Skip to main content
Top
Published in: Neurological Sciences 3/2022

01-03-2022 | Alzheimer's Disease | Original Article

Multi-auxiliary domain transfer learning for diagnosis of MCI conversion

Authors: Bo Cheng, Bingli Zhu, Shuchang Pu

Published in: Neurological Sciences | Issue 3/2022

Login to get access

Abstract

In the early stage of Alzheimer’s disease (AD), mild cognitive impairment (MCI) has a higher risk of progression to AD, so the prediction of whether an MCI subject will progress to AD (known as progressive MCI, PMCI) or not (known as stable MCI, SMCI) within a certain period is particularly important in practice. It is known that such a task could benefit from jointly learning-related auxiliary tasks such as differentiating AD from PMCI or PMCI from normal control (NC) in order to take full advantage of their shared commonality. However, few existing methods along this line fully consider the correlations between the target and auxiliary tasks according to the clinical practice of AD pathology for diagnosis. To deal with this problem, in this paper, treating each task domain as a different one, we borrow the idea from transfer learning and propose a novel multi-auxiliary domain transfer learning (MaDTL) method, which explicitly utilizes the correlations between the target domain (task) and multi-auxiliary domains (tasks) according to the clinical practice. Specifically, the proposed MaDTL method incorporates two key modules. The first one is a multi-auxiliary domain transfer-based feature selection (MaDTFS) model, which can select a discriminative feature subset shared by the target domain and the multi-auxiliary domains. In the MaDTFS model, to combine more training data from multi-auxiliary domains and simultaneously suppress the negative effects resulting from the irrelevant parts of multi-auxiliary domains, we proposed a sparse group correlation Lasso that includes a proposed group correlation Lasso penalty (i.e., \({\Vert \mathbf{W}\mathbf{H}\Vert }_{\mathrm{2,1}}\)) and a proposed correlation Lasso penalty (i.e., \({\Vert \mathbf{W}\mathbf{H}\Vert }_{\mathrm{1,1}}\)). The second module in MaDTL is a multi-auxiliary domain transfer-based classification (MaDTC) model that improves the voting with linear weighting-based ensemble learning. This model extends the constraints of the linear weighting method so that it can simultaneously combine training data from multi-auxiliary domains and achieve a robust classifier by minimizing negative effects from the irrelevant part of multi-auxiliary domains. Experimental results on 409 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with the baseline magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) data validate the effectiveness of the proposed method by significantly improving the classification accuracy to 80.37% for the identification of MCI-to-AD conversion, outperforming the state-of-the-art methods.
Appendix
Available only for authorised users
Footnotes
2
\(\Omega =\{0.0001, 0.0005, 0.0009, 0.001:0.001:0.009, 0.01:0.01:0.09, 0.1:0.1:2\}\)
 
Literature
1.
go back to reference Association A s, (2019). 2019 Alzheimer's disease facts and figures. Alzheimer's & Dement 15, 321–387. Association A s, (2019). 2019 Alzheimer's disease facts and figures. Alzheimer's & Dement 15, 321–387.
2.
go back to reference Cheng B, Liu M, Shen D, Zhang D (2019) Robust multi-label transfer feature learning for early diagnosis of Alzheimer’s disease. Brain Imaging Behav 13:138–153PubMedPubMedCentralCrossRef Cheng B, Liu M, Shen D, Zhang D (2019) Robust multi-label transfer feature learning for early diagnosis of Alzheimer’s disease. Brain Imaging Behav 13:138–153PubMedPubMedCentralCrossRef
3.
go back to reference Wee CY, Liu C, Lee A, Joann SP, Ji H, Qiu A (2019) Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. NeuroImage Clin 23:101929PubMedPubMedCentralCrossRef Wee CY, Liu C, Lee A, Joann SP, Ji H, Qiu A (2019) Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. NeuroImage Clin 23:101929PubMedPubMedCentralCrossRef
4.
go back to reference Choia H, Jinb KH (2018) Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res 344:103–109CrossRef Choia H, Jinb KH (2018) Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res 344:103–109CrossRef
5.
go back to reference Liu X, Goncalves AR, Cao P, Zhao D, Banerjee A (2018) Modeling Alzheimer’s disease cognitive scores using multi-task sparse group lasso. Comput Med Imaging Graph 66:100–114PubMedCrossRef Liu X, Goncalves AR, Cao P, Zhao D, Banerjee A (2018) Modeling Alzheimer’s disease cognitive scores using multi-task sparse group lasso. Comput Med Imaging Graph 66:100–114PubMedCrossRef
6.
go back to reference Zhou K, He W, Xu Y, Xiong G, Cai J (2018) Feature selection and transfer learning for Alzheimer’s disease clinical diagnosis. Appl Sci 8:1372CrossRef Zhou K, He W, Xu Y, Xiong G, Cai J (2018) Feature selection and transfer learning for Alzheimer’s disease clinical diagnosis. Appl Sci 8:1372CrossRef
7.
go back to reference Hojjati SH, Ebrahimzadeh A, Khazaee A, Feremi AB (2017) Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods 282:69–80PubMedCrossRef Hojjati SH, Ebrahimzadeh A, Khazaee A, Feremi AB (2017) Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods 282:69–80PubMedCrossRef
8.
go back to reference Kooi T, Litjens G, van Ginneken B, Gubern-Merida A, Sanchez CI, Mann R, den Heeten A, Karssemeijer N (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312PubMedCrossRef Kooi T, Litjens G, van Ginneken B, Gubern-Merida A, Sanchez CI, Mann R, den Heeten A, Karssemeijer N (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312PubMedCrossRef
9.
go back to reference Li Q, Wu X, Xu L, Chen K, Yao L, Li R (2017) Multi-modal discriminative dictionary learning for Alzheimer’s disease and mild cognitive impairment. Comput Methods Programs Biomed 150:1–8PubMedCrossRef Li Q, Wu X, Xu L, Chen K, Yao L, Li R (2017) Multi-modal discriminative dictionary learning for Alzheimer’s disease and mild cognitive impairment. Comput Methods Programs Biomed 150:1–8PubMedCrossRef
11.
go back to reference Zhu X, Suk H, Wang L, Lee SW, Shen D (2017) A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med Image Anal 38:205–214PubMedCrossRef Zhu X, Suk H, Wang L, Lee SW, Shen D (2017) A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med Image Anal 38:205–214PubMedCrossRef
12.
go back to reference Shi B, Chen Y, Zhang P, Smith CD, Liu J (2017) Nonlinear feature transformation and deep fusion for Alzheimer’s disease staging analysis. Pattern Recogn 63:487–498CrossRef Shi B, Chen Y, Zhang P, Smith CD, Liu J (2017) Nonlinear feature transformation and deep fusion for Alzheimer’s disease staging analysis. Pattern Recogn 63:487–498CrossRef
13.
go back to reference Cheng B, Liu M, Shen D, Li Z, Zhang D, Alzheimer’s Disease Neuroimaging I (2017) Multi-domain transfer learning for early diagnosis of Alzheimer’s disease. Neuroinformatics 15:115–132PubMedPubMedCentralCrossRef Cheng B, Liu M, Shen D, Li Z, Zhang D, Alzheimer’s Disease Neuroimaging I (2017) Multi-domain transfer learning for early diagnosis of Alzheimer’s disease. Neuroinformatics 15:115–132PubMedPubMedCentralCrossRef
14.
go back to reference Zhang D, Wang Y, Zhou L, Yuan H, Shen D, ADNI, (2011) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55:856–867PubMedCrossRef Zhang D, Wang Y, Zhou L, Yuan H, Shen D, ADNI, (2011) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55:856–867PubMedCrossRef
15.
go back to reference Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de la Sayette V, Desgranges B, Baron JC (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage 27:934–946PubMedCrossRef Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de la Sayette V, Desgranges B, Baron JC (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage 27:934–946PubMedCrossRef
16.
go back to reference Chao LL, Buckley ST, Kornak J, Schuff N, Madison C, Yaffe K, Miller BL, Kramer JH, Weiner MW (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24:19–27PubMedPubMedCentralCrossRef Chao LL, Buckley ST, Kornak J, Schuff N, Madison C, Yaffe K, Miller BL, Kramer JH, Weiner MW (2010) ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 24:19–27PubMedPubMedCentralCrossRef
17.
go back to reference deToledo-Morrell L, Stoub TR, Bulgakova M, Wilson RS, Bennett DA, Leurgans S, Wuu J, Turner DA (2004) MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 25:1197–1203PubMedCrossRef deToledo-Morrell L, Stoub TR, Bulgakova M, Wilson RS, Bennett DA, Leurgans S, Wuu J, Turner DA (2004) MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 25:1197–1203PubMedCrossRef
18.
go back to reference Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6:347–361PubMedPubMedCentralCrossRef Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6:347–361PubMedPubMedCentralCrossRef
19.
go back to reference Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 44:1415–1422PubMedCrossRef Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 44:1415–1422PubMedCrossRef
20.
go back to reference Liu M, Zhang D, Shen D (2016) Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans Med Imaging 35:1463–1474PubMedPubMedCentralCrossRef Liu M, Zhang D, Shen D (2016) Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans Med Imaging 35:1463–1474PubMedPubMedCentralCrossRef
21.
go back to reference Bouwman FH, Schoonenboom SNM, van der Flier WM, van Elk EJ, Kok A, Barkhof F, Blankenstein MA, Scheltens P (2007) CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiol Aging 28:1070–1074PubMedCrossRef Bouwman FH, Schoonenboom SNM, van der Flier WM, van Elk EJ, Kok A, Barkhof F, Blankenstein MA, Scheltens P (2007) CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiol Aging 28:1070–1074PubMedCrossRef
22.
go back to reference Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, ADNI, (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects predicting future clinical change. Neurology 73:294–301PubMedPubMedCentralCrossRef Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, ADNI, (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects predicting future clinical change. Neurology 73:294–301PubMedPubMedCentralCrossRef
23.
go back to reference Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, ADNI, (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects diagnostic discrimination and cognitive correlations. Neurology 73:287–293PubMedPubMedCentralCrossRef Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, ADNI, (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects diagnostic discrimination and cognitive correlations. Neurology 73:287–293PubMedPubMedCentralCrossRef
24.
go back to reference Lehmann M, Koedam E L, Barnes J, Bartlett J W, Barkhof F, Wattjes M P, Schott J M, Scheltens P, Fox N C, (2012). Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers. Neurobiology of Aging. Lehmann M, Koedam E L, Barnes J, Bartlett J W, Barkhof F, Wattjes M P, Schott J M, Scheltens P, Fox N C, (2012). Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers. Neurobiology of Aging.
25.
go back to reference Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ (2011) Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging 32:2322.e19-2322.e27CrossRef Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ (2011) Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging 32:2322.e19-2322.e27CrossRef
26.
go back to reference Hinrichs C, Singh V, Xu GF, Johnson SC, Neuroimaging AD (2011) Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55:574–589PubMedCrossRef Hinrichs C, Singh V, Xu GF, Johnson SC, Neuroimaging AD (2011) Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55:574–589PubMedCrossRef
27.
go back to reference Liu F, Wee CY, Chen HF, Shen DG, ADNI, (2014) Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. Neuroimage 84:466–475PubMedCrossRef Liu F, Wee CY, Chen HF, Shen DG, ADNI, (2014) Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. Neuroimage 84:466–475PubMedCrossRef
28.
go back to reference Liu M, Zhang J, Yap PT, Shen D (2017) View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med Image Anal 36:123–134PubMedCrossRef Liu M, Zhang J, Yap PT, Shen D (2017) View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med Image Anal 36:123–134PubMedCrossRef
29.
go back to reference Jie B, Zhang D, Cheng B, Shen D (2015) Manifold regularized multitask feature learning for multimodality disease classification. Hum Brain Mapp 36:489–507PubMedCrossRef Jie B, Zhang D, Cheng B, Shen D (2015) Manifold regularized multitask feature learning for multimodality disease classification. Hum Brain Mapp 36:489–507PubMedCrossRef
30.
31.
go back to reference Shi J, Zheng X, Li Y, Zhang Q, Ying S (2018) Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J Biomed Health Inform 22:173–183PubMedCrossRef Shi J, Zheng X, Li Y, Zhang Q, Ying S (2018) Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J Biomed Health Inform 22:173–183PubMedCrossRef
32.
go back to reference Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. MICCAI 2017(3):3–11 Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. MICCAI 2017(3):3–11
33.
go back to reference Suk H, Lee SW, D. S, ADNI, (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101:569–582PubMedCrossRef Suk H, Lee SW, D. S, ADNI, (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101:569–582PubMedCrossRef
34.
go back to reference van der Burgh HK, Schmidt R, Westeneng HJ, de Reus MA, van den Berg LH, van den Heuvel MP (2017) Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin 13:361–369PubMedCrossRef van der Burgh HK, Schmidt R, Westeneng HJ, de Reus MA, van den Berg LH, van den Heuvel MP (2017) Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin 13:361–369PubMedCrossRef
35.
go back to reference Xu J, Luo X, Wang G, Gilmore H, Madabhushi A (2016) A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191:214–223PubMedPubMedCentralCrossRef Xu J, Luo X, Wang G, Gilmore H, Madabhushi A (2016) A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191:214–223PubMedPubMedCentralCrossRef
36.
go back to reference Zhou J, Liu J, Narayan VA, Ye J, ADNI, (2013) Modeling disease progression via multi-task learning. Neuroimage 78:233–248PubMedCrossRef Zhou J, Liu J, Narayan VA, Ye J, ADNI, (2013) Modeling disease progression via multi-task learning. Neuroimage 78:233–248PubMedCrossRef
37.
go back to reference Zhang D, Shen D, ADNI, (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 59:895-907 Zhang D, Shen D, ADNI, (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 59:895-907
38.
go back to reference Ye J, Farnum M, Yang E, Verbeeck R, Lobanov V, Raghavan N, Novak G, DiBernardo A, Narayan V A, ADNI, (2012). Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. Bmc Neurology 12, 1471–2377–12–46. Ye J, Farnum M, Yang E, Verbeeck R, Lobanov V, Raghavan N, Novak G, DiBernardo A, Narayan V A, ADNI, (2012). Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. Bmc Neurology 12, 1471–2377–12–46.
39.
go back to reference Zhu X, Suk H, Shen D (2014) A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. Neuroimage 100:91–105PubMedCrossRef Zhu X, Suk H, Shen D (2014) A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. Neuroimage 100:91–105PubMedCrossRef
40.
go back to reference Wachinger C, Reuter M, ADNI, (2016) Domain adaptation for Alzheimer’s disease diagnostics. NeuroImage 139:470–479PubMedCrossRef Wachinger C, Reuter M, ADNI, (2016) Domain adaptation for Alzheimer’s disease diagnostics. NeuroImage 139:470–479PubMedCrossRef
41.
go back to reference Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat 22:231–245CrossRef Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat 22:231–245CrossRef
42.
go back to reference Chen X, Pan W, Kwok J T, Carbonell J G, (2009). Accelerated gradient method for multi-task sparse learning problem. Proceeding of Ninth IEEE International Conference on Data Mining and Knowledge Discovery, 746–751. Chen X, Pan W, Kwok J T, Carbonell J G, (2009). Accelerated gradient method for multi-task sparse learning problem. Proceeding of Ninth IEEE International Conference on Data Mining and Knowledge Discovery, 746–751.
43.
go back to reference Nemirovski A, (2005). Efficient methods in convex programming. Nemirovski A, (2005). Efficient methods in convex programming.
44.
go back to reference Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Mach Learn 73:243–272CrossRef Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Mach Learn 73:243–272CrossRef
45.
go back to reference Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef
46.
go back to reference Tan B, Song Y, Zhong E, Yang Q, 2015. Transitive transfer learning. the 21th ACM SIGKDD International Conference. ACM. Tan B, Song Y, Zhong E, Yang Q, 2015. Transitive transfer learning. the 21th ACM SIGKDD International Conference. ACM.
47.
go back to reference Tibshirani RJ (1996) Regression shrinkage and selection via the LASSO. J Roy Stat Soc B 58:267–288 Tibshirani RJ (1996) Regression shrinkage and selection via the LASSO. J Roy Stat Soc B 58:267–288
48.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRef DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRef
49.
go back to reference Eskildsen SF, Coupé P, García-Lorenzo D, Fonov V, Pruessner JC, Collins DL (2013) Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. Neuroimage 65:511–521PubMedCrossRef Eskildsen SF, Coupé P, García-Lorenzo D, Fonov V, Pruessner JC, Collins DL (2013) Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. Neuroimage 65:511–521PubMedCrossRef
50.
go back to reference Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S, Habert MO, Chupin M, Benali H, Colliot O (2011) Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56:766–781PubMedCrossRef Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S, Habert MO, Chupin M, Benali H, Colliot O (2011) Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56:766–781PubMedCrossRef
51.
go back to reference Cho Y, Seong JK, Jeong Y, Shin SY, ADNI, (2012) Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59:2217–2230PubMedCrossRef Cho Y, Seong JK, Jeong Y, Shin SY, ADNI, (2012) Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59:2217–2230PubMedCrossRef
52.
go back to reference Wolz R, Julkunen V, Koikkalainen J, Niskanen E, Zhang DP, Rueckert D, Soininen H, Lotjonen J (2011) Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. Plos One 6:e25446PubMedPubMedCentralCrossRef Wolz R, Julkunen V, Koikkalainen J, Niskanen E, Zhang DP, Rueckert D, Soininen H, Lotjonen J (2011) Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. Plos One 6:e25446PubMedPubMedCentralCrossRef
53.
go back to reference Querbes O, Aubry F, Pariente J, Lotterie J-A, Demonet J-F, Duret V, Puel M, Berry I, Fort J-C, Celsis P, ADNI, (2009) Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain : a journal of neurology 132:2036–2047CrossRef Querbes O, Aubry F, Pariente J, Lotterie J-A, Demonet J-F, Duret V, Puel M, Berry I, Fort J-C, Celsis P, ADNI, (2009) Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain : a journal of neurology 132:2036–2047CrossRef
54.
go back to reference Wee CY, Yap PT, Shen DG, ADNI, (2013) Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Hum Brain Mapp 34:3411–3425PubMedCrossRef Wee CY, Yap PT, Shen DG, ADNI, (2013) Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Hum Brain Mapp 34:3411–3425PubMedCrossRef
56.
go back to reference Kabani N, MacDonald D, Holmes CJ, Evans A (1998) A 3D atlas of the human brain. Neuroimage 7:S717CrossRef Kabani N, MacDonald D, Holmes CJ, Evans A (1998) A 3D atlas of the human brain. Neuroimage 7:S717CrossRef
57.
go back to reference Wang Y, Nie J, Yap P T, Shi F, Guo L, Shen D, (2011). Deformable surface based skull-stripping for large-scale studies. in Medical Image Computing and Computer-Assisted Intervention 3, 635–642. Wang Y, Nie J, Yap P T, Shi F, Guo L, Shen D, (2011). Deformable surface based skull-stripping for large-scale studies. in Medical Image Computing and Computer-Assisted Intervention 3, 635–642.
58.
go back to reference Zhang YY, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57PubMedCrossRef Zhang YY, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57PubMedCrossRef
59.
go back to reference Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97PubMedCrossRef Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97PubMedCrossRef
60.
go back to reference Shen DG, Davatzikos C (2002) HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21:1421–1439PubMedCrossRef Shen DG, Davatzikos C (2002) HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21:1421–1439PubMedCrossRef
Metadata
Title
Multi-auxiliary domain transfer learning for diagnosis of MCI conversion
Authors
Bo Cheng
Bingli Zhu
Shuchang Pu
Publication date
01-03-2022
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 3/2022
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-021-05568-6

Other articles of this Issue 3/2022

Neurological Sciences 3/2022 Go to the issue