Skip to main content
Top
Published in: European Radiology 10/2022

04-05-2022 | Alzheimer's Disease | Neuro

Diagnostic performance of hippocampal volumetry in Alzheimer’s disease or mild cognitive impairment: a meta-analysis

Authors: Ho Young Park, Chong Hyun Suh, Hwon Heo, Woo Hyun Shim, Sang Joon Kim

Published in: European Radiology | Issue 10/2022

Login to get access

Abstract

Objective

To evaluate the diagnostic performance of hippocampal volumetry for Alzheimer’s disease (AD) or mild cognitive impairment (MCI).

Methods

The MEDLINE and Embase databases were searched for articles that evaluated the diagnostic performance of hippocampal volumetry in differentiating AD or MCI from normal controls, published up to March 6, 2022. The quality of the articles was evaluated by the QUADAS-2 tool. A bivariate random-effects model was used to pool sensitivity, specificity, and area under the curve. Sensitivity analysis and meta-regression were conducted to explain study heterogeneity. The diagnostic performance of entorhinal cortex volumetry was also pooled.

Results

Thirty-three articles (5157 patients) were included. The pooled sensitivity and specificity for AD were 82% (95% confidence interval [CI], 77–86%) and 87% (95% CI, 82–91%), whereas those for MCI were 60% (95% CI, 51–69%) and 75% (95% CI, 67–81%), respectively. No difference in the diagnostic performance was observed between automatic and manual segmentation (p = 0.11). MMSE scores, study design, and the reference standard being used were associated with study heterogeneity (p < 0.01). Subgroup analysis demonstrated a higher diagnostic performance of entorhinal cortex volumetry for both AD (pooled sensitivity: 88% vs. 79%, specificity: 92% vs. 89%, p = 0.07) and MCI (pooled sensitivity: 71% vs. 55%, specificity: 83% vs. 68%, p = 0.06).

Conclusions

Our meta-analysis demonstrated good diagnostic performance of hippocampal volumetry for AD or MCI. Entorhinal cortex volumetry might have superior diagnostic performance to hippocampal volumetry. However, due to a small number of studies, the diagnostic performance of entorhinal cortex volumetry is yet to be determined.

Key Points

• The pooled sensitivity and specificity of hippocampal volumetry for Alzheimer’s disease were 82% and 87%, whereas those for mild cognitive impairment were 60% and 75%, respectively.
• No significant difference in the diagnostic performance was observed between automatic and manual segmentation.
• Subgroup analysis demonstrated superior diagnostic performance of entorhinal cortex volumetry for AD (pooled sensitivity: 88%, specificity: 92%) and MCI (pooled sensitivity: 71%, specificity: 83%).
Appendix
Available only for authorised users
Literature
1.
go back to reference McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269PubMedPubMedCentralCrossRef McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269PubMedPubMedCentralCrossRef
2.
go back to reference Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279PubMedPubMedCentralCrossRef Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279PubMedPubMedCentralCrossRef
3.
go back to reference Visser PJ, Scheltens P, Verhey FR et al (1999) Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 246:477–485PubMedCrossRef Visser PJ, Scheltens P, Verhey FR et al (1999) Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 246:477–485PubMedCrossRef
4.
go back to reference Jack CR Jr, Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562PubMedPubMedCentralCrossRef Jack CR Jr, Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562PubMedPubMedCentralCrossRef
5.
go back to reference Frisoni GB, Jack CR (2011) Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement 7:171–174PubMedCrossRef Frisoni GB, Jack CR (2011) Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement 7:171–174PubMedCrossRef
6.
go back to reference Boccardi M, Ganzola R, Bocchetta M et al (2011) Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol. J Alzheimers Dis 26:61–75PubMedCrossRef Boccardi M, Ganzola R, Bocchetta M et al (2011) Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol. J Alzheimers Dis 26:61–75PubMedCrossRef
7.
go back to reference Frisoni GB, Jack CR Jr, Bocchetta M et al (2015) The EADC-ADNI harmonized protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity. Alzheimers Dement 11:111–125PubMedCrossRef Frisoni GB, Jack CR Jr, Bocchetta M et al (2015) The EADC-ADNI harmonized protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity. Alzheimers Dement 11:111–125PubMedCrossRef
8.
go back to reference Despotović I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015:450341PubMedPubMedCentralCrossRef Despotović I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015:450341PubMedPubMedCentralCrossRef
9.
go back to reference Ross DE, Ochs AL, Seabaugh JM, Shrader CR, Initiative ADN (2013) Man versus machine: comparison of radiologists’ interpretations and NeuroQuant® volumetric analyses of brain MRIs in patients with traumatic brain injury. J Neuropsychiatry Clin Neurosci 25:32–39 Ross DE, Ochs AL, Seabaugh JM, Shrader CR, Initiative ADN (2013) Man versus machine: comparison of radiologists’ interpretations and NeuroQuant® volumetric analyses of brain MRIs in patients with traumatic brain injury. J Neuropsychiatry Clin Neurosci 25:32–39
10.
go back to reference Abrigo J, Shi L, Luo Y, Chen Q, Chu WCW, Mok VCT (2019) Standardization of hippocampus volumetry using automated brain structure volumetry tool for an initial Alzheimer’s disease imaging biomarker. Acta Radiol 60:769–776PubMedCrossRef Abrigo J, Shi L, Luo Y, Chen Q, Chu WCW, Mok VCT (2019) Standardization of hippocampus volumetry using automated brain structure volumetry tool for an initial Alzheimer’s disease imaging biomarker. Acta Radiol 60:769–776PubMedCrossRef
11.
go back to reference Nesteruk T, Nesteruk M, Styczyńska M, Barcikowska-Kotowicz M, Walecki J (2016) Radiological evaluation of strategic structures in patients with mild cognitive impairment and early Alzheimer’s disease. Pol J Radiol 81:288–294PubMedPubMedCentralCrossRef Nesteruk T, Nesteruk M, Styczyńska M, Barcikowska-Kotowicz M, Walecki J (2016) Radiological evaluation of strategic structures in patients with mild cognitive impairment and early Alzheimer’s disease. Pol J Radiol 81:288–294PubMedPubMedCentralCrossRef
12.
go back to reference La Joie R, Perrotin A, De La Sayette V et al (2013) Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. Neuroimage Clin 3:155–162 La Joie R, Perrotin A, De La Sayette V et al (2013) Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. Neuroimage Clin 3:155–162
13.
go back to reference Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedCrossRef Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedCrossRef
14.
go back to reference Khan UA, Liu L, Provenzano FA et al (2014) Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat Neurosci 17:304–311PubMedCrossRef Khan UA, Liu L, Provenzano FA et al (2014) Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat Neurosci 17:304–311PubMedCrossRef
15.
go back to reference Hata K, Nakamoto K, Nunomura A et al (2019) Automated volumetry of medial temporal lobe subregions in mild cognitive impairment and Alzheimer disease. Alzheimer Dis Assoc Disord 33:206–211PubMedCrossRef Hata K, Nakamoto K, Nunomura A et al (2019) Automated volumetry of medial temporal lobe subregions in mild cognitive impairment and Alzheimer disease. Alzheimer Dis Assoc Disord 33:206–211PubMedCrossRef
16.
go back to reference Enkirch SJ, Traschütz A, Müller A et al (2018) The ERICA Score: an MR imaging–based visual scoring system for the assessment of entorhinal cortex atrophy in Alzheimer disease. Radiology 288:226–333PubMedCrossRef Enkirch SJ, Traschütz A, Müller A et al (2018) The ERICA Score: an MR imaging–based visual scoring system for the assessment of entorhinal cortex atrophy in Alzheimer disease. Radiology 288:226–333PubMedCrossRef
17.
go back to reference Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700 Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700
18.
go back to reference Park HY, Suh CH, Woo S, Kim PH, Kim KW (2022) Quality reporting of systematic review and meta-analysis according to PRISMA 2020 guidelines: results from recently published papers in the Korean Journal of Radiology. Korean J Radiol 23:355PubMedPubMedCentralCrossRef Park HY, Suh CH, Woo S, Kim PH, Kim KW (2022) Quality reporting of systematic review and meta-analysis according to PRISMA 2020 guidelines: results from recently published papers in the Korean Journal of Radiology. Korean J Radiol 23:355PubMedPubMedCentralCrossRef
19.
go back to reference Park SH (2022) Guides for the successful conduct and reporting of systematic review and meta-analysis of diagnostic test accuracy studies. Korean J Radiol 23:295PubMedPubMedCentralCrossRef Park SH (2022) Guides for the successful conduct and reporting of systematic review and meta-analysis of diagnostic test accuracy studies. Korean J Radiol 23:295PubMedPubMedCentralCrossRef
20.
go back to reference Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536PubMedCrossRef Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536PubMedCrossRef
21.
22.
go back to reference Suh CH, Park SH (2016) Successful publication of systematic review and meta-analysis of studies evaluating diagnostic test accuracy. Korean J Radiol 17:5–6PubMedPubMedCentralCrossRef Suh CH, Park SH (2016) Successful publication of systematic review and meta-analysis of studies evaluating diagnostic test accuracy. Korean J Radiol 17:5–6PubMedPubMedCentralCrossRef
23.
24.
go back to reference Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893PubMedCrossRef Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893PubMedCrossRef
25.
go back to reference Schünemann HJ, Mustafa R, Brozek J et al (2016) GRADE guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health. J Clin Epidemiol 76:89–98PubMedCrossRef Schünemann HJ, Mustafa R, Brozek J et al (2016) GRADE guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health. J Clin Epidemiol 76:89–98PubMedCrossRef
26.
go back to reference Bartos A, Gregus D, Ibrahim I, Tintěra J (2019) Brain volumes and their ratios in Alzheimer’s disease on magnetic resonance imaging segmented using Freesurfer 6.0. Psychiatry Res Neuroimaging 287:70–74PubMedCrossRef Bartos A, Gregus D, Ibrahim I, Tintěra J (2019) Brain volumes and their ratios in Alzheimer’s disease on magnetic resonance imaging segmented using Freesurfer 6.0. Psychiatry Res Neuroimaging 287:70–74PubMedCrossRef
27.
go back to reference Chupin M, Gérardin E, Cuingnet R et al (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19:579–587PubMedPubMedCentralCrossRef Chupin M, Gérardin E, Cuingnet R et al (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19:579–587PubMedPubMedCentralCrossRef
28.
go back to reference Colliot O, Chételat G, Chupin M et al (2008) Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248:194–201PubMedCrossRef Colliot O, Chételat G, Chupin M et al (2008) Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248:194–201PubMedCrossRef
29.
go back to reference Dhikav V, Duraiswamy S, Anand KS (2017) Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer’s disease. Ann Indian Acad Neurol 20:29–35PubMedPubMedCentralCrossRef Dhikav V, Duraiswamy S, Anand KS (2017) Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer’s disease. Ann Indian Acad Neurol 20:29–35PubMedPubMedCentralCrossRef
30.
go back to reference Golebiowski M, Barcikowska M, Pfeffer A (1999) Magnetic resonance imaging-based hippocampal volumetry in patients with dementia of the Alzheimer type. Dement Geriatr Cogn Disord 10:284–288PubMedCrossRef Golebiowski M, Barcikowska M, Pfeffer A (1999) Magnetic resonance imaging-based hippocampal volumetry in patients with dementia of the Alzheimer type. Dement Geriatr Cogn Disord 10:284–288PubMedCrossRef
31.
go back to reference Han SH, Lee MA, An SS, Ahn SW, Youn YC, Park KY (2014) Diagnostic value of Alzheimer’s disease-related individual structural volume measurements using IBASPM. J Clin Neurosci 21:2165–2169PubMedCrossRef Han SH, Lee MA, An SS, Ahn SW, Youn YC, Park KY (2014) Diagnostic value of Alzheimer’s disease-related individual structural volume measurements using IBASPM. J Clin Neurosci 21:2165–2169PubMedCrossRef
32.
go back to reference Hanseeuw BJ, Van Leemput K, Kavec M, Grandin C, Seron X, Ivanoiu A (2011) Mild cognitive impairment: differential atrophy in the hippocampal subfields. AJNR Am J Neuroradiol 32:1658–1661PubMedPubMedCentralCrossRef Hanseeuw BJ, Van Leemput K, Kavec M, Grandin C, Seron X, Ivanoiu A (2011) Mild cognitive impairment: differential atrophy in the hippocampal subfields. AJNR Am J Neuroradiol 32:1658–1661PubMedPubMedCentralCrossRef
33.
go back to reference Jauhiainen AM, Pihlajamäki M, Tervo S et al (2009) Discriminating accuracy of medial temporal lobe volumetry and fMRI in mild cognitive impairment. Hippocampus 19:166–175PubMedCrossRef Jauhiainen AM, Pihlajamäki M, Tervo S et al (2009) Discriminating accuracy of medial temporal lobe volumetry and fMRI in mild cognitive impairment. Hippocampus 19:166–175PubMedCrossRef
34.
go back to reference Juottonen K, Laakso MP, Partanen K, Soininen H (1999) Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. AJNR Am J Neuroradiol 20:139–144PubMed Juottonen K, Laakso MP, Partanen K, Soininen H (1999) Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. AJNR Am J Neuroradiol 20:139–144PubMed
35.
go back to reference Kantarci K, Xu Y, Shiung MM et al (2002) Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer’s disease. Dement Geriatr Cogn Disord 14:198–207PubMedCrossRef Kantarci K, Xu Y, Shiung MM et al (2002) Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer’s disease. Dement Geriatr Cogn Disord 14:198–207PubMedCrossRef
36.
go back to reference Laakso MP, Hallikainen M, Hänninen T, Partanen K, Soininen H (2000) Diagnosis of Alzheimer’s disease: MRI of the hippocampus vs delayed recall. Neuropsychologia 38:579–584PubMedCrossRef Laakso MP, Hallikainen M, Hänninen T, Partanen K, Soininen H (2000) Diagnosis of Alzheimer’s disease: MRI of the hippocampus vs delayed recall. Neuropsychologia 38:579–584PubMedCrossRef
37.
go back to reference Mak HK, Qian W, Ng KS et al (2014) Combination of MRI hippocampal volumetry and arterial spin labeling MR perfusion at 3-Tesla improves the efficacy in discriminating Alzheimer’s disease from cognitively normal elderly adults. J Alzheimers Dis 41:749–758PubMedCrossRef Mak HK, Qian W, Ng KS et al (2014) Combination of MRI hippocampal volumetry and arterial spin labeling MR perfusion at 3-Tesla improves the efficacy in discriminating Alzheimer’s disease from cognitively normal elderly adults. J Alzheimers Dis 41:749–758PubMedCrossRef
38.
go back to reference Müller MJ, Greverus D, Weibrich C et al (2007) Diagnostic utility of hippocampal size and mean diffusivity in amnestic MCI. Neurobiol Aging 28:398–403PubMedCrossRef Müller MJ, Greverus D, Weibrich C et al (2007) Diagnostic utility of hippocampal size and mean diffusivity in amnestic MCI. Neurobiol Aging 28:398–403PubMedCrossRef
39.
go back to reference Ridha BH, Barnes J, van de Pol LA et al (2007) Application of automated medial temporal lobe atrophy scale to Alzheimer disease. Arch Neurol 64:849–854PubMedCrossRef Ridha BH, Barnes J, van de Pol LA et al (2007) Application of automated medial temporal lobe atrophy scale to Alzheimer disease. Arch Neurol 64:849–854PubMedCrossRef
40.
go back to reference Suh C, Shim W, Kim S et al (2020) Development and validation of a deep learning–based automatic brain segmentation and classification algorithm for Alzheimer disease using 3D T1-weighted volumetric images. AJNR Am J Neuroradiol 41:2227–2234 Suh C, Shim W, Kim S et al (2020) Development and validation of a deep learning–based automatic brain segmentation and classification algorithm for Alzheimer disease using 3D T1-weighted volumetric images. AJNR Am J Neuroradiol 41:2227–2234
41.
go back to reference Bresciani L, Rossi R, Testa C et al (2005) Visual assessment of medial temporal atrophy on MR films in Alzheimer’s disease: comparison with volumetry. Aging Clin Exp Res 17:8–13PubMedCrossRef Bresciani L, Rossi R, Testa C et al (2005) Visual assessment of medial temporal atrophy on MR films in Alzheimer’s disease: comparison with volumetry. Aging Clin Exp Res 17:8–13PubMedCrossRef
42.
go back to reference Eustache P, Nemmi F, Saint-Aubert L, Pariente J, Péran P (2016) Multimodal magnetic resonance imaging in Alzheimer’s disease patients at prodromal stage. J Alzheimers Dis 50:1035–1050PubMedPubMedCentralCrossRef Eustache P, Nemmi F, Saint-Aubert L, Pariente J, Péran P (2016) Multimodal magnetic resonance imaging in Alzheimer’s disease patients at prodromal stage. J Alzheimers Dis 50:1035–1050PubMedPubMedCentralCrossRef
43.
go back to reference Gertje EC, Pluta J, Das S et al (2016) Clinical application of automatic segmentation of medial temporal lobe subregions in prodromal and dementia-level Alzheimer’s disease. J Alzheimers Dis 54:1027–1037PubMedPubMedCentralCrossRef Gertje EC, Pluta J, Das S et al (2016) Clinical application of automatic segmentation of medial temporal lobe subregions in prodromal and dementia-level Alzheimer’s disease. J Alzheimers Dis 54:1027–1037PubMedPubMedCentralCrossRef
44.
go back to reference Rogne S, Vangberg T, Eldevik P, Wikran G, Mathiesen EB, Schirmer H (2016) Magnetic resonance volumetry: prediction of subjective memory complaints and mild cognitive impairment, and associations with genetic and cardiovascular risk factors. Dement Geriatr Cogn Dis Extra 6:529–540PubMedPubMedCentralCrossRef Rogne S, Vangberg T, Eldevik P, Wikran G, Mathiesen EB, Schirmer H (2016) Magnetic resonance volumetry: prediction of subjective memory complaints and mild cognitive impairment, and associations with genetic and cardiovascular risk factors. Dement Geriatr Cogn Dis Extra 6:529–540PubMedPubMedCentralCrossRef
45.
go back to reference Slavin MJ, Sandstrom CK, Tran TT, Doraiswamy PM, Petrella JR (2007) Hippocampal volume and the Mini-Mental State Examination in the diagnosis of amnestic mild cognitive impairment. AJR Am J Roentgenol 188:1404–1410PubMedCrossRef Slavin MJ, Sandstrom CK, Tran TT, Doraiswamy PM, Petrella JR (2007) Hippocampal volume and the Mini-Mental State Examination in the diagnosis of amnestic mild cognitive impairment. AJR Am J Roentgenol 188:1404–1410PubMedCrossRef
46.
go back to reference Struyfs H, Sima DM, Wittens M et al (2020) Automated MRI volumetry as a diagnostic tool for Alzheimer’s disease: validation of icobrain dm. Neuroimage Clin 26:102243PubMedPubMedCentralCrossRef Struyfs H, Sima DM, Wittens M et al (2020) Automated MRI volumetry as a diagnostic tool for Alzheimer’s disease: validation of icobrain dm. Neuroimage Clin 26:102243PubMedPubMedCentralCrossRef
47.
go back to reference Testa C, Laakso MP, Sabattoli F et al (2004) A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer’s disease. J Magn Reson Imaging 19:274–282PubMedCrossRef Testa C, Laakso MP, Sabattoli F et al (2004) A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer’s disease. J Magn Reson Imaging 19:274–282PubMedCrossRef
48.
go back to reference Grothe M, Heinsen H, Teipel SJ (2012) Atrophy of the cholinergic Basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry 71:805–813PubMedCrossRef Grothe M, Heinsen H, Teipel SJ (2012) Atrophy of the cholinergic Basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry 71:805–813PubMedCrossRef
49.
go back to reference Kilimann I, Grothe M, Heinsen H et al (2014) Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter study. J Alzheimers Dis 40:687–700PubMedPubMedCentralCrossRef Kilimann I, Grothe M, Heinsen H et al (2014) Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter study. J Alzheimers Dis 40:687–700PubMedPubMedCentralCrossRef
50.
go back to reference Kim M, Kim SJ, Park JE et al (2021) Combination of automated brain volumetry on MRI and quantitative tau deposition on THK-5351 PET to support diagnosis of Alzheimer’s disease. Sci Rep 11:10343PubMedPubMedCentralCrossRef Kim M, Kim SJ, Park JE et al (2021) Combination of automated brain volumetry on MRI and quantitative tau deposition on THK-5351 PET to support diagnosis of Alzheimer’s disease. Sci Rep 11:10343PubMedPubMedCentralCrossRef
51.
go back to reference Mai Y, Yu Q, Zhu F et al (2021) AD Resemblance atrophy index as a diagnostic biomarker for Alzheimer’s disease: a retrospective clinical and biological validation. J Alzheimers Dis 79:1023–1032PubMedCrossRef Mai Y, Yu Q, Zhu F et al (2021) AD Resemblance atrophy index as a diagnostic biomarker for Alzheimer’s disease: a retrospective clinical and biological validation. J Alzheimers Dis 79:1023–1032PubMedCrossRef
52.
go back to reference Pennanen C, Kivipelto M, Tuomainen S et al (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310PubMedCrossRef Pennanen C, Kivipelto M, Tuomainen S et al (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310PubMedCrossRef
53.
go back to reference Vichianin Y, Khummongkol A, Chiewvit P et al (2021) Accuracy of support-vector machines for diagnosis of Alzheimer’s disease, using volume of brain obtained by structural MRI at Siriraj Hospital. Front Neurol 12:640696PubMedPubMedCentralCrossRef Vichianin Y, Khummongkol A, Chiewvit P et al (2021) Accuracy of support-vector machines for diagnosis of Alzheimer’s disease, using volume of brain obtained by structural MRI at Siriraj Hospital. Front Neurol 12:640696PubMedPubMedCentralCrossRef
54.
go back to reference Wittens MMJ, Sima DM, Houbrechts R et al (2021) Diagnostic performance of automated MRI volumetry by icobrain dm for Alzheimer’s disease in a clinical setting: A REMEMBER Study. J Alzheimers Dis 83:623–639PubMedPubMedCentralCrossRef Wittens MMJ, Sima DM, Houbrechts R et al (2021) Diagnostic performance of automated MRI volumetry by icobrain dm for Alzheimer’s disease in a clinical setting: A REMEMBER Study. J Alzheimers Dis 83:623–639PubMedPubMedCentralCrossRef
55.
go back to reference Zhao W, Luo Y, Zhao L et al (2019) Automated brain MRI volumetry differentiates early stages of Alzheimer’s disease from normal aging. J Geriatr Psychiatry Neurol 32:354–364PubMedCrossRef Zhao W, Luo Y, Zhao L et al (2019) Automated brain MRI volumetry differentiates early stages of Alzheimer’s disease from normal aging. J Geriatr Psychiatry Neurol 32:354–364PubMedCrossRef
56.
go back to reference Shi F, Liu B, Zhou Y, Yu C, Jiang T (2009) Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: meta-analyses of MRI studies. Hippocampus 19:1055–1064PubMedCrossRef Shi F, Liu B, Zhou Y, Yu C, Jiang T (2009) Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: meta-analyses of MRI studies. Hippocampus 19:1055–1064PubMedCrossRef
57.
go back to reference Peng GP, Feng Z, He FP et al (2015) Correlation of hippocampal volume and cognitive performances in patients with either mild cognitive impairment or Alzheimer’s disease. CNS Neurosci Ther 21:15–22PubMedCrossRef Peng GP, Feng Z, He FP et al (2015) Correlation of hippocampal volume and cognitive performances in patients with either mild cognitive impairment or Alzheimer’s disease. CNS Neurosci Ther 21:15–22PubMedCrossRef
58.
go back to reference Rutjes AW, Reitsma JB, Di Nisio M, Smidt N, Van Rijn JC, Bossuyt PM (2006) Evidence of bias and variation in diagnostic accuracy studies. CMAJ 174:469–476 Rutjes AW, Reitsma JB, Di Nisio M, Smidt N, Van Rijn JC, Bossuyt PM (2006) Evidence of bias and variation in diagnostic accuracy studies. CMAJ 174:469–476
59.
go back to reference McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–939PubMedCrossRef McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–939PubMedCrossRef
60.
go back to reference Laakso MP, Juottonen K, Partanen K, Vainio P, Soininen H (1997) MRI volumetry of the hippocampus: the effect of slice thickness on volume formation. Magn Reson Imaging 15:263–265PubMedCrossRef Laakso MP, Juottonen K, Partanen K, Vainio P, Soininen H (1997) MRI volumetry of the hippocampus: the effect of slice thickness on volume formation. Magn Reson Imaging 15:263–265PubMedCrossRef
61.
go back to reference Briellmann RS, Syngeniotis A, Jackson GD (2001) Comparison of hippocampal volumetry at 1.5 tesla and at 3 tesla. Epilepsia 42:1021–1024PubMedCrossRef Briellmann RS, Syngeniotis A, Jackson GD (2001) Comparison of hippocampal volumetry at 1.5 tesla and at 3 tesla. Epilepsia 42:1021–1024PubMedCrossRef
62.
go back to reference Wolz R, Schwarz AJ, Yu P et al (2014) Robustness of automated hippocampal volumetry across magnetic resonance field strengths and repeat images. Alzheimers Dement 10:430–438.e432PubMedCrossRef Wolz R, Schwarz AJ, Yu P et al (2014) Robustness of automated hippocampal volumetry across magnetic resonance field strengths and repeat images. Alzheimers Dement 10:430–438.e432PubMedCrossRef
63.
go back to reference Yushkevich PA, Pluta JB, Wang H et al (2015) Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum Brain Mapp 36:258–287PubMedCrossRef Yushkevich PA, Pluta JB, Wang H et al (2015) Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum Brain Mapp 36:258–287PubMedCrossRef
64.
go back to reference Lehmann M, Koedam EL, Barnes J et al (2012) Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer’s disease. Neurobiol Aging 33:627. e621-627. e612 Lehmann M, Koedam EL, Barnes J et al (2012) Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer’s disease. Neurobiol Aging 33:627. e621-627. e612
65.
go back to reference Vijayakumar A, Vijayakumar A (2013) Comparison of hippocampal volume in dementia subtypes. ISRN Radiol 2013:174524PubMedCrossRef Vijayakumar A, Vijayakumar A (2013) Comparison of hippocampal volume in dementia subtypes. ISRN Radiol 2013:174524PubMedCrossRef
66.
go back to reference Katuwal GJ, Baum SA, Cahill ND et al (2016) Inter-method discrepancies in brain volume estimation may drive inconsistent findings in autism. Front Neurosci 10:439PubMedPubMedCentralCrossRef Katuwal GJ, Baum SA, Cahill ND et al (2016) Inter-method discrepancies in brain volume estimation may drive inconsistent findings in autism. Front Neurosci 10:439PubMedPubMedCentralCrossRef
67.
go back to reference Fink HA, Linskens EJ, Silverman PC et al (2020) Accuracy of biomarker testing for neuropathologically defined Alzheimer disease in older adults with dementia: a systematic review. Ann Intern Med 172:669–677PubMedCrossRef Fink HA, Linskens EJ, Silverman PC et al (2020) Accuracy of biomarker testing for neuropathologically defined Alzheimer disease in older adults with dementia: a systematic review. Ann Intern Med 172:669–677PubMedCrossRef
Metadata
Title
Diagnostic performance of hippocampal volumetry in Alzheimer’s disease or mild cognitive impairment: a meta-analysis
Authors
Ho Young Park
Chong Hyun Suh
Hwon Heo
Woo Hyun Shim
Sang Joon Kim
Publication date
04-05-2022
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 10/2022
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08838-9

Other articles of this Issue 10/2022

European Radiology 10/2022 Go to the issue