasis due to Leishmania tropica. J Eur Acad Dermatol Venereol. 2011;25(8):973–7.PubMedCrossRef
190.
191.
go back to reference Guery R, Henry B, Martin-Blondel G, et al. Liposomal amphotericin B in travelers with cutaneous and muco-cutaneous leishmaniasis: Not a panacea. PLoS Negl Trop Dis. 2017;11(11):e0006094.PubMedPubMedCentralCrossRef Guery R, Henry B, Martin-Blondel G, et al. Liposomal amphotericin B in travelers with cutaneous and muco-cutaneous leishmaniasis: Not a panacea. PLoS Negl Trop Dis. 2017;11(11):e0006094.PubMedPubMedCentralCrossRef
192.
go back to reference Vargas-Zepeda J, Gómez-Alcalá AV, Vásquez-Morales JA, Licea-Amaya L, De Jonckheere JF, Lares-Villa F. Successful treatment of Naegleria fowleri meningoencephalitis by using intravenous amphotericin B, fluconazole and rifampicin. Arch Med Res. 2005;36(1):83–6.PubMedCrossRef Vargas-Zepeda J, Gómez-Alcalá AV, Vásquez-Morales JA, Licea-Amaya L, De Jonckheere JF, Lares-Villa F. Successful treatment of Naegleria fowleri meningoencephalitis by using intravenous amphotericin B, fluconazole and rifampicin. Arch Med Res. 2005;36(1):83–6.PubMedCrossRef
193.
go back to reference Schuster FL, Visvesvara GS. Opportunistic amoebae: challenges in prophylaxis and treatment. Drug Resist Updat. 2004;7(1):41–51.PubMedCrossRef Schuster FL, Visvesvara GS. Opportunistic amoebae: challenges in prophylaxis and treatment. Drug Resist Updat. 2004;7(1):41–51.PubMedCrossRef
194.
go back to reference Kim H, Kim S-J, Park S-N, Oh J-W. Antiviral effect of amphotericin B on Japanese encephalitis virus replication. J Microbiol Biotechnol. 2004;14(1):121–7. Kim H, Kim S-J, Park S-N, Oh J-W. Antiviral effect of amphotericin B on Japanese encephalitis virus replication. J Microbiol Biotechnol. 2004;14(1):121–7.
195.
go back to reference Jordan GW, Humphreys S, Zee YC. Effect of amphotericin B methyl ester on vesicular stomatitis virus morphology. Antimicrob Agents Chemother. 1978;13(2):340–1.PubMedPubMedCentralCrossRef Jordan GW, Humphreys S, Zee YC. Effect of amphotericin B methyl ester on vesicular stomatitis virus morphology. Antimicrob Agents Chemother. 1978;13(2):340–1.PubMedPubMedCentralCrossRef
196.
go back to reference Konopka K, Guo LS, Düzgüneş N. Anti-HIV activity of amphotericin B-cholesteryl sulfate colloidal dispersion in vitro. Antiviral Res. 1999;42(3):197–209.PubMedCrossRef Konopka K, Guo LS, Düzgüneş N. Anti-HIV activity of amphotericin B-cholesteryl sulfate colloidal dispersion in vitro. Antiviral Res. 1999;42(3):197–209.PubMedCrossRef
197.
go back to reference Kessler HA, Dixon J, Howard CR, Tsiquaye K, Zuckerman AJ. Effects of amphotericin B on hepatitis B virus. Antimicrob Agents Chemother. 1981;20(6):826–33.PubMedPubMedCentralCrossRef Kessler HA, Dixon J, Howard CR, Tsiquaye K, Zuckerman AJ. Effects of amphotericin B on hepatitis B virus. Antimicrob Agents Chemother. 1981;20(6):826–33.PubMedPubMedCentralCrossRef
198.
go back to reference Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2014;5(7):a019752.CrossRef Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2014;5(7):a019752.CrossRef
199.
200.
go back to reference White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998;11(2):382–402.PubMedPubMedCentralCrossRef White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998;11(2):382–402.PubMedPubMedCentralCrossRef
201.
go back to reference Ben-Ami R, Lewis RE, Kontoyiannis DP. Immunocompromised hosts: immunopharmacology of modern antifungals. Clin Infect Dis. 2008;47(2):226–35.PubMedCrossRef Ben-Ami R, Lewis RE, Kontoyiannis DP. Immunocompromised hosts: immunopharmacology of modern antifungals. Clin Infect Dis. 2008;47(2):226–35.PubMedCrossRef
202.
go back to reference Bonhomme J, d’Enfert C. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr Opin Microbiol. 2013;16(4):398–403.PubMedCrossRef Bonhomme J, d’Enfert C. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr Opin Microbiol. 2013;16(4):398–403.PubMedCrossRef
203.
go back to reference Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol. 2009;35(4):340–55.PubMedCrossRef Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol. 2009;35(4):340–55.PubMedCrossRef
204.
go back to reference Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother. 2003;47(8):2404–12.PubMedPubMedCentralCrossRef Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother. 2003;47(8):2404–12.PubMedPubMedCentralCrossRef
205.
go back to reference Kelly SL, Lamb DC, Kelly DE, Loeffler J, Einsele H. Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients. Lancet. 1996;348(9040):1523–4.PubMedCrossRef Kelly SL, Lamb DC, Kelly DE, Loeffler J, Einsele H. Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients. Lancet. 1996;348(9040):1523–4.PubMedCrossRef
206.
go back to reference Haynes MP, Chong PL, Buckley HR, Pieringer RA. Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells. Biochemistry. 1996;35(24):7983–92.PubMedCrossRef Haynes MP, Chong PL, Buckley HR, Pieringer RA. Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells. Biochemistry. 1996;35(24):7983–92.PubMedCrossRef
207.
go back to reference Baillie GS, Douglas LJ. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother. 1998;42(8):1900–5.PubMedPubMedCentralCrossRef Baillie GS, Douglas LJ. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother. 1998;42(8):1900–5.PubMedPubMedCentralCrossRef
208.
go back to reference Pourshafie M, Morand S, Virion A, Rakotomanga M, Dupuy C, Loiseau PM. Cloning of S-adenosyl-L-methionine:C-24-Delta-sterolmethyltransferase (ERG6) from Leishmania donovani and characterization of mRNAs in wild-type and amphotericin B-Resistant promastigotes. Antimicrob Agents Chemother. 2004;48(7):2409–14.PubMedPubMedCentralCrossRef Pourshafie M, Morand S, Virion A, Rakotomanga M, Dupuy C, Loiseau PM. Cloning of S-adenosyl-L-methionine:C-24-Delta-sterolmethyltransferase (ERG6) from Leishmania donovani and characterization of mRNAs in wild-type and amphotericin B-Resistant promastigotes. Antimicrob Agents Chemother. 2004;48(7):2409–14.PubMedPubMedCentralCrossRef
209.
210.
go back to reference Sokol-Anderson M, Sligh JE Jr, Elberg S, Brajtburg J, Kobayashi GS, Medoff G. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother. 1988;32(5):702–5.PubMedPubMedCentralCrossRef Sokol-Anderson M, Sligh JE Jr, Elberg S, Brajtburg J, Kobayashi GS, Medoff G. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother. 1988;32(5):702–5.PubMedPubMedCentralCrossRef
211.
go back to reference Blum G, Hörtnagl C, Jukic E, et al. New insight into amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother. 2013;57(4):1583–8.PubMedPubMedCentralCrossRef Blum G, Hörtnagl C, Jukic E, et al. New insight into amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother. 2013;57(4):1583–8.PubMedPubMedCentralCrossRef
212.
go back to reference Vahedi Shahandashti R, Lass-Flörl C. Antifungal resistance in Aspergillus terreus: A current scenario. Fungal Genet Biol. 2019;131:103247. Vahedi Shahandashti R, Lass-Flörl C. Antifungal resistance in Aspergillus terreus: A current scenario. Fungal Genet Biol. 2019;131:103247.
213.
go back to reference Broughton MC, Bard M, Lees ND. Polyene resistance in ergosterol producing strains of Candida albicans. Mycoses. 1991;34(1–2):75–83.PubMed Broughton MC, Bard M, Lees ND. Polyene resistance in ergosterol producing strains of Candida albicans. Mycoses. 1991;34(1–2):75–83.PubMed
214.
go back to reference Pierce AM, Pierce HD Jr, Unrau AM, Oehlschlager AC. Lipid composition and polyene antibiotic resistance of Candida albicans mutants. Can J Biochem. 1978;56(2):135–42.PubMedCrossRef Pierce AM, Pierce HD Jr, Unrau AM, Oehlschlager AC. Lipid composition and polyene antibiotic resistance of Candida albicans mutants. Can J Biochem. 1978;56(2):135–42.PubMedCrossRef
215.
go back to reference Seo K, Akiyoshi H, Ohnishi Y. Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus. Microbiol Immunol. 1999;43(11):1017–25.PubMedCrossRef Seo K, Akiyoshi H, Ohnishi Y. Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus. Microbiol Immunol. 1999;43(11):1017–25.PubMedCrossRef
216.
go back to reference Bahmed K, Bonaly R, Coulon J. Relation between cell wall chitin content and susceptibility to amphotericin B in Kluyveromyces, Candida and Schizosaccharomyces species. Res Microbiol. 2003;154(3):215–22.PubMedCrossRef Bahmed K, Bonaly R, Coulon J. Relation between cell wall chitin content and susceptibility to amphotericin B in Kluyveromyces, Candida and Schizosaccharomyces species. Res Microbiol. 2003;154(3):215–22.PubMedCrossRef
217.
go back to reference Bahmed K, Bonaly R, Wathier M, Pucci B, Coulon J. Change of cell wall chitin content in amphotericin B resistant Kluyveromyces strains. FEMS Microbiol Lett. 2002;216(1):99–103.PubMedCrossRef Bahmed K, Bonaly R, Wathier M, Pucci B, Coulon J. Change of cell wall chitin content in amphotericin B resistant Kluyveromyces strains. FEMS Microbiol Lett. 2002;216(1):99–103.PubMedCrossRef
218.
go back to reference Hammond SM, Kliger BN. Differential effects of monovalent and divalent ions upon the mode of action of the polyene antibiotic Candicidin. J Appl Bacteriol. 1976;41(1):59–68.PubMedCrossRef Hammond SM, Kliger BN. Differential effects of monovalent and divalent ions upon the mode of action of the polyene antibiotic Candicidin. J Appl Bacteriol. 1976;41(1):59–68.PubMedCrossRef
219.
go back to reference Mesa-Arango AC, Rueda C, Román E, et al. Cell wall changes in amphotericin B-resistant strains from Candida tropicalis and relationship with the immune responses elicited by the host. Antimicrob Agents Chemother. 2016;60(4):2326–35.PubMedPubMedCentralCrossRef Mesa-Arango AC, Rueda C, Román E, et al. Cell wall changes in amphotericin B-resistant strains from Candida tropicalis and relationship with the immune responses elicited by the host. Antimicrob Agents Chemother. 2016;60(4):2326–35.PubMedPubMedCentralCrossRef
220.
go back to reference Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol. 1989;9(8):3447–56.PubMedPubMedCentral Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol. 1989;9(8):3447–56.PubMedPubMedCentral
221.
go back to reference Gale EF, Ingram J, Kerridge D, Notario V, Wayman F. Reduction of amphotericin resistance in stationary phase cultures of Candida albicans by treatment with enzymes. J Gen Microbiol. 1980;117(2):383–91.PubMed Gale EF, Ingram J, Kerridge D, Notario V, Wayman F. Reduction of amphotericin resistance in stationary phase cultures of Candida albicans by treatment with enzymes. J Gen Microbiol. 1980;117(2):383–91.PubMed
222.
go back to reference Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol delta 8–>7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994;122(1–2):39–42.PubMedCrossRef Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol delta 8–>7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994;122(1–2):39–42.PubMedCrossRef
223.
go back to reference Powderly WG, Kobayashi GS, Herzig GP, Medoff G. Amphotericin B-resistant yeast infection in severely immunocompromised patients. Am J Med. 1988;84(5):826–32.PubMedCrossRef Powderly WG, Kobayashi GS, Herzig GP, Medoff G. Amphotericin B-resistant yeast infection in severely immunocompromised patients. Am J Med. 1988;84(5):826–32.PubMedCrossRef
224.
go back to reference Colombo AL, Melo AS, Crespo Rosas RF, et al. Outbreak of Candida rugosa candidemia: an emerging pathogen that may be refractory to amphotericin B therapy. Diagn Microbiol Infect Dis. 2003;46(4):253–7. Colombo AL, Melo AS, Crespo Rosas RF, et al. Outbreak of Candida rugosa candidemia: an emerging pathogen that may be refractory to amphotericin B therapy. Diagn Microbiol Infect Dis. 2003;46(4):253–7.
225.
go back to reference Krcmery V Jr, Oravcova E, Spanik S, et al. Nosocomial breakthrough fungaemia during antifungal prophylaxis or empirical antifungal therapy in 41 cancer patients receiving antineoplastic chemotherapy: analysis of aetiology risk factors and outcome. J Antimicrob Chemother. 1998;41(3):373–80. Krcmery V Jr, Oravcova E, Spanik S, et al. Nosocomial breakthrough fungaemia during antifungal prophylaxis or empirical antifungal therapy in 41 cancer patients receiving antineoplastic chemotherapy: analysis of aetiology risk factors and outcome. J Antimicrob Chemother. 1998;41(3):373–80.
226.
go back to reference Nolte FS, Parkinson T, Falconer DJ, et al. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia. Antimicrob Agents Chemother. 1997;41(1):196–9.PubMedPubMedCentralCrossRef Nolte FS, Parkinson T, Falconer DJ, et al. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia. Antimicrob Agents Chemother. 1997;41(1):196–9.PubMedPubMedCentralCrossRef
227.
228.
go back to reference World Health Organization. Pharmaceuticals, U. Accelerated stability studies of widely used pharmaceutical substances under simulated tropical conditions. 1986 [Geneva]: World Health Organization. World Health Organization: Geneva. World Health Organization. Pharmaceuticals, U. Accelerated stability studies of widely used pharmaceutical substances under simulated tropical conditions. 1986 [Geneva]: World Health Organization. World Health Organization: Geneva.
229.
go back to reference National Toxicology Program, Amphotericin B, in Reactivity profile I.o.E.H. Sciences, Editor. 1992, National Institutes of Health North Carolina. National Toxicology Program, Amphotericin B, in Reactivity profile I.o.E.H. Sciences, Editor. 1992, National Institutes of Health North Carolina.
230.
go back to reference Montenegro MB, Souza SPd, Leão RAC, Rocha HVA, Rezende CMd, Souza ROMAd. Methodology Development and Validation of Amphotericin B Stability by HPLC-DAD. J Braz Chem Soc. 2020;31: 916–26. Montenegro MB, Souza SPd, Leão RAC, Rocha HVA, Rezende CMd, Souza ROMAd. Methodology Development and Validation of Amphotericin B Stability by HPLC-DAD. J Braz Chem Soc. 2020;31: 916–26.
231.
go back to reference Hung CT, Lam FC, Perrier DG, Souter A. A stability study of amphotericin B in aqueous media using factorial design. Int J Pharm. 1988;44(1):117–23.CrossRef Hung CT, Lam FC, Perrier DG, Souter A. A stability study of amphotericin B in aqueous media using factorial design. Int J Pharm. 1988;44(1):117–23.CrossRef
232.
go back to reference Wiest DB, Maish WA, Garner SS, el-Chaar GM. Stability of amphotericin B in four concentrations of dextrose injection. Am J Hosp Pharm. 1991;48(11):2430–3. Wiest DB, Maish WA, Garner SS, el-Chaar GM. Stability of amphotericin B in four concentrations of dextrose injection. Am J Hosp Pharm. 1991;48(11):2430–3.
233.
go back to reference Cifani C, Costantino S, Massi M, Berrino L. Commercially available lipid formulations of amphotericin b: are they bioequivalent and therapeutically equivalent? Acta Biomed. 2012;83(2):154–63.PubMed Cifani C, Costantino S, Massi M, Berrino L. Commercially available lipid formulations of amphotericin b: are they bioequivalent and therapeutically equivalent? Acta Biomed. 2012;83(2):154–63.PubMed
234.
go back to reference TEVA Pharmaceuticals Europe B.V, Package leaflet: Information for the user - Abelcet® Lipid Complex 5 mg/ml concentrate for dispersion for infusion, T. Pharmaceuticals, Editor. 2020:The Netherlands. TEVA Pharmaceuticals Europe B.V, Package leaflet: Information for the user - Abelcet® Lipid Complex 5 mg/ml concentrate for dispersion for infusion, T. Pharmaceuticals, Editor. 2020:The Netherlands.
235.
go back to reference Anaissie E, Paetznick V, Proffitt R, Adler-Moore J, Bodey GP. Comparison of the in vitro antifungal activity of free and liposomeencapsulated amphotericin B. Eur J Clin Microbiol Infect Dis. 1991;10(8):665–8.PubMedCrossRef Anaissie E, Paetznick V, Proffitt R, Adler-Moore J, Bodey GP. Comparison of the in vitro antifungal activity of free and liposomeencapsulated amphotericin B. Eur J Clin Microbiol Infect Dis. 1991;10(8):665–8.PubMedCrossRef
236.
go back to reference Adler-Moore JP, Chiang SM, Satorius A, et al. Treatment of murine candidosis and cryptococcosis with a unilamellar liposomal amphotericin B formulation (AmBisome). J Antimicrob Chemother. 1991;28 Suppl B:63–71. Adler-Moore JP, Chiang SM, Satorius A, et al. Treatment of murine candidosis and cryptococcosis with a unilamellar liposomal amphotericin B formulation (AmBisome). J Antimicrob Chemother. 1991;28 Suppl B:63–71.
237.
go back to reference Patterson TF, Thompson GR III, Denning DW, et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63(4):e1–60.PubMedPubMedCentralCrossRef Patterson TF, Thompson GR III, Denning DW, et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63(4):e1–60.PubMedPubMedCentralCrossRef
238.
go back to reference Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMIDECMM-ERS guideline. Clin Microbi Infect. 2018;24:e1–38.CrossRefPubMed Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMIDECMM-ERS guideline. Clin Microbi Infect. 2018;24:e1–38.CrossRefPubMed
239.
go back to reference Jean E-C, Roberto C, Sabine F et al. Micafungin Versus Fluconazole Or Itraconazole For Prophylaxis Against Invasive Fungal Infections During Neutropenia In Patients Undergoing Haplo-Identical Hematopoietic Stem Cell Transplantation. Blood. 2013;122(21):4564. Jean E-C, Roberto C, Sabine F et al. Micafungin Versus Fluconazole Or Itraconazole For Prophylaxis Against Invasive Fungal Infections During Neutropenia In Patients Undergoing Haplo-Identical Hematopoietic Stem Cell Transplantation. Blood. 2013;122(21):4564.
240.
go back to reference Mattiuzzi GN, Kantarjian H, Faderl S, et al. Amphotericin B lipid complex as prophylaxis of invasive fungal infections in patients with acute myelogenous leukemia and myelodysplastic syndrome undergoing induction chemotherapy. Cancer. 2004;100(3):581–9.PubMedCrossRef Mattiuzzi GN, Kantarjian H, Faderl S, et al. Amphotericin B lipid complex as prophylaxis of invasive fungal infections in patients with acute myelogenous leukemia and myelodysplastic syndrome undergoing induction chemotherapy. Cancer. 2004;100(3):581–9.PubMedCrossRef
241.
go back to reference Oren I, Rowe JM, Sprecher H, et al. A prospective randomized trial of itraconazole vs fluconazole for the prevention of fungal infections in patients with acute leukemia and hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2006;38(2):127–34.CrossRef Oren I, Rowe JM, Sprecher H, et al. A prospective randomized trial of itraconazole vs fluconazole for the prevention of fungal infections in patients with acute leukemia and hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2006;38(2):127–34.CrossRef
242.
go back to reference Park S, Kim K, Jang JH, et al. Randomized trial of micafungin versus fluconazole as prophylaxis against invasive fungal infections in hematopoietic stem cell transplant recipients. J Infect. 2016;73(5):496–505.PubMedCrossRef Park S, Kim K, Jang JH, et al. Randomized trial of micafungin versus fluconazole as prophylaxis against invasive fungal infections in hematopoietic stem cell transplant recipients. J Infect. 2016;73(5):496–505.PubMedCrossRef
243.
go back to reference Ullmann AJ, Sanz MA, Tramarin A, et al. Prospective study of amphotericin B formulations in immunocompromised patients in 4 European countries. Clin Infect Dis. 2006;43(4):e29–38.PubMedCrossRef Ullmann AJ, Sanz MA, Tramarin A, et al. Prospective study of amphotericin B formulations in immunocompromised patients in 4 European countries. Clin Infect Dis. 2006;43(4):e29–38.PubMedCrossRef
244.
go back to reference Wingard JR, Carter SL, Walsh TJ, et al. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood. 2010;116(24):5111–8.PubMedPubMedCentralCrossRef Wingard JR, Carter SL, Walsh TJ, et al. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood. 2010;116(24):5111–8.PubMedPubMedCentralCrossRef
245.
go back to reference Ullmann AJ, Lipton JH, Vesole DH, et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N Engl J Med. 2007;356(4):335–47.PubMedCrossRef Ullmann AJ, Lipton JH, Vesole DH, et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N Engl J Med. 2007;356(4):335–47.PubMedCrossRef
246.
go back to reference Eliashar R, Resnick IB, Goldfarb A, Wohlgelernter J, Gross M. Endoscopic surgery for sinonasal invasive aspergillosis in bone marrow transplantation patients. Laryngoscope. 2007;117(1):78–81.PubMedCrossRef Eliashar R, Resnick IB, Goldfarb A, Wohlgelernter J, Gross M. Endoscopic surgery for sinonasal invasive aspergillosis in bone marrow transplantation patients. Laryngoscope. 2007;117(1):78–81.PubMedCrossRef
247.
go back to reference Martino R, Parody R, Fukuda T, et al. Impact of the intensity of the pretransplantation conditioning regimen in patients with prior invasive aspergillosis undergoing allogeneic hematopoietic stem cell transplantation: a retrospective survey of the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2006;108(9):2928–36.PubMedPubMedCentralCrossRef Martino R, Parody R, Fukuda T, et al. Impact of the intensity of the pretransplantation conditioning regimen in patients with prior invasive aspergillosis undergoing allogeneic hematopoietic stem cell transplantation: a retrospective survey of the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2006;108(9):2928–36.PubMedPubMedCentralCrossRef
248.
go back to reference Huang X, Chen H, Han M, et al. Multicenter, randomized, open-label study comparing the efficacy and safety of micafungin versus itraconazole for prophylaxis of invasive fungal infections in patients undergoing hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2012;18(10):1509–16.CrossRef Huang X, Chen H, Han M, et al. Multicenter, randomized, open-label study comparing the efficacy and safety of micafungin versus itraconazole for prophylaxis of invasive fungal infections in patients undergoing hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2012;18(10):1509–16.CrossRef
249.
go back to reference Oppenheim BA, Herbrecht R, Kusne S. The safety and efficacy of amphotericin B colloidal dispersion in the treatment of invasive mycoses. Clin Infect Dis. 1995;21(5):1145–53.PubMedCrossRef Oppenheim BA, Herbrecht R, Kusne S. The safety and efficacy of amphotericin B colloidal dispersion in the treatment of invasive mycoses. Clin Infect Dis. 1995;21(5):1145–53.PubMedCrossRef
250.
go back to reference Denning DW, Marr KA, Lau WM, et al. Micafungin (FK463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis. J Infect. 2006;53(5):337–49.PubMedPubMedCentralCrossRef Denning DW, Marr KA, Lau WM, et al. Micafungin (FK463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis. J Infect. 2006;53(5):337–49.PubMedPubMedCentralCrossRef
251.
go back to reference Herbrecht R, Letscher V, Andres E, Cavalier A. Safety and efficacy of amphotericin B colloidal dispersion. An overview. Chemotherapy. 1999;45(Suppl 1):67–76.PubMedCrossRef Herbrecht R, Letscher V, Andres E, Cavalier A. Safety and efficacy of amphotericin B colloidal dispersion. An overview. Chemotherapy. 1999;45(Suppl 1):67–76.PubMedCrossRef
252.
go back to reference Carrillo-Muñoz AJ, Finquelievich J, Tur-Tur C, et al. Combination antifungal therapy: a strategy for the management of invasive fungal infections. Rev Esp Quimioter. 2014;27(3):141–58.PubMed Carrillo-Muñoz AJ, Finquelievich J, Tur-Tur C, et al. Combination antifungal therapy: a strategy for the management of invasive fungal infections. Rev Esp Quimioter. 2014;27(3):141–58.PubMed
253.
go back to reference Hatipoglu N, Hatipoglu H. Combination antifungal therapy for invasive fungal infections in children and adults. Expert Rev Anti Infect Ther. 2013;11(5):523–35.PubMedCrossRef Hatipoglu N, Hatipoglu H. Combination antifungal therapy for invasive fungal infections in children and adults. Expert Rev Anti Infect Ther. 2013;11(5):523–35.PubMedCrossRef
254.
go back to reference Kontoyiannis DP, Lewis RE. Toward more effective antifungal therapy: the prospects of combination therapy. Br J Haematol. 2004;126(2):165–75.PubMedCrossRef Kontoyiannis DP, Lewis RE. Toward more effective antifungal therapy: the prospects of combination therapy. Br J Haematol. 2004;126(2):165–75.PubMedCrossRef
255.
go back to reference Panackal AA, Parisini E, Proschan M. Salvage combination antifungal therapy for acute invasive aspergillosis may improve outcomes: a systematic review and meta-analysis. Int J Infect Dis. 2014;28:80–94.PubMedPubMedCentralCrossRef Panackal AA, Parisini E, Proschan M. Salvage combination antifungal therapy for acute invasive aspergillosis may improve outcomes: a systematic review and meta-analysis. Int J Infect Dis. 2014;28:80–94.PubMedPubMedCentralCrossRef
256.
go back to reference Mihu CN, Kassis C, Ramos ER, Jiang Y, Hachem RY, Raad II. Does combination of lipid formulation of amphotericin B and echinocandins improve outcome of invasive aspergillosis in hematological malignancy patients? Cancer. 2010;116(22):5290–6. Mihu CN, Kassis C, Ramos ER, Jiang Y, Hachem RY, Raad II. Does combination of lipid formulation of amphotericin B and echinocandins improve outcome of invasive aspergillosis in hematological malignancy patients? Cancer. 2010;116(22):5290–6.
257.
go back to reference Rex JH, Pappas PG, Karchmer AW, et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis. 2003;36(10):1221–8.PubMedCrossRef Rex JH, Pappas PG, Karchmer AW, et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis. 2003;36(10):1221–8.PubMedCrossRef
258.
go back to reference Perfect JR, Dismukes WE, Dromer F, et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(3):291–322.PubMedCrossRef Perfect JR, Dismukes WE, Dromer F, et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(3):291–322.PubMedCrossRef
259.
go back to reference Forrest GN, Bhalla P, DeBess EE, et al. Cryptococcus gattii infection in solid organ transplant recipients: description of Oregon outbreak cases. Transpl Infect Dis. 2015;17(3):467–76.PubMedCrossRef Forrest GN, Bhalla P, DeBess EE, et al. Cryptococcus gattii infection in solid organ transplant recipients: description of Oregon outbreak cases. Transpl Infect Dis. 2015;17(3):467–76.PubMedCrossRef
260.
go back to reference Migone C, Ford N, Garner P, Eshun-Wilson I. Updating guidance for preventing and treating cryptococcal disease: how evidence and decisions interface. Cochrane Database Syst Rev. 2018;11:Ed000130. Migone C, Ford N, Garner P, Eshun-Wilson I. Updating guidance for preventing and treating cryptococcal disease: how evidence and decisions interface. Cochrane Database Syst Rev. 2018;11:Ed000130.
261.
go back to reference Serrano DR, Ballesteros MP, Schätzlein AG, Torrado JJ, Uchegbu IF. Amphotericin B formulations—the possibility of generic competition. Pharm Nanotechnol. 2013;1(4):8.CrossRef Serrano DR, Ballesteros MP, Schätzlein AG, Torrado JJ, Uchegbu IF. Amphotericin B formulations—the possibility of generic competition. Pharm Nanotechnol. 2013;1(4):8.CrossRef
262.
go back to reference Van Daele R, Spriet I, Wauters J et al. Antifungal drugs: What brings the future? Med Mycol. 2019;57(Supplement_3):S328–43. Van Daele R, Spriet I, Wauters J et al. Antifungal drugs: What brings the future? Med Mycol. 2019;57(Supplement_3):S328–43.
Metadata
Title
Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections
Authors
Francelise B. Cavassin
João Luiz Baú-Carneiro
Rogério R. Vilas-Boas
Flávio Queiroz-Telles
Publication date
01-03-2021
Publisher
Springer Healthcare
Keyword
Amphotericin B
Published in
Infectious Diseases and Therapy / Issue 1/2021
Print ISSN: 2193-8229
Electronic ISSN: 2193-6382
DOI
https://doi.org/10.1007/s40121-020-00382-7

Other articles of this Issue 1/2021

Infectious Diseases and Therapy 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.