Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2022

Open Access 01-12-2022 | Alzheimer's Disease | Research

Increased CSF-decorin predicts brain pathological changes driven by Alzheimer’s Aβ amyloidosis

Authors: Richeng Jiang, Una Smailovic, Hazal Haytural, Betty M. Tijms, Hao Li, Robert Mihai Haret, Ganna Shevchenko, Gefei Chen, Axel Abelein, Johan Gobom, Susanne Frykman, Misaki Sekiguchi, Ryo Fujioka, Naoto Watamura, Hiroki Sasaguri, Sofie Nyström, Per Hammarström, Takaomi C. Saido, Vesna Jelic, Stina Syvänen, Henrik Zetterberg, Bengt Winblad, Jonas Bergquist, Pieter Jelle Visser, Per Nilsson

Published in: Acta Neuropathologica Communications | Issue 1/2022

Login to get access

Abstract

Cerebrospinal fluid (CSF) biomarkers play an important role in diagnosing Alzheimer’s disease (AD) which is characterized by amyloid-β (Aβ) amyloidosis. Here, we used two App knock-in mouse models, AppNL-F/NL-F and AppNL-G-F/NL-G-F, exhibiting AD-like Aβ pathology to analyze how the brain pathologies translate to CSF proteomes by label-free mass spectrometry (MS). This identified several extracellular matrix (ECM) proteins as significantly altered in App knock-in mice. Next, we compared mouse CSF proteomes with previously reported human CSF MS results acquired from patients across the AD spectrum. Intriguingly, the ECM protein decorin was similarly and significantly increased in both AppNL-F/NL-F and AppNL-G-F/NL-G-F mice, strikingly already at three months of age in the AppNL-F/NL-F mice and preclinical AD subjects having abnormal CSF-Aβ42 but normal cognition. Notably, in this group of subjects, CSF-decorin levels positively correlated with CSF-Aβ42 levels indicating that the change in CSF-decorin is associated with early Aβ amyloidosis. Importantly, receiver operating characteristic analysis revealed that CSF-decorin can predict a specific AD subtype having innate immune activation and potential choroid plexus dysfunction in the brain. Consistently, in AppNL-F/NL-F mice, increased CSF-decorin correlated with both Aβ plaque load and with decorin levels in choroid plexus. In addition, a low concentration of human Aβ42 induces decorin secretion from mouse primary neurons. Interestingly, we finally identify decorin to activate neuronal autophagy through enhancing lysosomal function. Altogether, the increased CSF-decorin levels occurring at an early stage of Aβ amyloidosis in the brain may reflect pathological changes in choroid plexus, present in a subtype of AD subjects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Toledo JB et al (2013) Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 136(Pt 9):2697–2706PubMedPubMedCentralCrossRef Toledo JB et al (2013) Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 136(Pt 9):2697–2706PubMedPubMedCentralCrossRef
2.
go back to reference Lendahl U, Nilsson P, Betsholtz C (2019) Emerging links between cerebrovascular and neurodegenerative diseases—a special role for pericytes. EMBO Rep 20(11):e48070PubMedPubMedCentralCrossRef Lendahl U, Nilsson P, Betsholtz C (2019) Emerging links between cerebrovascular and neurodegenerative diseases—a special role for pericytes. EMBO Rep 20(11):e48070PubMedPubMedCentralCrossRef
3.
go back to reference Dietrich MO et al (2008) Megalin mediates the transport of leptin across the blood-CSF barrier. Neurobiol Aging 29(6):902–912PubMedCrossRef Dietrich MO et al (2008) Megalin mediates the transport of leptin across the blood-CSF barrier. Neurobiol Aging 29(6):902–912PubMedCrossRef
4.
go back to reference Silverberg GD et al (2001) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57(10):1763–1766PubMedCrossRef Silverberg GD et al (2001) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57(10):1763–1766PubMedCrossRef
5.
go back to reference Cai Z et al (2018) Role of blood–brain barrier in Alzheimer’s disease. J Alzheimers Dis 63(4):1223–1234PubMedCrossRef Cai Z et al (2018) Role of blood–brain barrier in Alzheimer’s disease. J Alzheimers Dis 63(4):1223–1234PubMedCrossRef
7.
go back to reference Lepelletier FX et al (2017) Early changes in extracellular matrix in Alzheimer’s disease. Neuropathol Appl Neurobiol 43(2):167–182PubMedCrossRef Lepelletier FX et al (2017) Early changes in extracellular matrix in Alzheimer’s disease. Neuropathol Appl Neurobiol 43(2):167–182PubMedCrossRef
8.
go back to reference Aluise CD, Sowell RA, Butterfield DA (2008) Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer’s disease. Biochim Biophys Acta 1782(10):549–558PubMedPubMedCentralCrossRef Aluise CD, Sowell RA, Butterfield DA (2008) Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer’s disease. Biochim Biophys Acta 1782(10):549–558PubMedPubMedCentralCrossRef
9.
go back to reference Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284(6):643–663PubMedCrossRef Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284(6):643–663PubMedCrossRef
10.
go back to reference Olsson B et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15(7):673–684PubMedCrossRef Olsson B et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15(7):673–684PubMedCrossRef
11.
go back to reference Saito T et al (2014) Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17(5):661–663PubMedCrossRef Saito T et al (2014) Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17(5):661–663PubMedCrossRef
12.
13.
go back to reference Sturchler-Pierrat C et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94(24):13287–13292PubMedPubMedCentralCrossRef Sturchler-Pierrat C et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94(24):13287–13292PubMedPubMedCentralCrossRef
14.
go back to reference Lord A et al (2006) The Arctic Alzheimer mutation facilitates early intraneuronal Abeta aggregation and senile plaque formation in transgenic mice. Neurobiol Aging 27(1):67–77PubMedCrossRef Lord A et al (2006) The Arctic Alzheimer mutation facilitates early intraneuronal Abeta aggregation and senile plaque formation in transgenic mice. Neurobiol Aging 27(1):67–77PubMedCrossRef
15.
go back to reference Walsh DM et al (2009) A facile method for expression and purification of the Alzheimer’s disease-associated amyloid beta-peptide. FEBS J 276(5):1266–1281PubMedPubMedCentralCrossRef Walsh DM et al (2009) A facile method for expression and purification of the Alzheimer’s disease-associated amyloid beta-peptide. FEBS J 276(5):1266–1281PubMedPubMedCentralCrossRef
16.
go back to reference Snow AD et al (1992) Peripheral distribution of dermatan sulfate proteoglycans (decorin) in amyloid-containing plaques and their presence in neurofibrillary tangles of Alzheimer’s disease. J Histochem Cytochem 40(1):105–113PubMedCrossRef Snow AD et al (1992) Peripheral distribution of dermatan sulfate proteoglycans (decorin) in amyloid-containing plaques and their presence in neurofibrillary tangles of Alzheimer’s disease. J Histochem Cytochem 40(1):105–113PubMedCrossRef
18.
go back to reference Resource TGO (2019) 20 years and still GOing strong. Nucleic Acids Res 47(D1):D330-d338CrossRef Resource TGO (2019) 20 years and still GOing strong. Nucleic Acids Res 47(D1):D330-d338CrossRef
19.
go back to reference Mi H et al (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47(D1):D419-d426PubMedCrossRef Mi H et al (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47(D1):D419-d426PubMedCrossRef
20.
21.
go back to reference Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13(12):6176–6186PubMedCrossRef Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13(12):6176–6186PubMedCrossRef
22.
go back to reference Perez-Riverol Y et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450PubMedCrossRef Perez-Riverol Y et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450PubMedCrossRef
23.
go back to reference Heberle H et al (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform 16(1):169CrossRef Heberle H et al (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform 16(1):169CrossRef
24.
go back to reference Oliveros JC, Venny. An interactive tool for comparing lists with Venn's diagrams. 2007–2015. Oliveros JC, Venny. An interactive tool for comparing lists with Venn's diagrams. 2007–2015.
25.
go back to reference Erickson MA, Banks WA (2019) Age-associated changes in the immune system and blood–brain barrier functions. Int J Mol Sci 20(7):1632PubMedCentralCrossRef Erickson MA, Banks WA (2019) Age-associated changes in the immune system and blood–brain barrier functions. Int J Mol Sci 20(7):1632PubMedCentralCrossRef
26.
go back to reference Farrall AJ, Wardlaw JM (2009) Blood–brain barrier: ageing and microvascular disease—systematic review and meta-analysis. Neurobiol Aging 30(3):337–352PubMedCrossRef Farrall AJ, Wardlaw JM (2009) Blood–brain barrier: ageing and microvascular disease—systematic review and meta-analysis. Neurobiol Aging 30(3):337–352PubMedCrossRef
28.
go back to reference Saito T et al (2019) Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. J Biol Chem 294(34):12754–12765PubMedPubMedCentralCrossRef Saito T et al (2019) Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. J Biol Chem 294(34):12754–12765PubMedPubMedCentralCrossRef
29.
go back to reference Philipson O et al (2009) A highly insoluble state of Abeta similar to that of Alzheimer’s disease brain is found in Arctic APP transgenic mice. Neurobiol Aging 30(9):1393–1405PubMedCrossRef Philipson O et al (2009) A highly insoluble state of Abeta similar to that of Alzheimer’s disease brain is found in Arctic APP transgenic mice. Neurobiol Aging 30(9):1393–1405PubMedCrossRef
30.
go back to reference Neill T et al (2017) Decorin-evoked paternally expressed gene 3 (PEG3) is an upstream regulator of the transcription factor EB (TFEB) in endothelial cell autophagy. J Biol Chem 292(39):16211–16220PubMedPubMedCentralCrossRef Neill T et al (2017) Decorin-evoked paternally expressed gene 3 (PEG3) is an upstream regulator of the transcription factor EB (TFEB) in endothelial cell autophagy. J Biol Chem 292(39):16211–16220PubMedPubMedCentralCrossRef
32.
go back to reference Vanlandewijck M et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554(7693):475–480PubMedCrossRef Vanlandewijck M et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554(7693):475–480PubMedCrossRef
33.
go back to reference Iliff JJ et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111PubMedPubMedCentralCrossRef Iliff JJ et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111PubMedPubMedCentralCrossRef
34.
go back to reference Andreasen N et al (1999) Cerebrospinal fluid beta-amyloid(1–42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol 56(6):673–680PubMedCrossRef Andreasen N et al (1999) Cerebrospinal fluid beta-amyloid(1–42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol 56(6):673–680PubMedCrossRef
36.
go back to reference van de Haar HJ et al (2016) Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging. Neurobiol Aging 45:190–196PubMedCrossRef van de Haar HJ et al (2016) Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging. Neurobiol Aging 45:190–196PubMedCrossRef
37.
go back to reference van de Haar HJ et al (2016) Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281(2):527–535PubMedCrossRef van de Haar HJ et al (2016) Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281(2):527–535PubMedCrossRef
38.
go back to reference Bellucci C et al (2007) Differences in extracellular matrix production and basic fibroblast growth factor response in skin fibroblasts from sporadic and familial Alzheimer’s disease. Mol Med 13(9–10):542–550PubMedPubMedCentralCrossRef Bellucci C et al (2007) Differences in extracellular matrix production and basic fibroblast growth factor response in skin fibroblasts from sporadic and familial Alzheimer’s disease. Mol Med 13(9–10):542–550PubMedPubMedCentralCrossRef
41.
go back to reference Neill T et al (2014) Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitostatin. J Biol Chem 289(8):4952–4968PubMedPubMedCentralCrossRef Neill T et al (2014) Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitostatin. J Biol Chem 289(8):4952–4968PubMedPubMedCentralCrossRef
42.
go back to reference Yao T et al (2016) Decorin-mediated inhibition of the migration of U87MG glioma cells involves activation of autophagy and suppression of TGF-beta signaling. FEBS Open Bio 6(7):707–719PubMedPubMedCentralCrossRef Yao T et al (2016) Decorin-mediated inhibition of the migration of U87MG glioma cells involves activation of autophagy and suppression of TGF-beta signaling. FEBS Open Bio 6(7):707–719PubMedPubMedCentralCrossRef
43.
go back to reference Zhao H et al (2016) Expression of decorin in intestinal tissues of mice with inflammatory bowel disease and its correlation with autophagy. Exp Ther Med 12(6):3885–3892PubMedPubMedCentralCrossRef Zhao H et al (2016) Expression of decorin in intestinal tissues of mice with inflammatory bowel disease and its correlation with autophagy. Exp Ther Med 12(6):3885–3892PubMedPubMedCentralCrossRef
44.
go back to reference Shimizu S et al (2010) Involvement of JNK in the regulation of autophagic cell death. Oncogene 29(14):2070–2082PubMedCrossRef Shimizu S et al (2010) Involvement of JNK in the regulation of autophagic cell death. Oncogene 29(14):2070–2082PubMedCrossRef
45.
go back to reference Nixon RA et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122PubMedCrossRef Nixon RA et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122PubMedCrossRef
46.
go back to reference Fleming A et al (2022) The different autophagy degradation pathways and neurodegeneration. Neuron 110(6):935–966PubMedCrossRef Fleming A et al (2022) The different autophagy degradation pathways and neurodegeneration. Neuron 110(6):935–966PubMedCrossRef
48.
49.
go back to reference Kobro-Flatmoen A et al (2021) Re-emphasizing early Alzheimer’s disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 67:101307PubMedCrossRef Kobro-Flatmoen A et al (2021) Re-emphasizing early Alzheimer’s disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 67:101307PubMedCrossRef
50.
go back to reference Xie C et al (2022) Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 6(1):76–93PubMedPubMedCentralCrossRef Xie C et al (2022) Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 6(1):76–93PubMedPubMedCentralCrossRef
51.
go back to reference Neill T, Iozzo RV (2022) The role of decorin proteoglycan in mitophagy. Cancers (Basel) 14(3):804CrossRef Neill T, Iozzo RV (2022) The role of decorin proteoglycan in mitophagy. Cancers (Basel) 14(3):804CrossRef
Metadata
Title
Increased CSF-decorin predicts brain pathological changes driven by Alzheimer’s Aβ amyloidosis
Authors
Richeng Jiang
Una Smailovic
Hazal Haytural
Betty M. Tijms
Hao Li
Robert Mihai Haret
Ganna Shevchenko
Gefei Chen
Axel Abelein
Johan Gobom
Susanne Frykman
Misaki Sekiguchi
Ryo Fujioka
Naoto Watamura
Hiroki Sasaguri
Sofie Nyström
Per Hammarström
Takaomi C. Saido
Vesna Jelic
Stina Syvänen
Henrik Zetterberg
Bengt Winblad
Jonas Bergquist
Pieter Jelle Visser
Per Nilsson
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2022
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-022-01398-5

Other articles of this Issue 1/2022

Acta Neuropathologica Communications 1/2022 Go to the issue