Skip to main content
Top
Published in: Current Fungal Infection Reports 3/2020

01-09-2020 | Amphotericin B | Invited Commentary

Review of the Current Management of Urinary Tract Infections due to Fluconazole-Resistant and Non-Albicans Candida Species

Authors: X. Tan, K. Baugh, Z. P. Bulman, E. Wenzler

Published in: Current Fungal Infection Reports | Issue 3/2020

Login to get access

Abstract

Purpose of Review

The management of fungal infections is challenging, especially given the continued increase in fluconazole resistance and prevalence of non-albicans Candida spp. Urinary tract infections due to non-albicans and fluconazole-resistant Candida are particularly problematic given the uncertainty in determining true infection from colonization and the limited number of antifungal agents with adequate penetration to the site of infection. While our understanding of mechanisms of resistance and pharmacokinetics and pharmacodynamics continues to improve, it is combatted by the emergence of novel, difficult-to-manage pathogens such as C. auris. The purpose of this review is to summarize recent data regarding the management of urinary tract infections due to non-albicans and fluconazole-resistant Candida spp. with a focus on mechanisms of resistance, pharmacokinetics and pharmacodynamics, and treatment strategies.

Recent Findings

Advances in molecular techniques have improved our understanding of the mechanisms responsible for antifungal resistance, especially to the echinocandins and azole antifungal classes. Additionally, increased knowledge of the pharmacokinetic and pharmacodynamic properties that govern available antifungal agents has enhanced the ability to optimize dosing, especially for extravascular fungal infections. Unfortunately, these developments in the pre-clinical arena have not been matched by additional high-quality clinical data, and therefore, the optimal management strategies for fungal UTIs remain elusive.

Summary

The lack of adequate new clinical data to guide optimal management of UTIs due to fluconazole-resistant and non-albicans Candida, combined with the dearth of novel antifungal agents, leaves fluconazole, amphotericin B deoxycholate, and flucytosine as the drugs of choice for these infections. Further data regarding urinary concentrations and optimal urinary PK/PD parameters may allow for the use of other agents, such as the echinocandins, in certain situations. Several novel antifungal agents are currently in clinical development with adequate in vitro activity against fluconazole-resistant and non-albicans Candida, although their utility in the treatment of UTIs requires further investigation.
Literature
2.
go back to reference Tambyah PA, Maki DG. Catheter-associated urinary tract infection is rarely symptomatic: a prospective study of 1,497 catheterized patients. Arch Intern Med. 2000;160(5):678–82.PubMed Tambyah PA, Maki DG. Catheter-associated urinary tract infection is rarely symptomatic: a prospective study of 1,497 catheterized patients. Arch Intern Med. 2000;160(5):678–82.PubMed
3.
go back to reference Chen YY, Wang FD, Liu CY, Chou P. Incidence rate and variable cost of nosocomial infections in different types of intensive care units. Infect Control Hosp Epidemiol. 2009;30(1):39–46.PubMedCrossRef Chen YY, Wang FD, Liu CY, Chou P. Incidence rate and variable cost of nosocomial infections in different types of intensive care units. Infect Control Hosp Epidemiol. 2009;30(1):39–46.PubMedCrossRef
4.
go back to reference • Carreno JJ, Tam IM, Meyers JL, Esterberg E, Candrilli SD, Lodise TP. Longitudinal, nationwide, cohort study to assess incidence, outcomes, and costs associated with complicated urinary tract infection. Open Forum Infect Dis. 2019. Provides up to date epidemiologic data regarding the clinical and economic burden of complicated urinary tract infections. • Carreno JJ, Tam IM, Meyers JL, Esterberg E, Candrilli SD, Lodise TP. Longitudinal, nationwide, cohort study to assess incidence, outcomes, and costs associated with complicated urinary tract infection. Open Forum Infect Dis. 2019. Provides up to date epidemiologic data regarding the clinical and economic burden of complicated urinary tract infections.
5.
go back to reference Sobel JD, Fisher JF, Kauffman CA, Newman CA. Candida urinary tract infections—epidemiology. Clin Infect Dis. 2011;52(Suppl 6):S433–6.PubMedCrossRef Sobel JD, Fisher JF, Kauffman CA, Newman CA. Candida urinary tract infections—epidemiology. Clin Infect Dis. 2011;52(Suppl 6):S433–6.PubMedCrossRef
6.
go back to reference Alfouzan WA, Dhar R. Candiduria: evidence-based approach to management, are we there yet? J Mycol Med. 2017;27(3):293–302.PubMedCrossRef Alfouzan WA, Dhar R. Candiduria: evidence-based approach to management, are we there yet? J Mycol Med. 2017;27(3):293–302.PubMedCrossRef
7.
go back to reference Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.PubMedCrossRef Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.PubMedCrossRef
8.
go back to reference Sobel JD, Kauffman CA, McKinsey D, Zervos M, Vazquez JA, Karchmer AW, et al. Candiduria: a randomized, double-blind study of treatment with fluconazole and placebo. The National Institute of Allergy and Infectious Diseases (NIAID) Mycoses Study Group. Clin Infect Dis. 2000;30(1):19–24.PubMedCrossRef Sobel JD, Kauffman CA, McKinsey D, Zervos M, Vazquez JA, Karchmer AW, et al. Candiduria: a randomized, double-blind study of treatment with fluconazole and placebo. The National Institute of Allergy and Infectious Diseases (NIAID) Mycoses Study Group. Clin Infect Dis. 2000;30(1):19–24.PubMedCrossRef
9.
go back to reference Novelli A, Rosi E. Pharmacological properties of oral antibiotics for the treatment of uncomplicated urinary tract infections. J Chemother. 2017;29(sup1):10–8.PubMedCrossRef Novelli A, Rosi E. Pharmacological properties of oral antibiotics for the treatment of uncomplicated urinary tract infections. J Chemother. 2017;29(sup1):10–8.PubMedCrossRef
10.
go back to reference Diba K, Makhdoomi K, Nasri E, Vaezi A, Javidnia J, Gharabagh DJ, et al. Emerging Candida species isolated from renal transplant recipients: species distribution and susceptibility profiles. Microb Pathog. 2018;125:240–5.PubMedCrossRef Diba K, Makhdoomi K, Nasri E, Vaezi A, Javidnia J, Gharabagh DJ, et al. Emerging Candida species isolated from renal transplant recipients: species distribution and susceptibility profiles. Microb Pathog. 2018;125:240–5.PubMedCrossRef
11.
go back to reference Gharanfoli A, Mahmoudi E, Torabizadeh R, Katiraee F, Faraji S. Isolation, characterization, and molecular identification of Candida species from urinary tract infections. Curr Med Mycol. 2019;5(2):33–6.PubMedPubMedCentral Gharanfoli A, Mahmoudi E, Torabizadeh R, Katiraee F, Faraji S. Isolation, characterization, and molecular identification of Candida species from urinary tract infections. Curr Med Mycol. 2019;5(2):33–6.PubMedPubMedCentral
12.
go back to reference Peng D, Li X, Liu P, Luo M, Chen S, Su K, et al. Epidemiology of pathogens and antimicrobial resistanceof catheter-associated urinary tract infections in intensivecare units: a systematic review and meta-analysis. Am J Infect Control. 2018;46(12):e81–90.PubMedCrossRef Peng D, Li X, Liu P, Luo M, Chen S, Su K, et al. Epidemiology of pathogens and antimicrobial resistanceof catheter-associated urinary tract infections in intensivecare units: a systematic review and meta-analysis. Am J Infect Control. 2018;46(12):e81–90.PubMedCrossRef
13.
go back to reference Grau S, Luque S, Echeverria-Esnal D, Sorli L, Campillo N, Montero M, et al. Urinary micafungin levels are sufficient to treat urinary tract infections caused by Candida spp. Int J Antimicrob Agents. 2016;48(2):212–4.PubMedCrossRef Grau S, Luque S, Echeverria-Esnal D, Sorli L, Campillo N, Montero M, et al. Urinary micafungin levels are sufficient to treat urinary tract infections caused by Candida spp. Int J Antimicrob Agents. 2016;48(2):212–4.PubMedCrossRef
14.
go back to reference • Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, et al. Candida auris: a review of the literature. Clin Microbiol Rev. 2018;31(1). Comprehensive review of Candida auris. • Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, et al. Candida auris: a review of the literature. Clin Microbiol Rev. 2018;31(1). Comprehensive review of Candida auris.
16.
go back to reference •• Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2014;5(7):a019752. Current review of the mechanisms of antifungal resistance and their clinical impact. •• Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2014;5(7):a019752. Current review of the mechanisms of antifungal resistance and their clinical impact.
17.
go back to reference Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792–8.PubMedCrossRef Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792–8.PubMedCrossRef
18.
go back to reference Guinea J, Sanchez-Somolinos M, Cuevas O, Pelaez T, Bouza E. Fluconazole resistance mechanisms in Candida krusei: the contribution of efflux-pumps. Med Mycol. 2006;44(6):575–8.PubMedCrossRef Guinea J, Sanchez-Somolinos M, Cuevas O, Pelaez T, Bouza E. Fluconazole resistance mechanisms in Candida krusei: the contribution of efflux-pumps. Med Mycol. 2006;44(6):575–8.PubMedCrossRef
19.
go back to reference Orozco AS, Higginbotham LM, Hitchcock CA, Parkinson T, Falconer D, Ibrahim AS, et al. Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother. 1998;42(10):2645–9.PubMedPubMedCentralCrossRef Orozco AS, Higginbotham LM, Hitchcock CA, Parkinson T, Falconer D, Ibrahim AS, et al. Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother. 1998;42(10):2645–9.PubMedPubMedCentralCrossRef
20.
go back to reference Castanheira M, Deshpande LM, Messer SA, Rhomberg PR, Pfaller MA. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int J Antimicrob Agents 2019. Castanheira M, Deshpande LM, Messer SA, Rhomberg PR, Pfaller MA. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int J Antimicrob Agents 2019.
21.
go back to reference Spampinato C, Leonardi D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int. 2013;2013:204237.PubMedPubMedCentral Spampinato C, Leonardi D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int. 2013;2013:204237.PubMedPubMedCentral
22.
go back to reference Kolaczkowska A, Kolaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother. 2016;71(6):1438–50.PubMedCrossRef Kolaczkowska A, Kolaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother. 2016;71(6):1438–50.PubMedCrossRef
23.
go back to reference Prasad R, Nair R, Banerjee A. Multidrug transporters of Candida species in clinical azole resistance. Fungal Genet Biol. 2019;132:103252.PubMedCrossRef Prasad R, Nair R, Banerjee A. Multidrug transporters of Candida species in clinical azole resistance. Fungal Genet Biol. 2019;132:103252.PubMedCrossRef
24.
go back to reference Whaley SG, Zhang Q, Caudle KE, Rogers PD. Relative contribution of the ABC transporters Cdr1, Pdh1, and Snq2 to azole resistance in Candida glabrata. Antimicrob Agents Chemother. 2018;62(10). Whaley SG, Zhang Q, Caudle KE, Rogers PD. Relative contribution of the ABC transporters Cdr1, Pdh1, and Snq2 to azole resistance in Candida glabrata. Antimicrob Agents Chemother. 2018;62(10).
25.
go back to reference Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–40.PubMedCrossRef Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–40.PubMedCrossRef
26.
go back to reference Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018;73(4):891–9.PubMedCrossRef Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018;73(4):891–9.PubMedCrossRef
27.
go back to reference Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S, et al. Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg Infect Dis. 2017;23(1). Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S, et al. Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg Infect Dis. 2017;23(1).
28.
go back to reference Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson B, Chiller T, et al. Candida auris: the recent emergence of a multidrug-resistant fungal pathogen. Med Mycol. 2019;57(1):1–12.PubMedCrossRef Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson B, Chiller T, et al. Candida auris: the recent emergence of a multidrug-resistant fungal pathogen. Med Mycol. 2019;57(1):1–12.PubMedCrossRef
29.
go back to reference Rybak JM, Doorley LA, Nishimoto AT, Barker KS, Palmer GE, Rogers PD. Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob Agents Chemother. 2019;63(4). Rybak JM, Doorley LA, Nishimoto AT, Barker KS, Palmer GE, Rogers PD. Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob Agents Chemother. 2019;63(4).
30.
go back to reference Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997-2016. Open Forum Infect Dis. 2019;6(Suppl 1):S79–94.PubMedPubMedCentralCrossRef Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997-2016. Open Forum Infect Dis. 2019;6(Suppl 1):S79–94.PubMedPubMedCentralCrossRef
31.
go back to reference Castanheira M, Deshpande LM, Davis AP, Rhomberg PR, Pfaller MA. Monitoring antifungal resistance in a global collection of invasive yeasts and molds: application of CLSI epidemiological cutoff values and whole-genome sequencing analysis for detection of azole resistance in Candida albicans. Antimicrob Agents Chemother. 2017;61(10). Castanheira M, Deshpande LM, Davis AP, Rhomberg PR, Pfaller MA. Monitoring antifungal resistance in a global collection of invasive yeasts and molds: application of CLSI epidemiological cutoff values and whole-genome sequencing analysis for detection of azole resistance in Candida albicans. Antimicrob Agents Chemother. 2017;61(10).
32.
go back to reference Flowers SA, Colon B, Whaley SG, Schuler MA, Rogers PD. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother. 2015;59(1):450–60.PubMedCrossRef Flowers SA, Colon B, Whaley SG, Schuler MA, Rogers PD. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother. 2015;59(1):450–60.PubMedCrossRef
34.
go back to reference Fernandez-Ruiz M, Aguado JM, Almirante B, Lora-Pablos D, Padilla B, Puig-Asensio M, et al. Initial use of echinocandins does not negatively influence outcome in Candida parapsilosis bloodstream infection: a propensity score analysis. Clin Infect Dis. 2014;58(10):1413–21.PubMedCrossRef Fernandez-Ruiz M, Aguado JM, Almirante B, Lora-Pablos D, Padilla B, Puig-Asensio M, et al. Initial use of echinocandins does not negatively influence outcome in Candida parapsilosis bloodstream infection: a propensity score analysis. Clin Infect Dis. 2014;58(10):1413–21.PubMedCrossRef
35.
go back to reference Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, Farley MM, et al. Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother. 2014;58(8):4690–6.PubMedPubMedCentralCrossRef Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, Farley MM, et al. Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother. 2014;58(8):4690–6.PubMedPubMedCentralCrossRef
36.
go back to reference Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother. 2009;53(9):3690–9.PubMedPubMedCentralCrossRef Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother. 2009;53(9):3690–9.PubMedPubMedCentralCrossRef
37.
go back to reference Katiyar SK, Alastruey-Izquierdo A, Healey KR, Johnson ME, Perlin DS, Edlind TD. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother. 2012;56(12):6304–9.PubMedPubMedCentralCrossRef Katiyar SK, Alastruey-Izquierdo A, Healey KR, Johnson ME, Perlin DS, Edlind TD. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother. 2012;56(12):6304–9.PubMedPubMedCentralCrossRef
38.
go back to reference Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014;10(5):400–6.PubMedPubMedCentralCrossRef Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014;10(5):400–6.PubMedPubMedCentralCrossRef
39.
go back to reference Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol. 2013;11(10):e1001692.PubMedPubMedCentralCrossRef Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol. 2013;11(10):e1001692.PubMedPubMedCentralCrossRef
40.
go back to reference Young LY, Hull CM, Heitman J. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother. 2003;47(9):2717–24.PubMedPubMedCentralCrossRef Young LY, Hull CM, Heitman J. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother. 2003;47(9):2717–24.PubMedPubMedCentralCrossRef
41.
go back to reference Krogh-Madsen M, Arendrup MC, Heslet L, Knudsen JD. Amphotericin B and caspofungin resistance in Candida glabrata isolates recovered from a critically ill patient. Clin Infect Dis. 2006;42(7):938–44.PubMedCrossRef Krogh-Madsen M, Arendrup MC, Heslet L, Knudsen JD. Amphotericin B and caspofungin resistance in Candida glabrata isolates recovered from a critically ill patient. Clin Infect Dis. 2006;42(7):938–44.PubMedCrossRef
42.
go back to reference Hull CM, Bader O, Parker JE, Weig M, Gross U, Warrilow AG, et al. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob Agents Chemother. 2012;56(12):6417–21.PubMedPubMedCentralCrossRef Hull CM, Bader O, Parker JE, Weig M, Gross U, Warrilow AG, et al. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob Agents Chemother. 2012;56(12):6417–21.PubMedPubMedCentralCrossRef
43.
go back to reference Ahmad S, Joseph L, Parker JE, Asadzadeh M, Kelly SL, Meis JF, et al. ERG6 and ERG2 are major targets conferring reduced susceptibility to Amphotericin B in clinical Candida glabrata isolates in Kuwait. Antimicrob Agents Chemother. 2019;63(2). Ahmad S, Joseph L, Parker JE, Asadzadeh M, Kelly SL, Meis JF, et al. ERG6 and ERG2 are major targets conferring reduced susceptibility to Amphotericin B in clinical Candida glabrata isolates in Kuwait. Antimicrob Agents Chemother. 2019;63(2).
44.
go back to reference Vandeputte P, Tronchin G, Larcher G, Ernoult E, Berges T, Chabasse D, et al. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob Agents Chemother. 2008;52(10):3701–9.PubMedPubMedCentralCrossRef Vandeputte P, Tronchin G, Larcher G, Ernoult E, Berges T, Chabasse D, et al. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob Agents Chemother. 2008;52(10):3701–9.PubMedPubMedCentralCrossRef
45.
go back to reference Hull CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, et al. Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B. Antimicrob Agents Chemother. 2012;56(8):4223–32.PubMedPubMedCentralCrossRef Hull CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, et al. Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B. Antimicrob Agents Chemother. 2012;56(8):4223–32.PubMedPubMedCentralCrossRef
46.
go back to reference Escandon P, Chow NA, Caceres DH, Gade L, Berkow EL, Armstrong P, et al. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin Infect Dis. 2019;68(1):15–21.PubMed Escandon P, Chow NA, Caceres DH, Gade L, Berkow EL, Armstrong P, et al. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin Infect Dis. 2019;68(1):15–21.PubMed
47.
go back to reference Munoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 2018;9(1):5346.PubMedPubMedCentralCrossRef Munoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 2018;9(1):5346.PubMedPubMedCentralCrossRef
48.
go back to reference Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000;46(2):171–9.PubMedCrossRef Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000;46(2):171–9.PubMedCrossRef
49.
go back to reference Schmalreck AF, Willinger B, Haase G, Blum G, Lass-Florl C, Fegeler W, et al. Species and susceptibility distribution of 1062 clinical yeast isolates to azoles, echinocandins, flucytosine and amphotericin B from a multi-centre study. Mycoses. 2012;55(3):e124–37.PubMedCrossRef Schmalreck AF, Willinger B, Haase G, Blum G, Lass-Florl C, Fegeler W, et al. Species and susceptibility distribution of 1062 clinical yeast isolates to azoles, echinocandins, flucytosine and amphotericin B from a multi-centre study. Mycoses. 2012;55(3):e124–37.PubMedCrossRef
50.
go back to reference Silva S, Rodrigues CF, Araujo D, Rodrigues ME, Henriques M. Candida species biofilms’ antifungal resistance. J Fungi (Basel). 2017;3(1). Silva S, Rodrigues CF, Araujo D, Rodrigues ME, Henriques M. Candida species biofilms’ antifungal resistance. J Fungi (Basel). 2017;3(1).
51.
go back to reference Kean R, Ramage G. Combined antifungal resistance and biofilm tolerance: the global threat of Candida auris. mSphere. 2019;4(4). Kean R, Ramage G. Combined antifungal resistance and biofilm tolerance: the global threat of Candida auris. mSphere. 2019;4(4).
53.
go back to reference Ambrose PG, Bhavnani SM, Ellis-Grosse EJ, Drusano GL. Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: look before you leap! Clin Infect Dis. 2010;51(Suppl 1):S103–10.PubMedCrossRef Ambrose PG, Bhavnani SM, Ellis-Grosse EJ, Drusano GL. Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: look before you leap! Clin Infect Dis. 2010;51(Suppl 1):S103–10.PubMedCrossRef
54.
go back to reference Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86.PubMedCrossRef Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86.PubMedCrossRef
55.
go back to reference McCabe WR, Jackson GG. Treatment of pyelonephritis: bacterial, drug and host factors in success or failure among 252 patients. N Engl J Med. 1965;272:0137–44.PubMedCrossRef McCabe WR, Jackson GG. Treatment of pyelonephritis: bacterial, drug and host factors in success or failure among 252 patients. N Engl J Med. 1965;272:0137–44.PubMedCrossRef
56.
go back to reference Stamey TA, Fair WR, Timothy MM, Millar MA, Mihara G, Lowery YC. Serum versus urinary antimicrobial concentrations in cure of urinary-tract infections. N Engl J Med. 1974;291(22):1159–63.PubMedCrossRef Stamey TA, Fair WR, Timothy MM, Millar MA, Mihara G, Lowery YC. Serum versus urinary antimicrobial concentrations in cure of urinary-tract infections. N Engl J Med. 1974;291(22):1159–63.PubMedCrossRef
57.
58.
go back to reference Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42(Suppl 2):S82–9.PubMedCrossRef Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42(Suppl 2):S82–9.PubMedCrossRef
59.
go back to reference Brammer KW, Farrow PR, Faulkner JK. Pharmacokinetics and tissue penetration of fluconazole in humans. Reviews of Infectious Diseases. 1990;12(Supplement_3):S318–S26.PubMedCrossRef Brammer KW, Farrow PR, Faulkner JK. Pharmacokinetics and tissue penetration of fluconazole in humans. Reviews of Infectious Diseases. 1990;12(Supplement_3):S318–S26.PubMedCrossRef
60.
go back to reference •• Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clin Microbiol Rev. 2014;27(1):68–88. Comprehensive review of the extravascular pharmacokinetic properties of antifungal agents. •• Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clin Microbiol Rev. 2014;27(1):68–88. Comprehensive review of the extravascular pharmacokinetic properties of antifungal agents.
61.
go back to reference Gould C, Umscheid C, Agarwal R, Kuntz G, Pegues DA. HICPAC guideline for prevention of catheter associated urinary tract infections 2009. Infect Control Hosp Epidemiol. 2010;31(4):319–26.PubMedCrossRef Gould C, Umscheid C, Agarwal R, Kuntz G, Pegues DA. HICPAC guideline for prevention of catheter associated urinary tract infections 2009. Infect Control Hosp Epidemiol. 2010;31(4):319–26.PubMedCrossRef
62.
go back to reference Lo E, Nicolle LE, Coffin SE, Gould C, Maragakis LL, Meddings J, et al. Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(5):464–79.PubMedCrossRef Lo E, Nicolle LE, Coffin SE, Gould C, Maragakis LL, Meddings J, et al. Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(5):464–79.PubMedCrossRef
63.
go back to reference Jacobs DM, Dilworth TJ, Beyda ND, Casapao AM, Bowers DR. Overtreatment of asymptomatic candiduria among hospitalized patients: a multi-institutional study. Antimicrob Agents Chemother. 2018;62(1). Jacobs DM, Dilworth TJ, Beyda ND, Casapao AM, Bowers DR. Overtreatment of asymptomatic candiduria among hospitalized patients: a multi-institutional study. Antimicrob Agents Chemother. 2018;62(1).
64.
go back to reference Hardin TC, Graybill JR, Fetchick R, Woestenborghs R, Rinaldi MG, Kuhn JG. Pharmacokinetics of itraconazole following oral administration to normal volunteers. Antimicrob Agents Chemother. 1988;32(9):1310–3.PubMedPubMedCentralCrossRef Hardin TC, Graybill JR, Fetchick R, Woestenborghs R, Rinaldi MG, Kuhn JG. Pharmacokinetics of itraconazole following oral administration to normal volunteers. Antimicrob Agents Chemother. 1988;32(9):1310–3.PubMedPubMedCentralCrossRef
65.
go back to reference Krieter P, Flannery B, Musick T, Gohdes M, Martinho M, Courtney R. Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob Agents Chemother. 2004;48(9):3543–51.PubMedPubMedCentralCrossRef Krieter P, Flannery B, Musick T, Gohdes M, Martinho M, Courtney R. Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob Agents Chemother. 2004;48(9):3543–51.PubMedPubMedCentralCrossRef
66.
go back to reference Roffey SJ, Cole S, Comby P, Gibson D, Jezequel SG, Nedderman AN, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos. 2003;31(6):731–41.PubMedCrossRef Roffey SJ, Cole S, Comby P, Gibson D, Jezequel SG, Nedderman AN, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos. 2003;31(6):731–41.PubMedCrossRef
67.
go back to reference Schmitt-Hoffmann A, Roos B, Heep M, Schleimer M, Weidekamm E, Brown T, et al. Single-ascending-dose pharmacokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815 after intravenous infusions (50, 100, and 200 milligrams) and oral administrations (100, 200, and 400 milligrams) of its prodrug, BAL8557, in healthy volunteers. Antimicrob Agents Chemother. 2006;50(1):279–85.PubMedPubMedCentralCrossRef Schmitt-Hoffmann A, Roos B, Heep M, Schleimer M, Weidekamm E, Brown T, et al. Single-ascending-dose pharmacokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815 after intravenous infusions (50, 100, and 200 milligrams) and oral administrations (100, 200, and 400 milligrams) of its prodrug, BAL8557, in healthy volunteers. Antimicrob Agents Chemother. 2006;50(1):279–85.PubMedPubMedCentralCrossRef
68.
go back to reference Niwa T, Yokota Y, Tokunaga A, Yamato Y, Kagayama A, Fujiwara T, et al. Tissue distribution after intravenous dosing of micafungin, an antifungal drug, to rats. Biol Pharm Bull. 2004;27(7):1154–6.PubMedCrossRef Niwa T, Yokota Y, Tokunaga A, Yamato Y, Kagayama A, Fujiwara T, et al. Tissue distribution after intravenous dosing of micafungin, an antifungal drug, to rats. Biol Pharm Bull. 2004;27(7):1154–6.PubMedCrossRef
69.
go back to reference Stone JA, Holland SD, Wickersham PJ, Sterrett A, Schwartz M, Bonfiglio C, et al. Single- and multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob Agents Chemother. 2002;46(3):739–45.PubMedPubMedCentralCrossRef Stone JA, Holland SD, Wickersham PJ, Sterrett A, Schwartz M, Bonfiglio C, et al. Single- and multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob Agents Chemother. 2002;46(3):739–45.PubMedPubMedCentralCrossRef
70.
go back to reference Damle BD, Dowell JA, Walsky RL, Weber GL, Stogniew M, Inskeep PB. In vitro and in vivo studies to characterize the clearance mechanism and potential cytochrome P450 interactions of anidulafungin. Antimicrob Agents Chemother. 2009;53(3):1149–56.PubMedCrossRef Damle BD, Dowell JA, Walsky RL, Weber GL, Stogniew M, Inskeep PB. In vitro and in vivo studies to characterize the clearance mechanism and potential cytochrome P450 interactions of anidulafungin. Antimicrob Agents Chemother. 2009;53(3):1149–56.PubMedCrossRef
71.
go back to reference Sobel JD, Bradshaw SK, Lipka CJ, Kartsonis NA. Caspofungin in the treatment of symptomatic candiduria. Clin Infect Dis. 2007;44(5):e46–9.PubMedCrossRef Sobel JD, Bradshaw SK, Lipka CJ, Kartsonis NA. Caspofungin in the treatment of symptomatic candiduria. Clin Infect Dis. 2007;44(5):e46–9.PubMedCrossRef
72.
go back to reference Haruyama N, Masutani K, Tsuruya K, Sugiwaka S, Toyonaga J, Yao T, et al. Candida glabrata fungemia in a diabetic patient with neurogenic bladder: successful treatment with micafungin. Clin Nephrol. 2006;66(3):214–7.PubMedCrossRef Haruyama N, Masutani K, Tsuruya K, Sugiwaka S, Toyonaga J, Yao T, et al. Candida glabrata fungemia in a diabetic patient with neurogenic bladder: successful treatment with micafungin. Clin Nephrol. 2006;66(3):214–7.PubMedCrossRef
73.
go back to reference Fisher JF, Hicks BC, Dipiro JT, Venable J, Fincher RM. Efficacy of a single intravenous dose of amphotericin B in urinary tract infections caused by Candida. J Infect Dis. 1987;156(4):685–7.PubMedCrossRef Fisher JF, Hicks BC, Dipiro JT, Venable J, Fincher RM. Efficacy of a single intravenous dose of amphotericin B in urinary tract infections caused by Candida. J Infect Dis. 1987;156(4):685–7.PubMedCrossRef
74.
go back to reference Fisher JF, Woeltje K, Espinel-Ingroff A, Stanfield J, DiPiro JT. Efficacy of a single intravenous dose of amphotericin B for Candida urinary tract infections: further favorable experience. Clin Microbiol Infect. 2003;9(10):1024–7.PubMedCrossRef Fisher JF, Woeltje K, Espinel-Ingroff A, Stanfield J, DiPiro JT. Efficacy of a single intravenous dose of amphotericin B for Candida urinary tract infections: further favorable experience. Clin Microbiol Infect. 2003;9(10):1024–7.PubMedCrossRef
75.
go back to reference Leu HS, Huang CT. Clearance of funguria with short-course antifungal regimens: a prospective, randomized, controlled study. Clin Infect Dis. 1995;20(5):1152–7.PubMedCrossRef Leu HS, Huang CT. Clearance of funguria with short-course antifungal regimens: a prospective, randomized, controlled study. Clin Infect Dis. 1995;20(5):1152–7.PubMedCrossRef
76.
go back to reference Jacobs LG, Skidmore EA, Cardoso LA, Ziv F. Bladder irrigation with amphotericin B for treatment of fungal urinary tract infections. Clin Infect Dis. 1994;18(3):313–8.PubMedCrossRef Jacobs LG, Skidmore EA, Cardoso LA, Ziv F. Bladder irrigation with amphotericin B for treatment of fungal urinary tract infections. Clin Infect Dis. 1994;18(3):313–8.PubMedCrossRef
77.
go back to reference Jacobs LG, Skidmore EA, Freeman K, Lipschultz D, Fox N. Oral fluconazole compared with bladder irrigation with amphotericin B for treatment of fungal urinary tract infections in elderly patients. Clin Infect Dis. 1996;22(1):30–5.PubMedCrossRef Jacobs LG, Skidmore EA, Freeman K, Lipschultz D, Fox N. Oral fluconazole compared with bladder irrigation with amphotericin B for treatment of fungal urinary tract infections in elderly patients. Clin Infect Dis. 1996;22(1):30–5.PubMedCrossRef
78.
go back to reference Tuon FF, Amato VS, Penteado Filho SR. Bladder irrigation with amphotericin B and fungal urinary tract infection—systematic review with meta-analysis. Int J Infect Dis. 2009;13(6):701–6.PubMedCrossRef Tuon FF, Amato VS, Penteado Filho SR. Bladder irrigation with amphotericin B and fungal urinary tract infection—systematic review with meta-analysis. Int J Infect Dis. 2009;13(6):701–6.PubMedCrossRef
79.
go back to reference Sullivan KA, Caylor MM, Lin FC, Campbell-Bright S. Comparison of amphotericin B bladder irrigations versus fluconazole for the treatment of Candiduria in intensive care unit patients. J Pharm Pract. 2017;30(3):347–52.PubMedCrossRef Sullivan KA, Caylor MM, Lin FC, Campbell-Bright S. Comparison of amphotericin B bladder irrigations versus fluconazole for the treatment of Candiduria in intensive care unit patients. J Pharm Pract. 2017;30(3):347–52.PubMedCrossRef
80.
go back to reference Agustin J, Lacson S, Raffalli J, Aguero-Rosenfeld ME, Wormser GP. Failure of a lipid amphotericin B preparation to eradicate candiduria: preliminary findings based on three cases. Clin Infect Dis. 1999;29(3):686–7.PubMedCrossRef Agustin J, Lacson S, Raffalli J, Aguero-Rosenfeld ME, Wormser GP. Failure of a lipid amphotericin B preparation to eradicate candiduria: preliminary findings based on three cases. Clin Infect Dis. 1999;29(3):686–7.PubMedCrossRef
81.
go back to reference Wise GJ, Wainstein S, Goldberg P, Kozinn PJ. Flucytosine in urinary candida infections. Urology. 1974;3(6):708–11.PubMedCrossRef Wise GJ, Wainstein S, Goldberg P, Kozinn PJ. Flucytosine in urinary candida infections. Urology. 1974;3(6):708–11.PubMedCrossRef
82.
go back to reference Girmenia C, Venditti M, Martino P. Fluconazole in combination with flucytosine in the treatment of fluconazole-resistant Candida infections. Diagn Microbiol Infect Dis. 2003;46(3):227–31.PubMedCrossRef Girmenia C, Venditti M, Martino P. Fluconazole in combination with flucytosine in the treatment of fluconazole-resistant Candida infections. Diagn Microbiol Infect Dis. 2003;46(3):227–31.PubMedCrossRef
83.
go back to reference • Biagi MJ, Wiederhold NP, Gibas C, Wickes BL, Lozano V, Bleasdale SC, et al. Development of high-level echinocandin resistance in a patient with recurrent Candida auris Candidemia secondary to chronic Candiduria. Open Forum Infect Dis. 2019;6(7):ofz262. One of the only recent clinical reports of the treatment of C. auris in the urinary tract. • Biagi MJ, Wiederhold NP, Gibas C, Wickes BL, Lozano V, Bleasdale SC, et al. Development of high-level echinocandin resistance in a patient with recurrent Candida auris Candidemia secondary to chronic Candiduria. Open Forum Infect Dis. 2019;6(7):ofz262. One of the only recent clinical reports of the treatment of C. auris in the urinary tract.
84.
go back to reference Multani A, Subramanian AK, Liu AY. Successful eradication of chronic symptomatic Candida krusei urinary tract infection with increased dose micafungin in a liver and kidney transplant recipient: case report and review of the literature. Transpl Infect Dis. 2019;21(4):e13118.PubMedCrossRef Multani A, Subramanian AK, Liu AY. Successful eradication of chronic symptomatic Candida krusei urinary tract infection with increased dose micafungin in a liver and kidney transplant recipient: case report and review of the literature. Transpl Infect Dis. 2019;21(4):e13118.PubMedCrossRef
85.
go back to reference Cuervo G, Garcia-Vidal C, Puig-Asensio M, Vena A, Meije Y, Fernandez-Ruiz M, et al. Echinocandins compared to fluconazole for Candidemia of a urinary tract source: a propensity score analysis. Clin Infect Dis. 2017;64(10):1374–9.PubMedCrossRef Cuervo G, Garcia-Vidal C, Puig-Asensio M, Vena A, Meije Y, Fernandez-Ruiz M, et al. Echinocandins compared to fluconazole for Candidemia of a urinary tract source: a propensity score analysis. Clin Infect Dis. 2017;64(10):1374–9.PubMedCrossRef
86.
go back to reference Rodriguez-Tudela JL, Almirante B, Rodriguez-Pardo D, Laguna F, Donnelly JP, Mouton JW, et al. Correlation of the MIC and dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and candidemia. Antimicrob Agents Chemother. 2007;51(10):3599–604.PubMedPubMedCentralCrossRef Rodriguez-Tudela JL, Almirante B, Rodriguez-Pardo D, Laguna F, Donnelly JP, Mouton JW, et al. Correlation of the MIC and dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and candidemia. Antimicrob Agents Chemother. 2007;51(10):3599–604.PubMedPubMedCentralCrossRef
87.
go back to reference Nussbaum JC, Jackson A, Namarika D, Phulusa J, Kenala J, Kanyemba C, et al. Combination flucytosine and high-dose fluconazole compared with fluconazole monotherapy for the treatment of cryptococcal meningitis: a randomized trial in Malawi. Clin Infect Dis. 2010;50(3):338–44.PubMedCrossRef Nussbaum JC, Jackson A, Namarika D, Phulusa J, Kenala J, Kanyemba C, et al. Combination flucytosine and high-dose fluconazole compared with fluconazole monotherapy for the treatment of cryptococcal meningitis: a randomized trial in Malawi. Clin Infect Dis. 2010;50(3):338–44.PubMedCrossRef
88.
go back to reference Ghannoum M, Long L, Isham N, Hager C, Wilson R, Borroto-Esoda K, et al. Activity of a novel 1,3-beta-D-glucan synthase inhibitor, Ibrexafungerp (formerly SCY-078), Against Candida glabrata. Antimicrob Agents Chemother. 2019. Ghannoum M, Long L, Isham N, Hager C, Wilson R, Borroto-Esoda K, et al. Activity of a novel 1,3-beta-D-glucan synthase inhibitor, Ibrexafungerp (formerly SCY-078), Against Candida glabrata. Antimicrob Agents Chemother. 2019.
89.
go back to reference Spec A, Pullman J, Thompson GR, Powderly WG, Tobin EH, Vazquez J, et al. MSG-10: a phase 2 study of oral ibrexafungerp (SCY-078) following initial echinocandin therapy in non-neutropenic patients with invasive candidiasis. J Antimicrob Chemother. 2019;74(10):3056–62.PubMedCrossRef Spec A, Pullman J, Thompson GR, Powderly WG, Tobin EH, Vazquez J, et al. MSG-10: a phase 2 study of oral ibrexafungerp (SCY-078) following initial echinocandin therapy in non-neutropenic patients with invasive candidiasis. J Antimicrob Chemother. 2019;74(10):3056–62.PubMedCrossRef
90.
go back to reference Toth Z, Forgacs L, Locke JB, Kardos G, Nagy F, Kovacs R, et al. In vitro activity of rezafungin against common and rare Candida species and Saccharomyces cerevisiae. J Antimicrob Chemother. 2019. Toth Z, Forgacs L, Locke JB, Kardos G, Nagy F, Kovacs R, et al. In vitro activity of rezafungin against common and rare Candida species and Saccharomyces cerevisiae. J Antimicrob Chemother. 2019.
91.
go back to reference Hager CL, Larkin EL, Long L, Zohra Abidi F, Shaw KJ, Ghannoum MA. In vitro and in vivo evaluation of the antifungal activity of APX001A/APX001 against Candida auris. Antimicrob Agents Chemother. 2018;62(3). Hager CL, Larkin EL, Long L, Zohra Abidi F, Shaw KJ, Ghannoum MA. In vitro and in vivo evaluation of the antifungal activity of APX001A/APX001 against Candida auris. Antimicrob Agents Chemother. 2018;62(3).
92.
go back to reference Nunnally NS, Etienne KA, Angulo D, Lockhart SR, Berkow EL. In vitro activity of ibrexafungerp, a novel glucan synthase inhibitor against Candida glabrata isolates with FKS mutations. Antimicrob Agents Chemother. 2019;63(11). Nunnally NS, Etienne KA, Angulo D, Lockhart SR, Berkow EL. In vitro activity of ibrexafungerp, a novel glucan synthase inhibitor against Candida glabrata isolates with FKS mutations. Antimicrob Agents Chemother. 2019;63(11).
Metadata
Title
Review of the Current Management of Urinary Tract Infections due to Fluconazole-Resistant and Non-Albicans Candida Species
Authors
X. Tan
K. Baugh
Z. P. Bulman
E. Wenzler
Publication date
01-09-2020
Publisher
Springer US
Published in
Current Fungal Infection Reports / Issue 3/2020
Print ISSN: 1936-3761
Electronic ISSN: 1936-377X
DOI
https://doi.org/10.1007/s12281-020-00388-1

Other articles of this Issue 3/2020

Current Fungal Infection Reports 3/2020 Go to the issue

Pediatric Fungal Infections (D Corzo Leon, Section Editor)

Pharmacokinetics and Pharmacodynamics of Antifungal Agents in Neonates and Children

Fungal Infections of Skin and Subcutaneous Tissue (A Bonifaz and M Pereira, Section Editors)

Emerging Fungal Cutaneous Infections in Immunocompromised Patients

Fungal Infections of Skin and Subcutaneous Tissue (A Bonifaz and M Pereira, Section Editors)

White Piedra, a Rare Superficial Mycosis: an Update

Fungal Infections in Transplantation (S Shoham, Section Editor)

Cryptococcosis in Liver Transplant Candidates and Recipients

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine