Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Research

Hippocampal injections of soluble amyloid-beta oligomers alter electroencephalographic activity during wake and slow-wave sleep in rats

Authors: Audrey Hector, Chloé Provost, Benoît Delignat-Lavaud, Khadija Bouamira, Chahinez-Anissa Menaouar, Valérie Mongrain, Jonathan Brouillette

Published in: Alzheimer's Research & Therapy | Issue 1/2023

Login to get access

Abstract

Background

Soluble amyloid-beta oligomers (Aβo) begin to accumulate in the human brain one to two decades before a clinical diagnosis of Alzheimer’s disease (AD). The literature supports that soluble Aβo are implicated in synapse and neuronal losses in the brain regions such as the hippocampus. This region importantly contributes to explicit memory, the first type of memory affected in AD. During AD preclinical and prodromal stages, people are also experiencing wake/sleep alterations such as insomnia (e.g., difficulty initiating sleep, decreased sleep duration), excessive daytime sleepiness, and sleep schedule modifications. In addition, changes in electroencephalographic (EEG) activity during wake and sleep have been reported in AD patients and animal models. However, the specific contribution of Aβo to wake/sleep alterations is poorly understood and was investigated in the present study.

Methods

Chronic hippocampal injections of soluble Aβo were conducted in male rats and combined with EEG recording to determine the progressive impact of Aβ pathology specifically on wake/sleep architecture and EEG activity. Bilateral injections were conducted for 6 consecutive days, and EEG acquisition was done before, during, and after Aβo injections. Immunohistochemistry was used to assess neuron numbers in the hippocampal dentate gyrus (DG).

Results

Aβo injections did not affect the time spent in wakefulness, slow wave sleep (SWS), and paradoxical sleep but altered EEG activity during wake and SWS. More precisely, Aβo increased slow-wave activity (SWA; 0.5–5 Hz) and low-beta activity (16–20 Hz) during wake and decreased theta (5–9 Hz) and alpha (9–12 Hz) activities during SWS. Moreover, the theta activity/SWA ratio during wake and SWS was decreased by Aβo. These effects were significant only after 6 days of Aβo injections and were found with alterations in neuron counts in the DG.

Conclusions

We found multiple modifications of the wake and SWS EEG following Aβo delivery to the hippocampus. These findings expose a specific EEG signature of Aβ pathology and can serve the development of non-invasive and cost-effective markers for the early diagnosis of AD or other amyloid-related diseases.
Appendix
Available only for authorised users
Literature
2.
go back to reference Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ. β-Amyloid 1–42 induces neuronal death through the p75 neurotrophin receptor. J Neurosci. 2008;28:3941–6.PubMedPubMedCentralCrossRef Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ. β-Amyloid 1–42 induces neuronal death through the p75 neurotrophin receptor. J Neurosci. 2008;28:3941–6.PubMedPubMedCentralCrossRef
3.
go back to reference Hernandez CM, Kayed R, Zheng H, Sweatt JD, Dineley KT. Loss of 7 nicotinic receptors enhances amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2010;30:2442–53.PubMedPubMedCentralCrossRef Hernandez CM, Kayed R, Zheng H, Sweatt JD, Dineley KT. Loss of 7 nicotinic receptors enhances amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2010;30:2442–53.PubMedPubMedCentralCrossRef
4.
go back to reference Brouillette J. The effects of soluble Aβ oligomers on neurodegeneration in Alzheimer’s disease. Curr Pharm Des. 2014;20:2506–19.PubMedCrossRef Brouillette J. The effects of soluble Aβ oligomers on neurodegeneration in Alzheimer’s disease. Curr Pharm Des. 2014;20:2506–19.PubMedCrossRef
5.
go back to reference Lue L-F, Kuo Y-M, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155:853–62.PubMedPubMedCentralCrossRef Lue L-F, Kuo Y-M, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155:853–62.PubMedPubMedCentralCrossRef
6.
go back to reference Brouillette J, Caillierez R, Zommer N, Alves-Pires C, Benilova I, Blum D, et al. Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β 1–42 oligomers are revealed in vivo by using a novel animal model. J Neurosci. 2012;32:7852–61.PubMedPubMedCentralCrossRef Brouillette J, Caillierez R, Zommer N, Alves-Pires C, Benilova I, Blum D, et al. Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β 1–42 oligomers are revealed in vivo by using a novel animal model. J Neurosci. 2012;32:7852–61.PubMedPubMedCentralCrossRef
7.
go back to reference Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12:292–323.PubMedPubMedCentralCrossRef Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12:292–323.PubMedPubMedCentralCrossRef
8.
go back to reference Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol. 2007;64:343–9.PubMedCrossRef Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol. 2007;64:343–9.PubMedCrossRef
9.
go back to reference Gustafson DR, Skoog I, Rosengren L, Zetterberg H, Blennow K. Cerebrospinal fluid β-amyloid 1–42 concentration may predict cognitive decline in older women. J Neurol Neurosurg Psychiatry. 2006;78:461–4.PubMedPubMedCentralCrossRef Gustafson DR, Skoog I, Rosengren L, Zetterberg H, Blennow K. Cerebrospinal fluid β-amyloid 1–42 concentration may predict cognitive decline in older women. J Neurol Neurosurg Psychiatry. 2006;78:461–4.PubMedPubMedCentralCrossRef
10.
go back to reference Stomrud E, Hansson O, Blennow K, Minthon L, Londos E. Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly. Dement Geriatr Cogn Disord. 2007;24:118–24.PubMedCrossRef Stomrud E, Hansson O, Blennow K, Minthon L, Londos E. Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly. Dement Geriatr Cogn Disord. 2007;24:118–24.PubMedCrossRef
11.
go back to reference Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.PubMedPubMedCentralCrossRef Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.PubMedPubMedCentralCrossRef
12.
go back to reference Vitiello MV, Prinz PN, Williams DE, Frommlet MS, Ries RK. Sleep disturbances in patients with mild-stage Alzheimer’s disease. J Gerontol. 1990;45:M131–8.PubMedCrossRef Vitiello MV, Prinz PN, Williams DE, Frommlet MS, Ries RK. Sleep disturbances in patients with mild-stage Alzheimer’s disease. J Gerontol. 1990;45:M131–8.PubMedCrossRef
13.
go back to reference Bliwise DL, Tinklenberg J, Yesavage JA, Davies H, Pursley AM, Petta DE, et al. REM latency in Alzheimer’s disease. Biol Psychiatry. 1989;25:320–8.PubMedCrossRef Bliwise DL, Tinklenberg J, Yesavage JA, Davies H, Pursley AM, Petta DE, et al. REM latency in Alzheimer’s disease. Biol Psychiatry. 1989;25:320–8.PubMedCrossRef
14.
go back to reference Bonanni E, Maestri M, Tognoni G, Fabbrini M, Nucciarone B, Manca ML, et al. Daytime sleepiness in mild and moderate Alzheimer’s disease and its relationship with cognitive impairment. J Sleep Res. 2005;14:311–7.PubMedCrossRef Bonanni E, Maestri M, Tognoni G, Fabbrini M, Nucciarone B, Manca ML, et al. Daytime sleepiness in mild and moderate Alzheimer’s disease and its relationship with cognitive impairment. J Sleep Res. 2005;14:311–7.PubMedCrossRef
15.
go back to reference Petit D, Gagnon J-F, Fantini ML, Ferini-Strambi L, Montplaisir J. Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res. 2004;56:487–96.PubMedCrossRef Petit D, Gagnon J-F, Fantini ML, Ferini-Strambi L, Montplaisir J. Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res. 2004;56:487–96.PubMedCrossRef
16.
go back to reference Dlugaj M, Weinreich G, Weimar C, et al. Sleep-disordered breathing, sleep quality, and mild cognitive impairment in the general population. J Alzheimers Dis. 2014;41:479–97.PubMedCrossRef Dlugaj M, Weinreich G, Weimar C, et al. Sleep-disordered breathing, sleep quality, and mild cognitive impairment in the general population. J Alzheimers Dis. 2014;41:479–97.PubMedCrossRef
17.
go back to reference Westerberg CE, Mander BA, Florczak SM, Weintraub S, Mesulam M-M, Zee PC, et al. Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. J Int Neuropsychol Soc. 2012;18:490–500.PubMedPubMedCentralCrossRef Westerberg CE, Mander BA, Florczak SM, Weintraub S, Mesulam M-M, Zee PC, et al. Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. J Int Neuropsychol Soc. 2012;18:490–500.PubMedPubMedCentralCrossRef
18.
go back to reference Brayet P, Petit D, Frauscher B, Gagnon J-F, Gosselin N, Gagnon K, et al. Quantitative EEG of rapid-eye-movement sleep: a marker of amnestic mild cognitive impairment. Clin EEG Neurosci. 2016;47:134–41.PubMedCrossRef Brayet P, Petit D, Frauscher B, Gagnon J-F, Gosselin N, Gagnon K, et al. Quantitative EEG of rapid-eye-movement sleep: a marker of amnestic mild cognitive impairment. Clin EEG Neurosci. 2016;47:134–41.PubMedCrossRef
19.
go back to reference Ju YES, McLeland JS, Toedebusch CD, Xiong C, Fagan AM, Duntley SP, et al. Sleep quality and preclinical Alzheimer disease. JAMA Neurol. 2013;70:587–93.PubMedPubMedCentralCrossRef Ju YES, McLeland JS, Toedebusch CD, Xiong C, Fagan AM, Duntley SP, et al. Sleep quality and preclinical Alzheimer disease. JAMA Neurol. 2013;70:587–93.PubMedPubMedCentralCrossRef
20.
go back to reference Dufort-Gervais J, Mongrain V, Brouillette J. Bidirectional relationships between sleep and amyloid-beta in the hippocampus. Neurobiol Learn Mem. 2019;160:108–17.PubMedCrossRef Dufort-Gervais J, Mongrain V, Brouillette J. Bidirectional relationships between sleep and amyloid-beta in the hippocampus. Neurobiol Learn Mem. 2019;160:108–17.PubMedCrossRef
21.
go back to reference Kreuzer M, Keating GL, Fenzl T, Härtner L, Sinon CG, Hajjar I, et al. Sleep/wake behavior and EEG signatures of the TgF344-AD rat model at the prodromal stage. Int J Mol Sci. 2020;21:9290.PubMedPubMedCentralCrossRef Kreuzer M, Keating GL, Fenzl T, Härtner L, Sinon CG, Hajjar I, et al. Sleep/wake behavior and EEG signatures of the TgF344-AD rat model at the prodromal stage. Int J Mol Sci. 2020;21:9290.PubMedPubMedCentralCrossRef
22.
go back to reference Gurevicius K, Lipponen A, Tanila H. Increased cortical and thalamic excitability in freely moving APPswe/PS1dE9 mice modeling epileptic activity associated with Alzheimer’s disease. Cereb Cortex. 2013;23:1148–58.PubMedCrossRef Gurevicius K, Lipponen A, Tanila H. Increased cortical and thalamic excitability in freely moving APPswe/PS1dE9 mice modeling epileptic activity associated with Alzheimer’s disease. Cereb Cortex. 2013;23:1148–58.PubMedCrossRef
23.
go back to reference Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, Holtzman DM. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med. 2012;4:150ra122.PubMedPubMedCentralCrossRef Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, Holtzman DM. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med. 2012;4:150ra122.PubMedPubMedCentralCrossRef
24.
go back to reference Zhang B, Veasey SC, Wood MA, Leng LZ, Kaminski C, Leight S, et al. Impaired rapid eye movement sleep in the Tg2576 APP murine model of Alzheimer’s disease with injury to pedunculopontine cholinergic neurons. Am J Pathol. 2005;167:1361–9.PubMedPubMedCentralCrossRef Zhang B, Veasey SC, Wood MA, Leng LZ, Kaminski C, Leight S, et al. Impaired rapid eye movement sleep in the Tg2576 APP murine model of Alzheimer’s disease with injury to pedunculopontine cholinergic neurons. Am J Pathol. 2005;167:1361–9.PubMedPubMedCentralCrossRef
25.
go back to reference Colby-Milley J, Cavanagh C, Jego S, Breitner JCS, Quirion R, Adamantidis A. Sleep-wake cycle dysfunction in the TgCRND8 mouse model of Alzheimer’s disease: from early to advanced pathological stages. PLoS One. 2015;10:e0130177.PubMedPubMedCentralCrossRef Colby-Milley J, Cavanagh C, Jego S, Breitner JCS, Quirion R, Adamantidis A. Sleep-wake cycle dysfunction in the TgCRND8 mouse model of Alzheimer’s disease: from early to advanced pathological stages. PLoS One. 2015;10:e0130177.PubMedPubMedCentralCrossRef
26.
go back to reference Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, et al. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J. 2017;36:2473–87.PubMedPubMedCentralCrossRef Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, et al. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J. 2017;36:2473–87.PubMedPubMedCentralCrossRef
27.
go back to reference Saito T, Matsuba Y, Yamazaki N, Hashimoto S, Saido TC. Calpain activation in Alzheimer’s model mice is an artifact of APP and presenilin overexpression. J Neurosci. 2016;36:9933–6.PubMedPubMedCentralCrossRef Saito T, Matsuba Y, Yamazaki N, Hashimoto S, Saido TC. Calpain activation in Alzheimer’s model mice is an artifact of APP and presenilin overexpression. J Neurosci. 2016;36:9933–6.PubMedPubMedCentralCrossRef
28.
go back to reference Sajadi A, Provost C, Pham B, Brouillette J. Neurodegeneration in an animal model of chronic amyloid-beta oligomer infusion is counteracted by antibody treatment infused with osmotic pumps. J Vis Exp. 2016;114:54215. Sajadi A, Provost C, Pham B, Brouillette J. Neurodegeneration in an animal model of chronic amyloid-beta oligomer infusion is counteracted by antibody treatment infused with osmotic pumps. J Vis Exp. 2016;114:54215.
29.
go back to reference Boyce R, Glasgow SD, Williams S, Adamantidis A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. 2016;352:812–6.PubMedCrossRef Boyce R, Glasgow SD, Williams S, Adamantidis A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. 2016;352:812–6.PubMedCrossRef
30.
go back to reference Dufort-Gervais J, Provost C, Charbonneau L, Norris CM, Calon F, Mongrain V, Brouillette J. Neuroligin-1 is altered in the hippocampus of Alzheimer’s disease patients and mouse models, and modulates the toxicity of amyloid-beta oligomers. Sci Rep. 2020;10:6956.PubMedPubMedCentralCrossRef Dufort-Gervais J, Provost C, Charbonneau L, Norris CM, Calon F, Mongrain V, Brouillette J. Neuroligin-1 is altered in the hippocampus of Alzheimer’s disease patients and mouse models, and modulates the toxicity of amyloid-beta oligomers. Sci Rep. 2020;10:6956.PubMedPubMedCentralCrossRef
31.
go back to reference Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Cambridge: Academic Press; 2006. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Cambridge: Academic Press; 2006.
32.
go back to reference Bah TM, Laplante F, Wann BP, Sullivan R, Rousseau G, Godbout R. Paradoxical sleep insomnia and decreased cholinergic neurons after myocardial infarction in rats. Sleep. 2010;33:1703–10.PubMedPubMedCentralCrossRef Bah TM, Laplante F, Wann BP, Sullivan R, Rousseau G, Godbout R. Paradoxical sleep insomnia and decreased cholinergic neurons after myocardial infarction in rats. Sleep. 2010;33:1703–10.PubMedPubMedCentralCrossRef
33.
go back to reference Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, et al. Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J. 2010;29:3408–20.PubMedPubMedCentralCrossRef Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, et al. Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J. 2010;29:3408–20.PubMedPubMedCentralCrossRef
34.
go back to reference Broersen K, Jonckheere W, Rozenski J, Vandersteen A, Pauwels K, Pastore A, et al. A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng Des Sel. 2011;24:743–50.PubMedCrossRef Broersen K, Jonckheere W, Rozenski J, Vandersteen A, Pauwels K, Pastore A, et al. A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng Des Sel. 2011;24:743–50.PubMedCrossRef
35.
go back to reference Faucher P, Mons N, Micheau J, Louis C, Beracochea DJ. Hippocampal injections of oligomeric amyloid β-peptide (1–42) induce selective working memory deficits and long-lasting alterations of ERK signaling pathway. Front Aging Neurosci. 2016;7:245.PubMedPubMedCentralCrossRef Faucher P, Mons N, Micheau J, Louis C, Beracochea DJ. Hippocampal injections of oligomeric amyloid β-peptide (1–42) induce selective working memory deficits and long-lasting alterations of ERK signaling pathway. Front Aging Neurosci. 2016;7:245.PubMedPubMedCentralCrossRef
36.
go back to reference Seok BS, Bélanger-Nelson E, Provost C, Gibbs S, Mongrain V. The effect of Neuroligin-2 absence on sleep architecture and electroencephalographic activity in mice. Mol Brain. 2018;11:52.PubMedPubMedCentralCrossRef Seok BS, Bélanger-Nelson E, Provost C, Gibbs S, Mongrain V. The effect of Neuroligin-2 absence on sleep architecture and electroencephalographic activity in mice. Mol Brain. 2018;11:52.PubMedPubMedCentralCrossRef
37.
go back to reference Franken P, Dijk DJ, Tobler I, Borbély AA. Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol. 1991;261:R198-208.PubMed Franken P, Dijk DJ, Tobler I, Borbély AA. Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol. 1991;261:R198-208.PubMed
38.
go back to reference El Helou J, Bélanger-Nelson E, Freyburger M, Dorsaz S, Curie T, La Spada F, et al. Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc Natl Acad Sci. 2013;110:9974–9.PubMedPubMedCentralCrossRef El Helou J, Bélanger-Nelson E, Freyburger M, Dorsaz S, Curie T, La Spada F, et al. Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc Natl Acad Sci. 2013;110:9974–9.PubMedPubMedCentralCrossRef
39.
go back to reference Freyburger M, Pierre A, Paquette G, Bélanger-Nelson E, Bedont J, Gaudreault P-O, et al. EphA4 is involved in sleep regulation but not in the electrophysiological response to sleep deprivation. Sleep. 2016;39:613–24.PubMedPubMedCentralCrossRef Freyburger M, Pierre A, Paquette G, Bélanger-Nelson E, Bedont J, Gaudreault P-O, et al. EphA4 is involved in sleep regulation but not in the electrophysiological response to sleep deprivation. Sleep. 2016;39:613–24.PubMedPubMedCentralCrossRef
40.
go back to reference Sethi M, Joshi SS, Webb RL, Beckett TL, Donohue KD, Murphy MP, et al. Increased fragmentation of sleep–wake cycles in the 5XFAD mouse model of Alzheimer’s disease. Neuroscience. 2015;290:80–9.PubMedCrossRef Sethi M, Joshi SS, Webb RL, Beckett TL, Donohue KD, Murphy MP, et al. Increased fragmentation of sleep–wake cycles in the 5XFAD mouse model of Alzheimer’s disease. Neuroscience. 2015;290:80–9.PubMedCrossRef
41.
go back to reference Platt B, Drever B, Koss D, Stoppelkamp S, Jyoti A, Plano A, et al. Abnormal cognition, sleep, EEG and brain metabolism in a novel knock in Alzheimer mouse, PLB1. PLoS ONE. 2011;6:e27068.PubMedPubMedCentralCrossRef Platt B, Drever B, Koss D, Stoppelkamp S, Jyoti A, Plano A, et al. Abnormal cognition, sleep, EEG and brain metabolism in a novel knock in Alzheimer mouse, PLB1. PLoS ONE. 2011;6:e27068.PubMedPubMedCentralCrossRef
42.
go back to reference Bubu OM, Brannick M, Mortimer J, Umasabor-Bubu O, Sebastião YV, Wen Y, et al. Sleep, cognitive impairment, and Alzheimer’s disease: a systematic review and meta-analysis. Sleep. 2017;40(1):zsw032. Bubu OM, Brannick M, Mortimer J, Umasabor-Bubu O, Sebastião YV, Wen Y, et al. Sleep, cognitive impairment, and Alzheimer’s disease: a systematic review and meta-analysis. Sleep. 2017;40(1):zsw032.
43.
go back to reference Goutagny R, Gu N, Cavanagh C, Jackson J, Chabot J-G, Quirion R, et al. Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer’s disease. Eur J Neurosci. 2013;37:1896–902.PubMedCrossRef Goutagny R, Gu N, Cavanagh C, Jackson J, Chabot J-G, Quirion R, et al. Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer’s disease. Eur J Neurosci. 2013;37:1896–902.PubMedCrossRef
44.
go back to reference Kamiya-Matsuoka C, Tummala S. Electrographic patterns in patients with posterior reversible encephalopathy syndrome and seizures. J Neurol Sci. 2017;375:294–8.PubMedCrossRef Kamiya-Matsuoka C, Tummala S. Electrographic patterns in patients with posterior reversible encephalopathy syndrome and seizures. J Neurol Sci. 2017;375:294–8.PubMedCrossRef
45.
go back to reference Wirt RA, Crew LA, Ortiz AA, McNeela AM, Flores E, Kinney JW, Hyman JM. Altered theta rhythm and hippocampal-cortical interactions underlie working memory deficits in a hyperglycemia risk factor model of Alzheimer’s disease. Commun Biol. 2021;4:1036.PubMedPubMedCentralCrossRef Wirt RA, Crew LA, Ortiz AA, McNeela AM, Flores E, Kinney JW, Hyman JM. Altered theta rhythm and hippocampal-cortical interactions underlie working memory deficits in a hyperglycemia risk factor model of Alzheimer’s disease. Commun Biol. 2021;4:1036.PubMedPubMedCentralCrossRef
46.
go back to reference Maloney KJ, Cape EG, Gotman J, Jones BE. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat. Neuroscience. 1997;76:541–55.PubMedCrossRef Maloney KJ, Cape EG, Gotman J, Jones BE. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat. Neuroscience. 1997;76:541–55.PubMedCrossRef
47.
go back to reference Achermann P, Dijk D-J, Brunner DP, Borbély AA. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull. 1993;31:97–113.PubMedCrossRef Achermann P, Dijk D-J, Brunner DP, Borbély AA. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull. 1993;31:97–113.PubMedCrossRef
48.
go back to reference Huber R, Deboer T, Tobler I. Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res. 2000;857:8–19.PubMedCrossRef Huber R, Deboer T, Tobler I. Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res. 2000;857:8–19.PubMedCrossRef
49.
go back to reference Franken P, Tobler I, Borbély AA. Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity. Neurosci Lett. 1991;130:141–4.PubMedCrossRef Franken P, Tobler I, Borbély AA. Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity. Neurosci Lett. 1991;130:141–4.PubMedCrossRef
51.
go back to reference Alberdi E, Sánchez-Gómez MV, Cavaliere F, Pérez-Samartín A, Zugaza JL, Trullas R, et al. Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium. 2010;47:264–72.PubMedCrossRef Alberdi E, Sánchez-Gómez MV, Cavaliere F, Pérez-Samartín A, Zugaza JL, Trullas R, et al. Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium. 2010;47:264–72.PubMedCrossRef
52.
53.
go back to reference Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci. 2019;20:746–62.PubMedCrossRef Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci. 2019;20:746–62.PubMedCrossRef
54.
go back to reference Walker LC, Schelle J, Jucker M. The prion-like properties of amyloid-β assemblies: implications for Alzheimer’s disease. Cold Spring Harb Perspect Med. 2016;6:a024398.PubMedPubMedCentralCrossRef Walker LC, Schelle J, Jucker M. The prion-like properties of amyloid-β assemblies: implications for Alzheimer’s disease. Cold Spring Harb Perspect Med. 2016;6:a024398.PubMedPubMedCentralCrossRef
55.
go back to reference Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115:1490–505.PubMedCrossRef Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115:1490–505.PubMedCrossRef
56.
go back to reference D’Atri A, Scarpelli S, Gorgoni M, Truglia I, Lauri G, Cordone S, et al. EEG alterations during wake and sleep in mild cognitive impairment and Alzheimer’s disease. iScience. 2021;24:102386.PubMedPubMedCentralCrossRef D’Atri A, Scarpelli S, Gorgoni M, Truglia I, Lauri G, Cordone S, et al. EEG alterations during wake and sleep in mild cognitive impairment and Alzheimer’s disease. iScience. 2021;24:102386.PubMedPubMedCentralCrossRef
57.
go back to reference Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, et al. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol. 2007;17:613–8.PubMedCrossRef Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, et al. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol. 2007;17:613–8.PubMedCrossRef
58.
go back to reference De Gennaro L, Marzano C, Veniero D, Moroni F, Fratello F, Curcio G, et al. Neurophysiological correlates of sleepiness: a combined TMS and EEG study. Neuroimage. 2007;36:1277–87.PubMedCrossRef De Gennaro L, Marzano C, Veniero D, Moroni F, Fratello F, Curcio G, et al. Neurophysiological correlates of sleepiness: a combined TMS and EEG study. Neuroimage. 2007;36:1277–87.PubMedCrossRef
59.
go back to reference Finelli LA, Baumann H, Borbély AA, Achermann P. Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience. 2000;101:523–9.PubMedCrossRef Finelli LA, Baumann H, Borbély AA, Achermann P. Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience. 2000;101:523–9.PubMedCrossRef
60.
go back to reference Borbély AA, Achermann P. Sleep homeostasis and models of sleep regulation. J Biol Rhythms. 1999;14:557–68.PubMed Borbély AA, Achermann P. Sleep homeostasis and models of sleep regulation. J Biol Rhythms. 1999;14:557–68.PubMed
61.
go back to reference Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP. Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron. 2018;97:221-230.e4.PubMedCrossRef Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP. Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron. 2018;97:221-230.e4.PubMedCrossRef
62.
go back to reference Jarosz-Griffiths HH, Noble E, Rushworth JV, Hooper NM. Amyloid-β receptors: the good, the bad, and the prion protein. J Biol Chem. 2016;291:3174–83.PubMedCrossRef Jarosz-Griffiths HH, Noble E, Rushworth JV, Hooper NM. Amyloid-β receptors: the good, the bad, and the prion protein. J Biol Chem. 2016;291:3174–83.PubMedCrossRef
63.
go back to reference Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JD, Fuentealba P, et al. Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci. 2007;27:8790–804.PubMedPubMedCentralCrossRef Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JD, Fuentealba P, et al. Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci. 2007;27:8790–804.PubMedPubMedCentralCrossRef
64.
go back to reference Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do? Nat Rev Neurosci. 2009;10:792–802.PubMedCrossRef Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do? Nat Rev Neurosci. 2009;10:792–802.PubMedCrossRef
66.
go back to reference Lautenschlager NT, Cupples LA, Rao VS, Auerbach SA, Becker R, Burke J, et al. Risk of dementia among relatives of Alzheimer’s disease patients in the MIRAGE study: what is in store for the oldest old? Neurology. 1996;46:641–50.PubMedCrossRef Lautenschlager NT, Cupples LA, Rao VS, Auerbach SA, Becker R, Burke J, et al. Risk of dementia among relatives of Alzheimer’s disease patients in the MIRAGE study: what is in store for the oldest old? Neurology. 1996;46:641–50.PubMedCrossRef
67.
go back to reference Dib R, Gervais NJ, Mongrain V. A review of the current state of knowledge on sex differences in sleep and circadian phenotypes in rodents. Neurobiol Sleep Circadian Rhythms. 2021;11:100068.PubMedPubMedCentralCrossRef Dib R, Gervais NJ, Mongrain V. A review of the current state of knowledge on sex differences in sleep and circadian phenotypes in rodents. Neurobiol Sleep Circadian Rhythms. 2021;11:100068.PubMedPubMedCentralCrossRef
68.
go back to reference Zussy C, Brureau A, Delair B, Marchal S, Keller E, Ixart G, et al. Time-course and regional analyses of the physiopathological changes induced after cerebral injection of an amyloid β fragment in rats. Am J Pathol. 2011;179:315–34.PubMedPubMedCentralCrossRef Zussy C, Brureau A, Delair B, Marchal S, Keller E, Ixart G, et al. Time-course and regional analyses of the physiopathological changes induced after cerebral injection of an amyloid β fragment in rats. Am J Pathol. 2011;179:315–34.PubMedPubMedCentralCrossRef
69.
go back to reference Jean YY, Ribe EM, Pero ME, Moskalenko M, Iqbal Z, Marks LJ, et al. Caspase-2 is essential for c-Jun transcriptional activation and Bim induction in neuron death. Biochem J. 2013;455:15–25.PubMedCrossRef Jean YY, Ribe EM, Pero ME, Moskalenko M, Iqbal Z, Marks LJ, et al. Caspase-2 is essential for c-Jun transcriptional activation and Bim induction in neuron death. Biochem J. 2013;455:15–25.PubMedCrossRef
70.
go back to reference Bie B, Wu J, Yang H, Xu JJ, Brown DL, Naguib M. Epigenetic suppression of neuroligin 1 underlies amyloid-induced memory deficiency. Nat Neurosci. 2014;17:223–31.PubMedCrossRef Bie B, Wu J, Yang H, Xu JJ, Brown DL, Naguib M. Epigenetic suppression of neuroligin 1 underlies amyloid-induced memory deficiency. Nat Neurosci. 2014;17:223–31.PubMedCrossRef
71.
go back to reference Sabir M, Gaudreault P-O, Freyburger M, Massart R, Blanchet-Cohen A, Jaber M, et al. Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice. Brain Behav Immun. 2015;47:118–30.PubMedCrossRef Sabir M, Gaudreault P-O, Freyburger M, Massart R, Blanchet-Cohen A, Jaber M, et al. Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice. Brain Behav Immun. 2015;47:118–30.PubMedCrossRef
72.
go back to reference Deboer T, Vansteensel MJ, Détári L, Meijer JH. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci. 2003;6:1086–90.PubMedCrossRef Deboer T, Vansteensel MJ, Détári L, Meijer JH. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci. 2003;6:1086–90.PubMedCrossRef
74.
go back to reference da LopesSilva F. EEG and MEG: relevance to neuroscience. Neuron. 2013;80:1112–28.CrossRef da LopesSilva F. EEG and MEG: relevance to neuroscience. Neuron. 2013;80:1112–28.CrossRef
Metadata
Title
Hippocampal injections of soluble amyloid-beta oligomers alter electroencephalographic activity during wake and slow-wave sleep in rats
Authors
Audrey Hector
Chloé Provost
Benoît Delignat-Lavaud
Khadija Bouamira
Chahinez-Anissa Menaouar
Valérie Mongrain
Jonathan Brouillette
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2023
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-023-01316-4

Other articles of this Issue 1/2023

Alzheimer's Research & Therapy 1/2023 Go to the issue