Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2024

Open Access 01-12-2024 | Alzheimer's Disease | Research

Alteration of medial temporal lobe metabolism related to Alzheimer’s disease and dementia with lewy bodies

Authors: Sungwoo Kang, Seun Jeon, Young-gun Lee, Byoung Seok Ye

Published in: Alzheimer's Research & Therapy | Issue 1/2024

Login to get access

Abstract

Background

Association of medial temporal lobe (MTL) metabolism with Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) has not been evaluated considering their mixed disease (MD).

Methods

131 patients with AD, 133 with DLB, 122 with MD, and 28 normal controls (NCs) underwent neuropsychological tests, assessments for parkinsonism, cognitive fluctuation (CF), and visual hallucinations (VH), and 18F-fluorodeoxyglucose PET to quantify MTL metabolism in the amygdala, hippocampus, and entorhinal cortex. The effects of AD and DLB on MTL metabolism were evaluated using general linear models (GLMs). Associations between MTL metabolism, cognition, and clinical features were evaluated using GLMs or logistic regression models separately performed for the AD spectrum (NC + AD + MD), DLB spectrum (NC + DLB + MD), and disease groups (AD + DLB + MD). Covariates included age, sex, and education.

Results

AD was associated with hippocampal/entorhinal hypometabolism, whereas DLB was associated with relative amygdalar/hippocampal hypermetabolism. Relative MTL hypermetabolism was associated with lower attention/visuospatial/executive scores and severe parkinsonism in both the AD and DLB spectra and disease groups. Left hippocampal/entorhinal hypometabolism was associated with lower verbal memory scores, whereas right hippocampal hypometabolism was associated with lower visual memory scores in both the AD spectrum and disease groups. Relative MTL hypermetabolism was associated with an increased risk of CF and VH in the disease group, and relative amygdalar hypermetabolism was associated with an increased risk of VH in the DLB spectrum.

Conclusions

Entorhinal-hippocampal hypometabolism and relative amygdala-hippocampal hypermetabolism could be characteristics of AD- and DLB-related neurodegeneration, respectively.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hamilton RL. Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 2000;10(3):378–84.PubMedCrossRef Hamilton RL. Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 2000;10(3):378–84.PubMedCrossRef
2.
go back to reference Irwin DJ, Grossman M, Weintraub D, Hurtig HI, Duda JE, Xie SX, et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol. 2017;16(1):55–65.PubMedPubMedCentralCrossRef Irwin DJ, Grossman M, Weintraub D, Hurtig HI, Duda JE, Xie SX, et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol. 2017;16(1):55–65.PubMedPubMedCentralCrossRef
3.
go back to reference McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef
4.
go back to reference Coughlin DG, Hurtig HI, Irwin DJ. Pathological influences on clinical heterogeneity in Lewy Body Diseases. Mov Disord. 2020;35(1):5–19.PubMedCrossRef Coughlin DG, Hurtig HI, Irwin DJ. Pathological influences on clinical heterogeneity in Lewy Body Diseases. Mov Disord. 2020;35(1):5–19.PubMedCrossRef
5.
go back to reference Chung EJ, Babulal GM, Monsell SE, Cairns NJ, Roe CM, Morris JC. Clinical features of Alzheimer Disease with and without Lewy Bodies. JAMA Neurol. 2015;72(7):789–96.PubMedPubMedCentralCrossRef Chung EJ, Babulal GM, Monsell SE, Cairns NJ, Roe CM, Morris JC. Clinical features of Alzheimer Disease with and without Lewy Bodies. JAMA Neurol. 2015;72(7):789–96.PubMedPubMedCentralCrossRef
6.
go back to reference Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16(3):271–8. discussion 8–84.PubMedCrossRef Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16(3):271–8. discussion 8–84.PubMedCrossRef
7.
go back to reference Rezaie P, Cairns NJ, Chadwick A, Lantos PL. Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease. Neurosci Lett. 1996;212(2):111–4.PubMedCrossRef Rezaie P, Cairns NJ, Chadwick A, Lantos PL. Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease. Neurosci Lett. 1996;212(2):111–4.PubMedCrossRef
8.
go back to reference Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ, et al. The Amygdala as a locus of pathologic misfolding in neurodegenerative diseases. J Neuropathol Exp Neurol. 2018;77(1):2–20.PubMedCrossRef Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ, et al. The Amygdala as a locus of pathologic misfolding in neurodegenerative diseases. J Neuropathol Exp Neurol. 2018;77(1):2–20.PubMedCrossRef
9.
go back to reference Nestor PJ, Altomare D, Festari C, Drzezga A, Rivolta J, Walker Z, et al. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur J Nucl Med Mol Imaging. 2018;45(9):1509–25.PubMedCrossRef Nestor PJ, Altomare D, Festari C, Drzezga A, Rivolta J, Walker Z, et al. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur J Nucl Med Mol Imaging. 2018;45(9):1509–25.PubMedCrossRef
11.
go back to reference Pillai JA, Wu G, Tousi B, Larvie M, Léger GC, Leverenz JB. Amygdala sign, a FDG-PET signature of dementia with Lewy Bodies. Parkinsonism Relat Disord. 2019;64:300–3.PubMedPubMedCentralCrossRef Pillai JA, Wu G, Tousi B, Larvie M, Léger GC, Leverenz JB. Amygdala sign, a FDG-PET signature of dementia with Lewy Bodies. Parkinsonism Relat Disord. 2019;64:300–3.PubMedPubMedCentralCrossRef
12.
go back to reference Kantarci K, Boeve BF, Przybelski SA, Lesnick TG, Chen Q, Fields J, et al. FDG PET metabolic signatures distinguishing prodromal DLB and prodromal AD. NeuroImage. Clinical. 2021;31:102754. Kantarci K, Boeve BF, Przybelski SA, Lesnick TG, Chen Q, Fields J, et al. FDG PET metabolic signatures distinguishing prodromal DLB and prodromal AD. NeuroImage. Clinical. 2021;31:102754.
13.
go back to reference McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.PubMedCrossRef McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.PubMedCrossRef
14.
go back to reference Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.PubMedCrossRef Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.PubMedCrossRef
15.
go back to reference McKeith IG, Ferman TJ, Thomas AJ, Blanc F, Boeve BF, Fujishiro H, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94(17):743–55.PubMedPubMedCentralCrossRef McKeith IG, Ferman TJ, Thomas AJ, Blanc F, Boeve BF, Fujishiro H, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94(17):743–55.PubMedPubMedCentralCrossRef
16.
go back to reference Lee YG, Jeon S, Kang SW, Ye BS. Effects of amyloid beta and dopaminergic depletion on perfusion and clinical symptoms. Alzheimers Dement. 2023;19(12):5719–29.PubMedCrossRef Lee YG, Jeon S, Kang SW, Ye BS. Effects of amyloid beta and dopaminergic depletion on perfusion and clinical symptoms. Alzheimers Dement. 2023;19(12):5719–29.PubMedCrossRef
17.
go back to reference Kang Y, Na D. Seoul Neuropsychological Screening Battery (SNSB): Human Brain Research & Consulting Co. In: Incheon; 2003. Kang Y, Na D. Seoul Neuropsychological Screening Battery (SNSB): Human Brain Research & Consulting Co. In: Incheon; 2003.
18.
go back to reference Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57.PubMedCrossRef Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57.PubMedCrossRef
19.
go back to reference Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage. 2011;56(3):907–22.PubMedCrossRef Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage. 2011;56(3):907–22.PubMedCrossRef
20.
go back to reference Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. NeuroImage. 2020;206:116189.PubMedCrossRef Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. NeuroImage. 2020;206:116189.PubMedCrossRef
21.
go back to reference Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54(3):2033–44.PubMedCrossRef Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54(3):2033–44.PubMedCrossRef
22.
go back to reference Moeller JR, Strother SC. A Regional Covariance Approach to the analysis of functional patterns in Positron Emission Tomographic Data. J Cereb Blood Flow Metabolism. 1991;11(1suppl):A121–35.CrossRef Moeller JR, Strother SC. A Regional Covariance Approach to the analysis of functional patterns in Positron Emission Tomographic Data. J Cereb Blood Flow Metabolism. 1991;11(1suppl):A121–35.CrossRef
23.
go back to reference Lee YG, Jeon S, Yoo HS, Chung SJ, Lee SK, Lee PH, et al. Amyloid-beta-related and unrelated cortical thinning in dementia with Lewy bodies. Neurobiol Aging. 2018;72:32–9.PubMedCrossRef Lee YG, Jeon S, Yoo HS, Chung SJ, Lee SK, Lee PH, et al. Amyloid-beta-related and unrelated cortical thinning in dementia with Lewy bodies. Neurobiol Aging. 2018;72:32–9.PubMedCrossRef
24.
go back to reference Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 2015;11(8):964–74.PubMedCrossRef Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 2015;11(8):964–74.PubMedCrossRef
25.
go back to reference Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol. 2003;54(3):343–51.PubMedCrossRef Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol. 2003;54(3):343–51.PubMedCrossRef
26.
go back to reference Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology. 2005;64(11):1860–7.PubMedCrossRef Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology. 2005;64(11):1860–7.PubMedCrossRef
27.
go back to reference Karow DS, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr., Jennings RG, Brewer JB, et al. Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology. 2010;256(3):932–42.PubMedPubMedCentralCrossRef Karow DS, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr., Jennings RG, Brewer JB, et al. Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology. 2010;256(3):932–42.PubMedPubMedCentralCrossRef
28.
go back to reference Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr., et al. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol. 2010;31(2):347–54.PubMedPubMedCentralCrossRef Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr., et al. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol. 2010;31(2):347–54.PubMedPubMedCentralCrossRef
29.
go back to reference Ye BS, Lee S, Yoo H, Chung SJ, Lee YH, Choi Y, et al. Distinguishing between dementia with Lewy bodies and Alzheimer’s disease using metabolic patterns. Neurobiol Aging. 2020;87:11–7.PubMedCrossRef Ye BS, Lee S, Yoo H, Chung SJ, Lee YH, Choi Y, et al. Distinguishing between dementia with Lewy bodies and Alzheimer’s disease using metabolic patterns. Neurobiol Aging. 2020;87:11–7.PubMedCrossRef
30.
go back to reference Huang C, Ravdin LD, Nirenberg MJ, Piboolnurak P, Severt L, Maniscalco JS, et al. Neuroimaging markers of motor and nonmotor features of Parkinson’s disease: an 18f fluorodeoxyglucose positron emission computed tomography study. Dement Geriatr Cogn Disord. 2013;35(3–4):183–96.PubMedCrossRef Huang C, Ravdin LD, Nirenberg MJ, Piboolnurak P, Severt L, Maniscalco JS, et al. Neuroimaging markers of motor and nonmotor features of Parkinson’s disease: an 18f fluorodeoxyglucose positron emission computed tomography study. Dement Geriatr Cogn Disord. 2013;35(3–4):183–96.PubMedCrossRef
31.
go back to reference Diaz-Galvan P, Miyagawa T, Przybelski SA, Lesnick TG, Senjem ML, Jack CR, et al. Brain glucose metabolism and nigrostriatal degeneration in isolated rapid eye movement sleep behaviour disorder. Brain Commun. 2023;5(1):fcad021.PubMedPubMedCentralCrossRef Diaz-Galvan P, Miyagawa T, Przybelski SA, Lesnick TG, Senjem ML, Jack CR, et al. Brain glucose metabolism and nigrostriatal degeneration in isolated rapid eye movement sleep behaviour disorder. Brain Commun. 2023;5(1):fcad021.PubMedPubMedCentralCrossRef
32.
go back to reference Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Relatively preserved hippocampal glucose metabolism in mild Alzheimer’s disease. Dement Geriatr Cogn Disord. 1998;9(6):317–22.PubMedCrossRef Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Relatively preserved hippocampal glucose metabolism in mild Alzheimer’s disease. Dement Geriatr Cogn Disord. 1998;9(6):317–22.PubMedCrossRef
33.
go back to reference Ishii K, Sasaki H, Kono AK, Miyamoto N, Fukuda T, Mori E. Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging. 2005;32(8):959–63.PubMedCrossRef Ishii K, Sasaki H, Kono AK, Miyamoto N, Fukuda T, Mori E. Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging. 2005;32(8):959–63.PubMedCrossRef
34.
go back to reference Milner B. BMemory and the medial temporal regions of the brain,[in Biology of memory, KH Pribram and DE Broadbent. Eds. New York: Academic; 1970. pp. 29–50. Milner B. BMemory and the medial temporal regions of the brain,[in Biology of memory, KH Pribram and DE Broadbent. Eds. New York: Academic; 1970. pp. 29–50.
35.
go back to reference Bonelli SB, Powell RHW, Yogarajah M, Samson RS, Symms MR, Thompson PJ, et al. Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain. 2010;133(4):1186–99.PubMedPubMedCentralCrossRef Bonelli SB, Powell RHW, Yogarajah M, Samson RS, Symms MR, Thompson PJ, et al. Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain. 2010;133(4):1186–99.PubMedPubMedCentralCrossRef
36.
go back to reference Nagy Z, Jobst KA, Esiri MM, Morris JH, King EM, MacDonald B, et al. Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer’s disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria. Dementia. 1996;7(2):76–81.PubMed Nagy Z, Jobst KA, Esiri MM, Morris JH, King EM, MacDonald B, et al. Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer’s disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria. Dementia. 1996;7(2):76–81.PubMed
37.
go back to reference Reitz C, Honig L, Vonsattel JP, Tang MX, Mayeux R. Memory performance is related to amyloid and tau pathology in the hippocampus. J Neurol Neurosurg Psychiatry. 2009;80(7):715–21.PubMedCrossRef Reitz C, Honig L, Vonsattel JP, Tang MX, Mayeux R. Memory performance is related to amyloid and tau pathology in the hippocampus. J Neurol Neurosurg Psychiatry. 2009;80(7):715–21.PubMedCrossRef
38.
go back to reference Kang S, Yoon SH, Na HK, Lee Y-g, Jeon S, Baik K et al. Neuropsychological comparison of patients with Alzheimer’s Disease and Dementia with Lewy Bodies. J Clin Neurol. 2023;19. Kang S, Yoon SH, Na HK, Lee Y-g, Jeon S, Baik K et al. Neuropsychological comparison of patients with Alzheimer’s Disease and Dementia with Lewy Bodies. J Clin Neurol. 2023;19.
39.
go back to reference Schneider JA, Arvanitakis Z, Yu L, Boyle PA, Leurgans SE, Bennett DA. Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies. Brain. 2012;135(Pt 10):3005–14.PubMedPubMedCentralCrossRef Schneider JA, Arvanitakis Z, Yu L, Boyle PA, Leurgans SE, Bennett DA. Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies. Brain. 2012;135(Pt 10):3005–14.PubMedPubMedCentralCrossRef
40.
go back to reference El-Nazer R, Adler CH, Beach TG, Belden CM, Artz J, Shill HA, et al. Regional neuropathology distribution and verbal fluency impairments in Parkinson’s disease. Parkinsonism Relat Disord. 2019;65:73–8.PubMedPubMedCentralCrossRef El-Nazer R, Adler CH, Beach TG, Belden CM, Artz J, Shill HA, et al. Regional neuropathology distribution and verbal fluency impairments in Parkinson’s disease. Parkinsonism Relat Disord. 2019;65:73–8.PubMedPubMedCentralCrossRef
41.
go back to reference Huber M, Beyer L, Prix C, Schönecker S, Palleis C, Rauchmann BS, et al. Metabolic correlates of dopaminergic loss in dementia with Lewy Bodies. Mov Disord. 2020;35(4):595–605.PubMedCrossRef Huber M, Beyer L, Prix C, Schönecker S, Palleis C, Rauchmann BS, et al. Metabolic correlates of dopaminergic loss in dementia with Lewy Bodies. Mov Disord. 2020;35(4):595–605.PubMedCrossRef
42.
go back to reference Kang SW, Jeon S, Lee Y-g, Park M, Baik K, Jung JH, et al. Implication of metabolic and dopamine transporter PET in dementia with Lewy bodies. Sci Rep. 2021;11(1):14394.PubMedPubMedCentralCrossRef Kang SW, Jeon S, Lee Y-g, Park M, Baik K, Jung JH, et al. Implication of metabolic and dopamine transporter PET in dementia with Lewy bodies. Sci Rep. 2021;11(1):14394.PubMedPubMedCentralCrossRef
43.
go back to reference Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci. 2006;26(40):10222–31.PubMedPubMedCentralCrossRef Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci. 2006;26(40):10222–31.PubMedPubMedCentralCrossRef
44.
go back to reference Li S, Varga V, Sik A, Kocsis B. GABAergic control of the ascending input from the median raphe nucleus to the limbic system. J Neurophysiol. 2005;94(4):2561–74.PubMedCrossRef Li S, Varga V, Sik A, Kocsis B. GABAergic control of the ascending input from the median raphe nucleus to the limbic system. J Neurophysiol. 2005;94(4):2561–74.PubMedCrossRef
45.
go back to reference Plenz D, Kital ST. A basal ganglia pacemaker formed by the subthalamic nucleus and external Globus Pallidus. Nature. 1999;400(6745):677–82.PubMedCrossRef Plenz D, Kital ST. A basal ganglia pacemaker formed by the subthalamic nucleus and external Globus Pallidus. Nature. 1999;400(6745):677–82.PubMedCrossRef
46.
go back to reference Mouginot D, Gähwiler BH. Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro. Neuroscience. 1995;64(3):699–712.PubMedCrossRef Mouginot D, Gähwiler BH. Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro. Neuroscience. 1995;64(3):699–712.PubMedCrossRef
47.
go back to reference Blatt GJ, Oblak AL, Schmahmann JD. Cerebellar connections with limbic circuits: anatomy and functional implications. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the Cerebellum and Cerebellar disorders. Dordrecht: Springer Netherlands; 2013. pp. 479–96.CrossRef Blatt GJ, Oblak AL, Schmahmann JD. Cerebellar connections with limbic circuits: anatomy and functional implications. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the Cerebellum and Cerebellar disorders. Dordrecht: Springer Netherlands; 2013. pp. 479–96.CrossRef
48.
go back to reference Morris M, Sanchez PE, Verret L, Beagle AJ, Guo W, Dubal D, et al. Network dysfunction in alpha-synuclein transgenic mice and human Lewy body dementia. Ann Clin Transl Neurol. 2015;2(11):1012–28.PubMedPubMedCentralCrossRef Morris M, Sanchez PE, Verret L, Beagle AJ, Guo W, Dubal D, et al. Network dysfunction in alpha-synuclein transgenic mice and human Lewy body dementia. Ann Clin Transl Neurol. 2015;2(11):1012–28.PubMedPubMedCentralCrossRef
49.
go back to reference Harding AJ, Stimson E, Henderson JM, Halliday GM. Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain. 2002;125(Pt 11):2431–45.PubMedCrossRef Harding AJ, Stimson E, Henderson JM, Halliday GM. Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain. 2002;125(Pt 11):2431–45.PubMedCrossRef
50.
go back to reference Shaw CM, Alvord EC. Jr. Neuropathology of the limbic system. Neuroimaging Clin N Am. 1997;7(1):101–42.PubMed Shaw CM, Alvord EC. Jr. Neuropathology of the limbic system. Neuroimaging Clin N Am. 1997;7(1):101–42.PubMed
51.
go back to reference Lee Y-g, Jeon S, Park M, Kang SW, Yoon SH, Baik K, et al. Effects of Alzheimer and Lewy Body Disease pathologies on Brain Metabolism. Ann Neurol. 2022;91(6):853–63.PubMedCrossRef Lee Y-g, Jeon S, Park M, Kang SW, Yoon SH, Baik K, et al. Effects of Alzheimer and Lewy Body Disease pathologies on Brain Metabolism. Ann Neurol. 2022;91(6):853–63.PubMedCrossRef
Metadata
Title
Alteration of medial temporal lobe metabolism related to Alzheimer’s disease and dementia with lewy bodies
Authors
Sungwoo Kang
Seun Jeon
Young-gun Lee
Byoung Seok Ye
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2024
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-024-01429-4

Other articles of this Issue 1/2024

Alzheimer's Research & Therapy 1/2024 Go to the issue