Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Alzheimer's Disease | Research

Predicting long-term progression of Alzheimer’s disease using a multimodal deep learning model incorporating interaction effects

Authors: Yifan Wang, Ruitian Gao, Ting Wei, Luke Johnston, Xin Yuan, Yue Zhang, Zhangsheng Yu, for the Alzheimer’s Disease Neuroimaging Initiative

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

Identifying individuals with mild cognitive impairment (MCI) at risk of progressing to Alzheimer’s disease (AD) provides a unique opportunity for early interventions. Therefore, accurate and long-term prediction of the conversion from MCI to AD is desired but, to date, remains challenging. Here, we developed an interpretable deep learning model featuring a novel design that incorporates interaction effects and multimodality to improve the prediction accuracy and horizon for MCI-to-AD progression.

Methods

This multi-center, multi-cohort retrospective study collected structural magnetic resonance imaging (sMRI), clinical assessments, and genetic polymorphism data of 252 patients with MCI at baseline from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our deep learning model was cross-validated on the ADNI-1 and ADNI-2/GO cohorts and further generalized in the ongoing ADNI-3 cohort. We evaluated the model performance using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score.

Results

On the cross-validation set, our model achieved superior results for predicting MCI conversion within 4 years (AUC, 0.962; accuracy, 92.92%; sensitivity, 88.89%; specificity, 95.33%) compared to all existing studies. In the independent test, our model exhibited consistent performance with an AUC of 0.939 and an accuracy of 92.86%. Integrating interaction effects and multimodal data into the model significantly increased prediction accuracy by 4.76% (P = 0.01) and 4.29% (P = 0.03), respectively. Furthermore, our model demonstrated robustness to inter-center and inter-scanner variability, while generating interpretable predictions by quantifying the contribution of multimodal biomarkers.

Conclusions

The proposed deep learning model presents a novel perspective by combining interaction effects and multimodality, leading to more accurate and longer-term predictions of AD progression, which promises to improve pre-dementia patient care.
Appendix
Available only for authorised users
Literature
1.
go back to reference 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18(4):700–89. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18(4):700–89.
2.
go back to reference Crous-Bou M, Minguillón C, Gramunt N, Molinuevo JL. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017;9(1):1–9.CrossRef Crous-Bou M, Minguillón C, Gramunt N, Molinuevo JL. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017;9(1):1–9.CrossRef
3.
go back to reference Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund L-O, et al. Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6.CrossRefPubMed Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund L-O, et al. Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6.CrossRefPubMed
5.
6.
go back to reference Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 2002;1(1):13–21.CrossRefPubMed Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 2002;1(1):13–21.CrossRefPubMed
7.
go back to reference Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.CrossRefPubMedPubMedCentral Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.CrossRefPubMedPubMedCentral
8.
go back to reference Albert MS, Dekosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.CrossRefPubMedPubMedCentral Albert MS, Dekosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.CrossRefPubMedPubMedCentral
9.
go back to reference Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol. 2016;15(8):857–68.CrossRefPubMed Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol. 2016;15(8):857–68.CrossRefPubMed
10.
go back to reference Bhasin H, Agrawal R, for Alzheimer’s Disease Neuroimaging Initiative. Triploid genetic algorithm for convolutional neural network-based diagnosis of mild cognitive impairment. Alzheimers Dement. 2022;18(11):2283–91.CrossRefPubMed Bhasin H, Agrawal R, for Alzheimer’s Disease Neuroimaging Initiative. Triploid genetic algorithm for convolutional neural network-based diagnosis of mild cognitive impairment. Alzheimers Dement. 2022;18(11):2283–91.CrossRefPubMed
11.
go back to reference Ning K, Chen B, Sun F, Hobel Z, Zhao L, Matloff W, et al. Classifying Alzheimer’s disease with brain imaging and genetic data using a neural network framework. Neurobiol Aging. 2018;68:151–8.CrossRefPubMedPubMedCentral Ning K, Chen B, Sun F, Hobel Z, Zhao L, Matloff W, et al. Classifying Alzheimer’s disease with brain imaging and genetic data using a neural network framework. Neurobiol Aging. 2018;68:151–8.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Lee G, Nho K, Kang B, Sohn K-A, Kim D, Weiner MW, et al. Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Sci Rep. 2019;9(1):1952.ADSCrossRefPubMedPubMedCentral Lee G, Nho K, Kang B, Sohn K-A, Kim D, Weiner MW, et al. Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Sci Rep. 2019;9(1):1952.ADSCrossRefPubMedPubMedCentral
14.
go back to reference Wei R, Li C, Fogelson N, Li L. Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features. Front Aging Neurosci. 2016;8:76.CrossRefPubMedPubMedCentral Wei R, Li C, Fogelson N, Li L. Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features. Front Aging Neurosci. 2016;8:76.CrossRefPubMedPubMedCentral
15.
go back to reference Liu X, Tosun D, Weiner MW, Schuff N. Locally linear embedding (LLE) for MRI based Alzheimer’s disease classification. Neuroimage. 2013;83:148–57.CrossRefPubMed Liu X, Tosun D, Weiner MW, Schuff N. Locally linear embedding (LLE) for MRI based Alzheimer’s disease classification. Neuroimage. 2013;83:148–57.CrossRefPubMed
16.
go back to reference Tong T, Wolz R, Gao Q, Guerrero R, Hajnal JV, Rueckert D, et al. Multiple instance learning for classification of dementia in brain MRI. Med Image Anal. 2014;18(5):808–18.CrossRefPubMed Tong T, Wolz R, Gao Q, Guerrero R, Hajnal JV, Rueckert D, et al. Multiple instance learning for classification of dementia in brain MRI. Med Image Anal. 2014;18(5):808–18.CrossRefPubMed
17.
go back to reference Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412.CrossRefPubMed Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412.CrossRefPubMed
18.
go back to reference Zhang T, Liao Q, Zhang D, Zhang C, Yan J, Ngetich R, et al. Predicting MCI to AD conversation using integrated sMRI and rs-fMRI: machine learning and graph theory approach. Front Aging Neurosci. 2021;13: 688926.CrossRefPubMedPubMedCentral Zhang T, Liao Q, Zhang D, Zhang C, Yan J, Ngetich R, et al. Predicting MCI to AD conversation using integrated sMRI and rs-fMRI: machine learning and graph theory approach. Front Aging Neurosci. 2021;13: 688926.CrossRefPubMedPubMedCentral
19.
go back to reference Zhu W, Sun L, Huang J, Han L, Zhang D. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI. IEEE Trans Med Imaging. 2021;40(9):2354–66.CrossRefPubMed Zhu W, Sun L, Huang J, Han L, Zhang D. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI. IEEE Trans Med Imaging. 2021;40(9):2354–66.CrossRefPubMed
20.
go back to reference Lian C, Liu M, Pan Y, Shen D. Attention-guided hybrid network for dementia diagnosis with structural MR images. IEEE Trans Cybern. 2022;52(4):1992–2003.CrossRefPubMedPubMedCentral Lian C, Liu M, Pan Y, Shen D. Attention-guided hybrid network for dementia diagnosis with structural MR images. IEEE Trans Cybern. 2022;52(4):1992–2003.CrossRefPubMedPubMedCentral
21.
go back to reference Lu P, Hu L, Zhang N, Liang H, Tian T, Lu L. A two-stage model for predicting mild cognitive impairment to Alzheimer’s disease conversion. Front Aging Neurosci. 2022;14: 826622.CrossRefPubMedPubMedCentral Lu P, Hu L, Zhang N, Liang H, Tian T, Lu L. A two-stage model for predicting mild cognitive impairment to Alzheimer’s disease conversion. Front Aging Neurosci. 2022;14: 826622.CrossRefPubMedPubMedCentral
22.
go back to reference Choi H, Jin KH. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.CrossRefPubMed Choi H, Jin KH. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.CrossRefPubMed
23.
go back to reference Lu D, Popuri K, Ding GW, Balachandar R, Beg MF, Weiner M, et al. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep. 2018;8(1):5697.ADSCrossRefPubMedPubMedCentral Lu D, Popuri K, Ding GW, Balachandar R, Beg MF, Weiner M, et al. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep. 2018;8(1):5697.ADSCrossRefPubMedPubMedCentral
24.
go back to reference Spasov S, Passamonti L, Duggento A, Liò P, Toschi N. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. Neuroimage. 2019;189:276–87.CrossRefPubMed Spasov S, Passamonti L, Duggento A, Liò P, Toschi N. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. Neuroimage. 2019;189:276–87.CrossRefPubMed
25.
go back to reference Song X, Mao M, Qian X. Auto-metric graph neural network based on a meta-learning strategy for the diagnosis of Alzheimer’s disease. IEEE J Biomed Health Inf. 2021;25(8):3141–52.CrossRef Song X, Mao M, Qian X. Auto-metric graph neural network based on a meta-learning strategy for the diagnosis of Alzheimer’s disease. IEEE J Biomed Health Inf. 2021;25(8):3141–52.CrossRef
26.
go back to reference Bauer B, Kohler M. On deep learning as a remedy for the curse of dimensionality in nonparametric regression. Ann Stat. 2019;47(4):2261–85.MathSciNetCrossRef Bauer B, Kohler M. On deep learning as a remedy for the curse of dimensionality in nonparametric regression. Ann Stat. 2019;47(4):2261–85.MathSciNetCrossRef
27.
go back to reference Schmidt-Hieber J. Nonparametric regression using deep neural networks with ReLU activation function. Ann Stat. 2020;48(4):1875–97.MathSciNet Schmidt-Hieber J. Nonparametric regression using deep neural networks with ReLU activation function. Ann Stat. 2020;48(4):1875–97.MathSciNet
28.
go back to reference Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.CrossRefPubMedPubMedCentral Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.CrossRefPubMedPubMedCentral
29.
go back to reference Ko W, Jung W, Jeon E, Suk H-I. A deep generative-discriminative learning for multimodal representation in imaging genetics. IEEE Trans Med Imaging. 2022;41(9):2348–59.CrossRefPubMed Ko W, Jung W, Jeon E, Suk H-I. A deep generative-discriminative learning for multimodal representation in imaging genetics. IEEE Trans Med Imaging. 2022;41(9):2348–59.CrossRefPubMed
30.
go back to reference Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017;30. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017;30.
31.
go back to reference Yamazaki Y, Zhao N, Caulfield TR, Liu C-C, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–18.CrossRefPubMedPubMedCentral Yamazaki Y, Zhao N, Caulfield TR, Liu C-C, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–18.CrossRefPubMedPubMedCentral
32.
go back to reference Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.CrossRefPubMedPubMedCentral Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.CrossRefPubMedPubMedCentral
33.
go back to reference Zhou X, Chen Y, Mok KY, Kwok TCY, Mok VCT, Guo Q, et al. Non-coding variability at the APOE locus contributes to the Alzheimer’s risk. Nat Commun. 2019;10(1):3310.ADSCrossRefPubMedPubMedCentral Zhou X, Chen Y, Mok KY, Kwok TCY, Mok VCT, Guo Q, et al. Non-coding variability at the APOE locus contributes to the Alzheimer’s risk. Nat Commun. 2019;10(1):3310.ADSCrossRefPubMedPubMedCentral
34.
go back to reference Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–41.CrossRefPubMedPubMedCentral Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–41.CrossRefPubMedPubMedCentral
35.
go back to reference De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol. 2019;138(2):201–20.CrossRefPubMedPubMedCentral De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol. 2019;138(2):201–20.CrossRefPubMedPubMedCentral
36.
go back to reference Nho K, Kim S, Horgusluoglu E, Risacher SL, Shen L, Kim D, et al. Association analysis of rare variants near the APOE region with CSF and neuroimaging biomarkers of Alzheimer’s disease. BMC Med Genom. 2017;10(S1):45–52.CrossRef Nho K, Kim S, Horgusluoglu E, Risacher SL, Shen L, Kim D, et al. Association analysis of rare variants near the APOE region with CSF and neuroimaging biomarkers of Alzheimer’s disease. BMC Med Genom. 2017;10(S1):45–52.CrossRef
38.
go back to reference Mukherjee S, Russell JC, Carr DT, Burgess JD, Allen M, Serie DJ, et al. Systems biology approach to late-onset Alzheimer’s disease genome-wide association study identifies novel candidate genes validated using brain expression data and Caenorhabditis elegans experiments. Alzheimers Dement. 2017;13(10):1133–42.CrossRefPubMedPubMedCentral Mukherjee S, Russell JC, Carr DT, Burgess JD, Allen M, Serie DJ, et al. Systems biology approach to late-onset Alzheimer’s disease genome-wide association study identifies novel candidate genes validated using brain expression data and Caenorhabditis elegans experiments. Alzheimers Dement. 2017;13(10):1133–42.CrossRefPubMedPubMedCentral
39.
go back to reference Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, et al. Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev. 2016;30:25–48.CrossRefPubMed Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, et al. Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev. 2016;30:25–48.CrossRefPubMed
40.
go back to reference Deture MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):1–18.CrossRef Deture MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):1–18.CrossRef
41.
go back to reference Watson DS, Krutzinna J, Bruce IN, Griffiths CE, Mcinnes IB, Barnes MR, et al. Clinical applications of machine learning algorithms: beyond the black box. BMJ. 2019;364:l886.CrossRefPubMed Watson DS, Krutzinna J, Bruce IN, Griffiths CE, Mcinnes IB, Barnes MR, et al. Clinical applications of machine learning algorithms: beyond the black box. BMJ. 2019;364:l886.CrossRefPubMed
Metadata
Title
Predicting long-term progression of Alzheimer’s disease using a multimodal deep learning model incorporating interaction effects
Authors
Yifan Wang
Ruitian Gao
Ting Wei
Luke Johnston
Xin Yuan
Yue Zhang
Zhangsheng Yu
for the Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-05025-w

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine