Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Research

Liensinine and neferine exert neuroprotective effects via the autophagy pathway in transgenic Caenorhabditis elegans

Authors: Meng-chen Wu, Ye-hui Gao, Chen Zhang, Bo-tian Ma, Hong-ru Lin, Jin-yun Jiang, Meng-fan Xue, Shan Li, Hong-bing Wang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Liensinine and neferine are the main bisbenzylisoquinoline alkaloids obtained from the seeds of Nelumbo nucifera, which commonly used as edible food and traditional medicine in Asia. It was reported that liensinine and neferine could inhibit the activities of acetylcholinesterase and cross the blood-brain barriers, suggesting their therapeutic potential for the management of Alzheimer’s disease.

Methods

Here, we employed SH-SY5Y human neuroblastoma cells stably transfected with the human Swedish amyloid precursor protein (APP) mutation APP695 (APP695swe SH-SY5Y) as an in vitro model and transgenic Caenorhabditis elegans as an in vivo model to investigate the neuroprotective effects and underlying mechanism of liensinine and neferine.

Results

We found that liensinine and neferine could significantly improve the viability and reduce ROS levels in APP695swe SH-SY5Y cells, inhibit β-amyloid and tau-induced toxicity, and enhance stress resistance in nematodes. Moreover, liensinine and neferine had obviously neuroprotective effects by assaying chemotaxis, 5-hydroxytryptamine sensitivity and the integrity of injured neurons in nematodes. Preliminary mechanism studies revealed that liensinine and neferine could upregulate the expression of autophagy related genes (lgg-1, unc-51, pha-4, atg-9 and ced-9) and reduce the accumulation of β-amyloid induced autophagosomes, which suggested autophagy pathway played a key role in neuroprotective effects of these two alkaloids.

Conclusions

Altogether, our findings provided a certain working foundation for the use of liensinine and neferine to treat Alzheimer’s disease based on neuroprotective effects.
Appendix
Available only for authorised users
Literature
3.
go back to reference DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003;302(5646):830–4.PubMedCrossRef DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003;302(5646):830–4.PubMedCrossRef
4.
go back to reference Kong YR, et al. Potential of naturally derived alkaloids as Multi-Targeted Therapeutic Agents for neurodegenerative Diseases. Molecules. 2021;26(3):728.PubMedPubMedCentralCrossRef Kong YR, et al. Potential of naturally derived alkaloids as Multi-Targeted Therapeutic Agents for neurodegenerative Diseases. Molecules. 2021;26(3):728.PubMedPubMedCentralCrossRef
5.
go back to reference Jo K, et al. Nelumbo nucifera promotes non-rapid eye movement sleep by regulating GABAergic receptors in rat model. J Ethnopharmacol. 2021;267:113511.PubMedCrossRef Jo K, et al. Nelumbo nucifera promotes non-rapid eye movement sleep by regulating GABAergic receptors in rat model. J Ethnopharmacol. 2021;267:113511.PubMedCrossRef
6.
go back to reference Sivalingam K, et al. Neferine suppresses diethylnitrosamine-induced lung carcinogenesis in Wistar rats. Food Chem Toxicol. 2019;123:385–98.PubMedCrossRef Sivalingam K, et al. Neferine suppresses diethylnitrosamine-induced lung carcinogenesis in Wistar rats. Food Chem Toxicol. 2019;123:385–98.PubMedCrossRef
7.
go back to reference Zhou J, et al. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy. 2015;11(8):1259–79.PubMedPubMedCentralCrossRef Zhou J, et al. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy. 2015;11(8):1259–79.PubMedPubMedCentralCrossRef
8.
go back to reference Manogaran P, Beeraka NM, Padma VV. The cytoprotective and anti-cancer potential of Bisbenzylisoquinoline Alkaloids from Nelumbo nucifera. Curr Top Med Chem. 2019;19(32):2940–57.PubMedCrossRef Manogaran P, Beeraka NM, Padma VV. The cytoprotective and anti-cancer potential of Bisbenzylisoquinoline Alkaloids from Nelumbo nucifera. Curr Top Med Chem. 2019;19(32):2940–57.PubMedCrossRef
9.
go back to reference Li H, et al. Neferine suppresses autophagy-induced inflammation, oxidative stress and adipocyte differentiation in Graves’ orbitopathy. J Cell Mol Med. 2021;25(4):1949–57.PubMedPubMedCentralCrossRef Li H, et al. Neferine suppresses autophagy-induced inflammation, oxidative stress and adipocyte differentiation in Graves’ orbitopathy. J Cell Mol Med. 2021;25(4):1949–57.PubMedPubMedCentralCrossRef
10.
go back to reference Jia F et al. Liensinine Inhibits Osteosarcoma Growth by ROS-Mediated Suppression of the JAK2/STAT3 Signaling Pathway. Oxid Med Cell Longev, 2022. 2022: p. 8245614. Jia F et al. Liensinine Inhibits Osteosarcoma Growth by ROS-Mediated Suppression of the JAK2/STAT3 Signaling Pathway. Oxid Med Cell Longev, 2022. 2022: p. 8245614.
11.
go back to reference Liang L, et al. Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling. Int Immunopharmacol. 2022;104:108306.PubMedCrossRef Liang L, et al. Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling. Int Immunopharmacol. 2022;104:108306.PubMedCrossRef
12.
go back to reference Zhao L, et al. Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis. Eur J Pharmacol. 2010;627(1–3):304–12.PubMedCrossRef Zhao L, et al. Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis. Eur J Pharmacol. 2010;627(1–3):304–12.PubMedCrossRef
13.
go back to reference Plazas E, et al. Natural isoquinoline alkaloids: pharmacological features and multi-target potential for complex diseases. Pharmacol Res. 2022;177:106126.PubMedCrossRef Plazas E, et al. Natural isoquinoline alkaloids: pharmacological features and multi-target potential for complex diseases. Pharmacol Res. 2022;177:106126.PubMedCrossRef
14.
go back to reference Jung HA, et al. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Arch Pharm Res. 2015;38(6):1178–87.PubMedCrossRef Jung HA, et al. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Arch Pharm Res. 2015;38(6):1178–87.PubMedCrossRef
15.
go back to reference Wong VK, et al. Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy. Molecules. 2015;20(3):3496–514.PubMedPubMedCentralCrossRef Wong VK, et al. Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy. Molecules. 2015;20(3):3496–514.PubMedPubMedCentralCrossRef
16.
go back to reference Meng XL, et al. Protective effects of Liensinine, Isoliensinine, and Neferine on PC12 cells injured by amyloid-beta. J Food Biochem. 2022;46(10):e14303.PubMedCrossRef Meng XL, et al. Protective effects of Liensinine, Isoliensinine, and Neferine on PC12 cells injured by amyloid-beta. J Food Biochem. 2022;46(10):e14303.PubMedCrossRef
17.
go back to reference Meng XL et al. Total alkaloids from the seed embryo of Nelumbo nucifera Gaertn. Improve cognitive impairment in APP/PS1 mice and protect abeta-damaged PC12 cells. Nutr Neurosci, 2022: p. 1–15. Meng XL et al. Total alkaloids from the seed embryo of Nelumbo nucifera Gaertn. Improve cognitive impairment in APP/PS1 mice and protect abeta-damaged PC12 cells. Nutr Neurosci, 2022: p. 1–15.
18.
go back to reference Li N, et al. D-galactose induces necroptotic cell death in neuroblastoma cell lines. J Cell Biochem. 2011;112(12):3834–44.PubMedCrossRef Li N, et al. D-galactose induces necroptotic cell death in neuroblastoma cell lines. J Cell Biochem. 2011;112(12):3834–44.PubMedCrossRef
20.
go back to reference Lee JK, Byun H-G. A novel BACE inhibitor isolated from Eisenia bicyclis exhibits neuroprotective activity against β-amyloid toxicity. Fisheries and Aquatic Sciences. 2018;21(1):38.CrossRef Lee JK, Byun H-G. A novel BACE inhibitor isolated from Eisenia bicyclis exhibits neuroprotective activity against β-amyloid toxicity. Fisheries and Aquatic Sciences. 2018;21(1):38.CrossRef
21.
go back to reference Dostal V, Link CD. Assaying beta-amyloid toxicity using a transgenic C. elegans model. J Vis Exp. 2010;44:2252. Dostal V, Link CD. Assaying beta-amyloid toxicity using a transgenic C. elegans model. J Vis Exp. 2010;44:2252.
22.
go back to reference Margie O, Palmer C, Chin-Sang I. C. elegans chemotaxis assay. J Vis Exp. 2013;74:e50069. Margie O, Palmer C, Chin-Sang I. C. elegans chemotaxis assay. J Vis Exp. 2013;74:e50069.
23.
go back to reference Jorgensen EM. Gaba. WormBook, 2005: p. 1–13. Jorgensen EM. Gaba. WormBook, 2005: p. 1–13.
24.
go back to reference Waldherr SM, et al. Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau. Nat Commun. 2019;10(1):4443.PubMedPubMedCentralCrossRef Waldherr SM, et al. Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau. Nat Commun. 2019;10(1):4443.PubMedPubMedCentralCrossRef
25.
go back to reference Yoon DS, Lee MH, Cha DS. Measurement of intracellular ROS in Caenorhabditis elegans using 2’,7’-Dichlorodihydrofluorescein Diacetate. Bio Protoc. 2018;8(6):e2774.PubMedPubMedCentralCrossRef Yoon DS, Lee MH, Cha DS. Measurement of intracellular ROS in Caenorhabditis elegans using 2’,7’-Dichlorodihydrofluorescein Diacetate. Bio Protoc. 2018;8(6):e2774.PubMedPubMedCentralCrossRef
26.
28.
go back to reference Kumsta C, et al. The autophagy receptor p62/SQST-1 promotes proteostasis and longevity in C. elegans by inducing autophagy. Nat Commun. 2019;10(1):5648.PubMedPubMedCentralCrossRef Kumsta C, et al. The autophagy receptor p62/SQST-1 promotes proteostasis and longevity in C. elegans by inducing autophagy. Nat Commun. 2019;10(1):5648.PubMedPubMedCentralCrossRef
29.
go back to reference Bai R, et al. Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev. 2022;77:101619.PubMedCrossRef Bai R, et al. Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev. 2022;77:101619.PubMedCrossRef
30.
go back to reference Gouras GK, Olsson TT. Hansson, β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):3–11.PubMedCrossRef Gouras GK, Olsson TT. Hansson, β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):3–11.PubMedCrossRef
31.
32.
go back to reference Wu Y, et al. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci. 2006;26(50):13102–13.PubMedPubMedCentralCrossRef Wu Y, et al. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci. 2006;26(50):13102–13.PubMedPubMedCentralCrossRef
33.
go back to reference Schafer WR, Kenyon CJ. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature. 1995;375(6526):73–8.PubMedCrossRef Schafer WR, Kenyon CJ. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature. 1995;375(6526):73–8.PubMedCrossRef
35.
go back to reference Sarasija S, Norman KR. Role of Presenilin in mitochondrial oxidative stress and neurodegeneration in Caenorhabditis elegans. Antioxid (Basel). 2018;7(9):111.CrossRef Sarasija S, Norman KR. Role of Presenilin in mitochondrial oxidative stress and neurodegeneration in Caenorhabditis elegans. Antioxid (Basel). 2018;7(9):111.CrossRef
36.
go back to reference Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev, 2013. 2013: p. 316523. Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev, 2013. 2013: p. 316523.
37.
39.
go back to reference Nixon RA, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113–22.PubMedCrossRef Nixon RA, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113–22.PubMedCrossRef
40.
go back to reference Zhang Z, et al. Autophagy in Alzheimer’s disease pathogenesis: therapeutic potential and future perspectives. Ageing Res Rev. 2021;72:101464.PubMedCrossRef Zhang Z, et al. Autophagy in Alzheimer’s disease pathogenesis: therapeutic potential and future perspectives. Ageing Res Rev. 2021;72:101464.PubMedCrossRef
41.
go back to reference Zhao X, et al. Recent advances on bioactive compounds, biosynthesis mechanism, and physiological functions of Nelumbo nucifera. Food Chem. 2023;412:135581.PubMedCrossRef Zhao X, et al. Recent advances on bioactive compounds, biosynthesis mechanism, and physiological functions of Nelumbo nucifera. Food Chem. 2023;412:135581.PubMedCrossRef
42.
go back to reference Sharma BR, et al. A Comprehensive Review on Chemical profiling of Nelumbo Nucifera: potential for Drug Development. Phytother Res. 2017;31(1):3–26.PubMedCrossRef Sharma BR, et al. A Comprehensive Review on Chemical profiling of Nelumbo Nucifera: potential for Drug Development. Phytother Res. 2017;31(1):3–26.PubMedCrossRef
44.
go back to reference Spires-Jones TL, et al. Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci. 2009;32(3):150–9.PubMedCrossRef Spires-Jones TL, et al. Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci. 2009;32(3):150–9.PubMedCrossRef
45.
go back to reference Brandt R, et al. A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging. 2009;30(1):22–33.PubMedCrossRef Brandt R, et al. A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging. 2009;30(1):22–33.PubMedCrossRef
46.
go back to reference Barreiro EJ, Kummerle AE, Fraga CA. The methylation effect in medicinal chemistry. Chem Rev. 2011;111(9):5215–46.PubMedCrossRef Barreiro EJ, Kummerle AE, Fraga CA. The methylation effect in medicinal chemistry. Chem Rev. 2011;111(9):5215–46.PubMedCrossRef
47.
go back to reference Li L, Zhang X, Le W. Autophagy dysfunction in Alzheimer’s disease. Neurodegener Dis. 2010;7(4):265–71.PubMedCrossRef Li L, Zhang X, Le W. Autophagy dysfunction in Alzheimer’s disease. Neurodegener Dis. 2010;7(4):265–71.PubMedCrossRef
Metadata
Title
Liensinine and neferine exert neuroprotective effects via the autophagy pathway in transgenic Caenorhabditis elegans
Authors
Meng-chen Wu
Ye-hui Gao
Chen Zhang
Bo-tian Ma
Hong-ru Lin
Jin-yun Jiang
Meng-fan Xue
Shan Li
Hong-bing Wang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04183-6

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue