Skip to main content
Top
Published in: BMC Neurology 1/2022

Open Access 01-12-2022 | Alzheimer's Disease | Research

Dynamic changes of CSF clusterin levels across the Alzheimer’s disease continuum

Authors: Lian Tang, Zhi-Bo Wang, Ling-Zhi Ma, Xi-Peng Cao, Lan Tan, Meng-Shan Tan

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

Clusterin is a multifunctional protein, which is associated with the pathogenesis and the development of Alzheimer’s disease (AD). Compared with normal controls, inconsistent results have yielded in previous studies for concentration of cerebrospinal fluid (CSF) clusterin in AD patients. We explored CSF clusterin levels in different pathological processes of AD.

Methods

Following the National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria, we employed on the levels of CSF Aβ42(A), phosphorylated-Tau (T), and total-tau (N). Based on previously published cutoffs and the close correlation between CSF p-tau and t-tau, 276 participants from the publicly available ADNI database with CSF biomarkers were divided into four groups: A-(TN)- (normal Aβ42 and normal p-tau and t-tau; n = 50), A+(TN)- (abnormal Aβ42 and normal p-tau and t-tau; n = 39), A+(TN) + (abnormal Aβ42 and abnormal p-tau or t-tau; n = 147), A-(TN) + (normal Aβ42 and abnormal p-tau or t-tau; n = 40). To assess CSF clusterin levels in AD continuum, intergroup differences in four groups were compared. Pairwise comparisons were conducted as appropriate followed by Bonferroni post hoc analyses. To further study the relationships between CSF clusterin levels and AD core pathological biomarkers, we employed multiple linear regression method in subgroups.

Results

Compared with the A-(TN)- group, CSF clusterin levels were decreased in A+ (TN)- group (P = 0.002 after Bonferroni correction), but increased in the A+(TN) + group and the A-(TN) + group (both P <  0.001 after Bonferroni correction). Moreover, we found CSF clusterin levels are positively associated with CSF Aβ42 (β = 0.040, P <  0. 001), CSF p-tau (β = 0.325, P <  0.001) and CSF t-tau (β = 0.346, P <  0.001).

Conclusions

Our results indicated that there are differences levels of CSF clusterin in different stages of AD pathology. The CSF clusterin level decreased at the early stage are related to abnormal Aβ pathology; and the increased levels are associated with tau pathology and neurodegeneration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. The Lancet. 2011;377(9770):1019–31.CrossRef Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. The Lancet. 2011;377(9770):1019–31.CrossRef
2.
go back to reference Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease:implications for prevention trials. Neuron. 2014;84(3):608–22.CrossRef Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease:implications for prevention trials. Neuron. 2014;84(3):608–22.CrossRef
3.
go back to reference Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16.CrossRef Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16.CrossRef
4.
go back to reference Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer’s Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci. 2019;13:164.CrossRef Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer’s Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci. 2019;13:164.CrossRef
5.
go back to reference Rosenthal SL, Wang X, Demirci FY, Barmada MM, Ganguli M, Lopez OL, et al. Beta-Amyloid Toxicity Modifier Genes and the Risk of Alzheimer’s Disease. Am J Neurodegener Dis. 2012;1(2):191–8. Rosenthal SL, Wang X, Demirci FY, Barmada MM, Ganguli M, Lopez OL, et al. Beta-Amyloid Toxicity Modifier Genes and the Risk of Alzheimer’s Disease. Am J Neurodegener Dis. 2012;1(2):191–8.
6.
go back to reference Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.CrossRef Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.CrossRef
7.
go back to reference Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.CrossRef Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.CrossRef
8.
go back to reference Nilselid AM, Davidsson P, Nagga K, Andreasen N, Fredman P, Blennow K. Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int. 2006;48(8):718–28.CrossRef Nilselid AM, Davidsson P, Nagga K, Andreasen N, Fredman P, Blennow K. Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int. 2006;48(8):718–28.CrossRef
9.
go back to reference Sihlbom C, Davidsson P, Sjogren M, Wahlund LO, Nilsson CL. Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer’s disease patients and healthy individuals. Neurochem Res. 2008;33(7):1332–40.CrossRef Sihlbom C, Davidsson P, Sjogren M, Wahlund LO, Nilsson CL. Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer’s disease patients and healthy individuals. Neurochem Res. 2008;33(7):1332–40.CrossRef
10.
go back to reference Deming Y, Xia J, Cai Y, Lord J, Holmans P, Bertelsen S, et al. A potential endophenotype for Alzheimer’s disease: cerebrospinal fluid clusterin. Neurobiol Aging. 2016;37(208):e1–9. Deming Y, Xia J, Cai Y, Lord J, Holmans P, Bertelsen S, et al. A potential endophenotype for Alzheimer’s disease: cerebrospinal fluid clusterin. Neurobiol Aging. 2016;37(208):e1–9.
11.
go back to reference Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res. 2003;118(1–2):140–6.CrossRef Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res. 2003;118(1–2):140–6.CrossRef
12.
go back to reference Lidström AM, Hessea C, Rosengrena L, Fredmana P, Davidssona P, Blennow K. Normal levels of clusterin in cerebrospinal fluid in Alzheimer’s disease, and no change after acute ischemic stroke. J Alzheimers Dis. 2001;3(5):435–42.CrossRef Lidström AM, Hessea C, Rosengrena L, Fredmana P, Davidssona P, Blennow K. Normal levels of clusterin in cerebrospinal fluid in Alzheimer’s disease, and no change after acute ischemic stroke. J Alzheimers Dis. 2001;3(5):435–42.CrossRef
13.
go back to reference Shi X, Xie B, Xing Y, Tang Y. Plasma Clusterin as a Potential Biomarker for Alzheimer’s Disease-A Systematic Review and Meta-analysis. Curr Alzheimer Res. 2019;16(11):1018–27.CrossRef Shi X, Xie B, Xing Y, Tang Y. Plasma Clusterin as a Potential Biomarker for Alzheimer’s Disease-A Systematic Review and Meta-analysis. Curr Alzheimer Res. 2019;16(11):1018–27.CrossRef
14.
go back to reference Yang C, Wang H, Li C, Niu H, Luo S, Guo X. Association between clusterin concentration and dementia: a systematic review and meta-analysis. Metab Brain Dis. 2019;34(1):129–40.CrossRef Yang C, Wang H, Li C, Niu H, Luo S, Guo X. Association between clusterin concentration and dementia: a systematic review and meta-analysis. Metab Brain Dis. 2019;34(1):129–40.CrossRef
15.
go back to reference Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, et al. Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab. 2007;27(5):909–18.CrossRef Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, et al. Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab. 2007;27(5):909–18.CrossRef
16.
go back to reference Matsubara E, Frangione B, Ghiso J. Characterization of Apolipoprotein J-Alzheimer’s Aβ. Interaction. 1995;270(13):7563–7. Matsubara E, Frangione B, Ghiso J. Characterization of Apolipoprotein J-Alzheimer’s Aβ. Interaction. 1995;270(13):7563–7.
17.
go back to reference Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE, et al. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1–42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol. 1995;136(1):22–31.CrossRef Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE, et al. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1–42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol. 1995;136(1):22–31.CrossRef
18.
go back to reference DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, et al. ApoE and Clusterin Cooperatively Suppress Abeta Levels and Deposition: Evidence that ApoE Regulates Extracellular Abeta Metabolism In Vivo. Neuron. 2004;41(2):193–202.CrossRef DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, et al. ApoE and Clusterin Cooperatively Suppress Abeta Levels and Deposition: Evidence that ApoE Regulates Extracellular Abeta Metabolism In Vivo. Neuron. 2004;41(2):193–202.CrossRef
19.
go back to reference Yuste-Checa P, Trinkaus VA, Riera-Tur I, Imamoglu R, Schaller TF, Wang H, et al. The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nat Commun. 2021;12(1):4863.CrossRef Yuste-Checa P, Trinkaus VA, Riera-Tur I, Imamoglu R, Schaller TF, Wang H, et al. The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nat Commun. 2021;12(1):4863.CrossRef
20.
go back to reference Jack CRJ, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539–47.CrossRef Jack CRJ, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539–47.CrossRef
21.
go back to reference Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.CrossRef Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.CrossRef
22.
go back to reference Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74(3):201–9.CrossRef Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74(3):201–9.CrossRef
23.
go back to reference Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, Petersen RC, et al. Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimers Dement. 2010;6(3):230–8.CrossRef Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, Petersen RC, et al. Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimers Dement. 2010;6(3):230–8.CrossRef
24.
go back to reference Shaw LM, Hansson O, Manuilova E, Masters CL, Doecke JD, Li QX, et al. Method comparison study of the Elecsys(R) beta-Amyloid (1–42) CSF assay versus comparator assays and LC-MS/MS. Clin Biochem. 2019;72:7–14.CrossRef Shaw LM, Hansson O, Manuilova E, Masters CL, Doecke JD, Li QX, et al. Method comparison study of the Elecsys(R) beta-Amyloid (1–42) CSF assay versus comparator assays and LC-MS/MS. Clin Biochem. 2019;72:7–14.CrossRef
25.
go back to reference Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods. 2014;11(2):149–55.CrossRef Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods. 2014;11(2):149–55.CrossRef
26.
go back to reference Tang Y, Lutz MW, Xing Y. A systems-based model of Alzheimer’s disease. Alzheimers Dement. 2019;15(1):168–71.CrossRef Tang Y, Lutz MW, Xing Y. A systems-based model of Alzheimer’s disease. Alzheimers Dement. 2019;15(1):168–71.CrossRef
27.
go back to reference Jack CR Jr, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13(3):205–16.CrossRef Jack CR Jr, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13(3):205–16.CrossRef
28.
go back to reference Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-beta PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 2018;14(11):1470–81.CrossRef Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-beta PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 2018;14(11):1470–81.CrossRef
29.
go back to reference Ghiso J, Matsubara E, Koudinov A, Choi-Miura NH, Tomita M, Wisniewski T, et al. The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40,40(apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J. 1993;293(Pt 1):27–30.CrossRef Ghiso J, Matsubara E, Koudinov A, Choi-Miura NH, Tomita M, Wisniewski T, et al. The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40,40(apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J. 1993;293(Pt 1):27–30.CrossRef
30.
go back to reference Wang Y, Qin X, Paudel HK. Amyloid beta peptide promotes lysosomal degradation of clusterin via sortilin in hippocampal primary neurons. Neurobiol Dis. 2017;103:78–88.CrossRef Wang Y, Qin X, Paudel HK. Amyloid beta peptide promotes lysosomal degradation of clusterin via sortilin in hippocampal primary neurons. Neurobiol Dis. 2017;103:78–88.CrossRef
31.
go back to reference May P, Lampert-Etchells M, Johnson S, Poirier J, Masters J, Finch C. Dynamics of gene expression for a hip- pocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron. 1990;5(6):831–9.CrossRef May P, Lampert-Etchells M, Johnson S, Poirier J, Masters J, Finch C. Dynamics of gene expression for a hip- pocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron. 1990;5(6):831–9.CrossRef
32.
go back to reference Lidström AM, Bogdanovic N, Hesse C, Volkman I, Davidsson P, Blennow K. Clusterin (Apolipoprotein J) Protein Levels Are Increased in Hippocampus and in Frontal Cortex in Alzheimer’s Disease. Exp Neurol. 1998;154(2):511–21.CrossRef Lidström AM, Bogdanovic N, Hesse C, Volkman I, Davidsson P, Blennow K. Clusterin (Apolipoprotein J) Protein Levels Are Increased in Hippocampus and in Frontal Cortex in Alzheimer’s Disease. Exp Neurol. 1998;154(2):511–21.CrossRef
33.
go back to reference Chen F, Swartzlander DB, Ghosh A, Fryer JD, Wang B, Zheng H. Clusterin secreted from astrocyte promotes excitatory synaptic transmission and ameliorates Alzheimer’s disease neuropathology. Mol Neurodegener. 2021;16(1):5.CrossRef Chen F, Swartzlander DB, Ghosh A, Fryer JD, Wang B, Zheng H. Clusterin secreted from astrocyte promotes excitatory synaptic transmission and ameliorates Alzheimer’s disease neuropathology. Mol Neurodegener. 2021;16(1):5.CrossRef
34.
go back to reference Miners JS, Clarke P, Love S. Clusterin levels are increased in Alzheimer’s disease and influence the regional distribution of Abeta. Brain Pathol. 2017;27(3):305–13.CrossRef Miners JS, Clarke P, Love S. Clusterin levels are increased in Alzheimer’s disease and influence the regional distribution of Abeta. Brain Pathol. 2017;27(3):305–13.CrossRef
35.
go back to reference Wojtas AM, Carlomagno Y, Sens JP, Kang SS, Jensen TD, Kurti A, et al. Clusterin ameliorates tau pathology in vivo by inhibiting fibril formation. Acta Neuropathol Commun. 2020;8(1):210.CrossRef Wojtas AM, Carlomagno Y, Sens JP, Kang SS, Jensen TD, Kurti A, et al. Clusterin ameliorates tau pathology in vivo by inhibiting fibril formation. Acta Neuropathol Commun. 2020;8(1):210.CrossRef
36.
go back to reference Holtzman DM. CSF biomarkers for Alzheimer’s disease: current utility and potential future use. Neurobiol Aging. 2011;32(Suppl 1):S4–9.CrossRef Holtzman DM. CSF biomarkers for Alzheimer’s disease: current utility and potential future use. Neurobiol Aging. 2011;32(Suppl 1):S4–9.CrossRef
37.
go back to reference Giannakopoulos P, Kövari E, French LE, Viard I, Hof PR, Bouras C. Possible neuroprotective role of clusterin in Alzheimer’s disease: a quantitative immunocytochemical study. Acta Neuropathol. 1998;95(4):387–94.CrossRef Giannakopoulos P, Kövari E, French LE, Viard I, Hof PR, Bouras C. Possible neuroprotective role of clusterin in Alzheimer’s disease: a quantitative immunocytochemical study. Acta Neuropathol. 1998;95(4):387–94.CrossRef
38.
go back to reference Cordero-Llana O, Scott SA, Maslen SL, Anderson JM, Boyle J, Chowhdury RR, et al. Clusterin secreted by astrocytes enhances neuronal differentiation from human neural precursor cells. Cell Death Differ. 2011;18(5):907–13.CrossRef Cordero-Llana O, Scott SA, Maslen SL, Anderson JM, Boyle J, Chowhdury RR, et al. Clusterin secreted by astrocytes enhances neuronal differentiation from human neural precursor cells. Cell Death Differ. 2011;18(5):907–13.CrossRef
39.
go back to reference Imhof A, Charnay Y, Vallet PG, Aronow B, Kovari E, French LE, et al. Sustained astrocytic clusterin expression improves remodeling after brain ischemia. Neurobiol Dis. 2006;22(2):274–83.CrossRef Imhof A, Charnay Y, Vallet PG, Aronow B, Kovari E, French LE, et al. Sustained astrocytic clusterin expression improves remodeling after brain ischemia. Neurobiol Dis. 2006;22(2):274–83.CrossRef
40.
go back to reference Jack CR Jr, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80(6):1347–58.CrossRef Jack CR Jr, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80(6):1347–58.CrossRef
Metadata
Title
Dynamic changes of CSF clusterin levels across the Alzheimer’s disease continuum
Authors
Lian Tang
Zhi-Bo Wang
Ling-Zhi Ma
Xi-Peng Cao
Lan Tan
Meng-Shan Tan
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-03038-w

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue