Skip to main content
Top
Published in: European Radiology 9/2015

01-09-2015 | Neuro

Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: a parametric functional MRI study

Authors: Haiqing Li, Yan Chen, Yuxin Li, Bo Yin, Weijun Tang, Xiangrong Yu, Weiyuan Huang, Daoying Geng, Biyun Zhang

Published in: European Radiology | Issue 9/2015

Login to get access

Abstract

Objectives

To investigate functional cerebral abnormalities in patients with amyotrophic lateral sclerosis (ALS) using functional magnetic resonance imaging (fMRI) during action observation.

Methods

Thirty patients with ALS and 30 matched healthy controls underwent fMRI with an experimental paradigm while observing a video of repetitive flexion-extension of the fingers at three frequency levels or three complexity levels, alternated with periods of a static hand. A parametric analysis was applied to determine the effects of each of the two factors.

Results

Action observation activated similar neural networks as the research on execution of action in the ALS patients and healthy subjects in several brain regions related to the mirror-neuron system (MNS). In the ALS patients, in particular, the dorsal lateral premotor cortex (dPMC), inferior parietal gyrus (IPG), and SMA, were more activated compared with the activation in the controls. Increased activation within the primary motor cortex (M1), dPMC, inferior frontal gyrus (IFG), and superior parietal gyrus (SPG) mainly correlated with hand movement frequency/complexity in the videos in the patients compared with controls.

Conclusions

The findings indicated an ongoing compensatory process occurring within the higher order motor-processing system of ALS patients, likely to overcome the loss of function.

Key Points

• Action observation activated similar core nodes of MNS in ALS and controls.
• Increased activation within M1, dPMC, IFG and SPG mainly correlated with hand movement frequency/complexity.
• Differences in patients and controls may be due to compensatory processes in ALS.
Literature
2.
go back to reference Konrad C, Henningsen H, Bremer J et al (2002) Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res 143:51–56PubMedCrossRef Konrad C, Henningsen H, Bremer J et al (2002) Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res 143:51–56PubMedCrossRef
3.
go back to reference Konrad C, Jansen A, Henningsen H et al (2006) Subcortical reorganization in amyotrophic lateral sclerosis. Exp Brain Res 172:361–369PubMedCrossRef Konrad C, Jansen A, Henningsen H et al (2006) Subcortical reorganization in amyotrophic lateral sclerosis. Exp Brain Res 172:361–369PubMedCrossRef
4.
go back to reference Schoenfeld MA, Tempelmann C, Gaul C et al (2005) Functional motor compensation in amyotrophic lateral sclerosis. J Neurol 252:944–952PubMedCrossRef Schoenfeld MA, Tempelmann C, Gaul C et al (2005) Functional motor compensation in amyotrophic lateral sclerosis. J Neurol 252:944–952PubMedCrossRef
5.
go back to reference Tessitore A, Esposito F, Monsurro MR et al (2006) Subcortical motor plasticity in patients with sporadic ALS: An fMRI study. Brain Res Bull 69:489–494PubMedCrossRef Tessitore A, Esposito F, Monsurro MR et al (2006) Subcortical motor plasticity in patients with sporadic ALS: An fMRI study. Brain Res Bull 69:489–494PubMedCrossRef
6.
go back to reference Stanton BR, Williams VC, Leigh PN et al (2007) Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol 254:1260–1267PubMedCrossRef Stanton BR, Williams VC, Leigh PN et al (2007) Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol 254:1260–1267PubMedCrossRef
7.
go back to reference Decety J, Grezes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178PubMedCrossRef Decety J, Grezes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178PubMedCrossRef
8.
go back to reference Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109PubMedCrossRef Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109PubMedCrossRef
9.
go back to reference Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50:1148–1167PubMedCrossRef Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50:1148–1167PubMedCrossRef
10.
go back to reference Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131–141PubMedCrossRef Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131–141PubMedCrossRef
11.
go back to reference Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593–609PubMedCrossRef Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593–609PubMedCrossRef
12.
go back to reference Buccino G, Binkofski F, Riggio L (2004) The mirror neuron system and action recognition. Brain Lang 89:370–376PubMedCrossRef Buccino G, Binkofski F, Riggio L (2004) The mirror neuron system and action recognition. Brain Lang 89:370–376PubMedCrossRef
14.
go back to reference Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299PubMedCrossRef Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299PubMedCrossRef
15.
go back to reference Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169:13–21PubMedCrossRef Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169:13–21PubMedCrossRef
16.
go back to reference Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73PubMedCrossRef Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73PubMedCrossRef
17.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef
18.
19.
go back to reference Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19:1239–1255PubMedCentralPubMedCrossRef Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19:1239–1255PubMedCentralPubMedCrossRef
20.
go back to reference Blakemore SJ, Bristow D, Bird G, Frith C, Ward J (2005) Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain 128:1571–1583PubMedCrossRef Blakemore SJ, Bristow D, Bird G, Frith C, Ward J (2005) Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain 128:1571–1583PubMedCrossRef
21.
go back to reference Keysers C, Wicker B, Gazzola V, Anton JL, Fogassi L, Gallese V (2004) A touching sight: SII/PV activation during the observation and experience of touch. Neuron 42:335–346PubMedCrossRef Keysers C, Wicker B, Gazzola V, Anton JL, Fogassi L, Gallese V (2004) A touching sight: SII/PV activation during the observation and experience of touch. Neuron 42:335–346PubMedCrossRef
22.
go back to reference Chouinard PA, Paus T (2006) The primary motor and premotor areas of the human cerebral cortex. Neuroscientist 12:143–152PubMedCrossRef Chouinard PA, Paus T (2006) The primary motor and premotor areas of the human cerebral cortex. Neuroscientist 12:143–152PubMedCrossRef
23.
go back to reference Hoshi E, Tanji J (2004) Functional specialization in dorsal and ventral premotor areas. Prog Brain Res 143:507–511PubMedCrossRef Hoshi E, Tanji J (2004) Functional specialization in dorsal and ventral premotor areas. Prog Brain Res 143:507–511PubMedCrossRef
24.
go back to reference Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17:234–242PubMedCrossRef Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17:234–242PubMedCrossRef
25.
go back to reference Rozzi S, Ferrari PF, Bonini L, Rizzolatti G, Fogassi L (2008) Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur J Neurosci 28:1569–1588PubMedCrossRef Rozzi S, Ferrari PF, Bonini L, Rizzolatti G, Fogassi L (2008) Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur J Neurosci 28:1569–1588PubMedCrossRef
26.
go back to reference Bremmer F, Schlack A, Shah NJ et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296PubMedCrossRef Bremmer F, Schlack A, Shah NJ et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296PubMedCrossRef
27.
go back to reference Ohara S, Ikeda A, Kunieda T et al (2000) Movement-related change of electrocorticographic activity in human supplementary motor area proper. Brain 123(Pt 6):1203–1215PubMedCrossRef Ohara S, Ikeda A, Kunieda T et al (2000) Movement-related change of electrocorticographic activity in human supplementary motor area proper. Brain 123(Pt 6):1203–1215PubMedCrossRef
28.
go back to reference Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525PubMed Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525PubMed
29.
go back to reference Lule D, Diekmann V, Kassubek J et al (2007) Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabil Neural Repair 21:518–526PubMedCrossRef Lule D, Diekmann V, Kassubek J et al (2007) Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabil Neural Repair 21:518–526PubMedCrossRef
30.
go back to reference Stanton BR, Williams VC, Leigh PN et al (2007) Cortical activation during motor imagery is reduced in Amyotrophic Lateral Sclerosis. Brain Res 1172:145–151PubMedCrossRef Stanton BR, Williams VC, Leigh PN et al (2007) Cortical activation during motor imagery is reduced in Amyotrophic Lateral Sclerosis. Brain Res 1172:145–151PubMedCrossRef
31.
go back to reference Moran DW, Schwartz AB (1999) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82:2676–2692PubMed Moran DW, Schwartz AB (1999) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82:2676–2692PubMed
32.
go back to reference Johnson MT, Coltz JD, Ebner TJ (1999) Encoding of target direction and speed during visual instruction and arm tracking in dorsal premotor and primary motor cortical neurons. Eur J Neurosci 11:4433–4445PubMedCrossRef Johnson MT, Coltz JD, Ebner TJ (1999) Encoding of target direction and speed during visual instruction and arm tracking in dorsal premotor and primary motor cortical neurons. Eur J Neurosci 11:4433–4445PubMedCrossRef
33.
go back to reference Kawashima R, Inoue K, Sugiura M, Okada K, Ogawa A, Fukuda H (1999) A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92:107–112PubMedCrossRef Kawashima R, Inoue K, Sugiura M, Okada K, Ogawa A, Fukuda H (1999) A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92:107–112PubMedCrossRef
34.
go back to reference Jancke L, Specht K, Mirzazade S et al (1998) A parametric analysis of the ‘rate effect’ in the sensorimotor cortex: a functional magnetic resonance imaging analysis in human subjects. Neurosci Lett 252:37–40PubMedCrossRef Jancke L, Specht K, Mirzazade S et al (1998) A parametric analysis of the ‘rate effect’ in the sensorimotor cortex: a functional magnetic resonance imaging analysis in human subjects. Neurosci Lett 252:37–40PubMedCrossRef
35.
go back to reference Hayashi MJ, Saito DN, Aramaki Y, Asai T, Fujibayashi Y, Sadato N (2008) Hemispheric asymmetry of frequency-dependent suppression in the ipsilateral primary motor cortex during finger movement: a functional magnetic resonance imaging study. Cereb Cortex 18:2932–2940PubMedCentralPubMedCrossRef Hayashi MJ, Saito DN, Aramaki Y, Asai T, Fujibayashi Y, Sadato N (2008) Hemispheric asymmetry of frequency-dependent suppression in the ipsilateral primary motor cortex during finger movement: a functional magnetic resonance imaging study. Cereb Cortex 18:2932–2940PubMedCentralPubMedCrossRef
36.
go back to reference Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11:3276–3286PubMedCrossRef Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11:3276–3286PubMedCrossRef
37.
go back to reference Hanakawa T, Dimyan MA, Hallett M (2008) Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex 18:2775–2788PubMedCentralPubMedCrossRef Hanakawa T, Dimyan MA, Hallett M (2008) Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex 18:2775–2788PubMedCentralPubMedCrossRef
38.
go back to reference Higashi S, Hioki K, Kurotani T, Kasim N, Molnar Z (2005) Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki). J Neurosci 25:1395–1406PubMedCrossRef Higashi S, Hioki K, Kurotani T, Kasim N, Molnar Z (2005) Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki). J Neurosci 25:1395–1406PubMedCrossRef
39.
go back to reference Koechlin E, Jubault T (2006) Broca's area and the hierarchical organization of human behavior. Neuron 50:963–974PubMedCrossRef Koechlin E, Jubault T (2006) Broca's area and the hierarchical organization of human behavior. Neuron 50:963–974PubMedCrossRef
40.
go back to reference Harrington DL, Rao SM, Haaland KY et al (2000) Specialized neural systems underlying representations of sequential movements. J Cogn Neurosci 12:56–77PubMedCrossRef Harrington DL, Rao SM, Haaland KY et al (2000) Specialized neural systems underlying representations of sequential movements. J Cogn Neurosci 12:56–77PubMedCrossRef
41.
go back to reference Pammi VS, Miyapuram KP, Samejima K, Ahmed, Bapi RS, Doya K (2012) Changing the structure of complex visuo-motor sequences selectively activates the fronto-parietal network. Neuroimage 59:1180–1189PubMedCrossRef Pammi VS, Miyapuram KP, Samejima K, Ahmed, Bapi RS, Doya K (2012) Changing the structure of complex visuo-motor sequences selectively activates the fronto-parietal network. Neuroimage 59:1180–1189PubMedCrossRef
42.
go back to reference Haslinger B, Erhard P, Weilke F et al (2002) The role of lateral premotor-cerebellar-parietal circuits in motor sequence control: a parametric fMRI study. Brain Res Cogn Brain Res 13:159–168PubMedCrossRef Haslinger B, Erhard P, Weilke F et al (2002) The role of lateral premotor-cerebellar-parietal circuits in motor sequence control: a parametric fMRI study. Brain Res Cogn Brain Res 13:159–168PubMedCrossRef
43.
go back to reference Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463PubMed Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463PubMed
44.
go back to reference Serrien DJ, Nirkko AC, Lovblad KO, Wiesendanger M (2001) Damage to the parietal lobe impairs bimanual coordination. Neuroreport 12:2721–2724PubMedCrossRef Serrien DJ, Nirkko AC, Lovblad KO, Wiesendanger M (2001) Damage to the parietal lobe impairs bimanual coordination. Neuroreport 12:2721–2724PubMedCrossRef
45.
go back to reference Ehrsson HH, Spence C, Passingham RE (2004) That's my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877PubMedCrossRef Ehrsson HH, Spence C, Passingham RE (2004) That's my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877PubMedCrossRef
Metadata
Title
Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: a parametric functional MRI study
Authors
Haiqing Li
Yan Chen
Yuxin Li
Bo Yin
Weijun Tang
Xiangrong Yu
Weiyuan Huang
Daoying Geng
Biyun Zhang
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-3671-x

Other articles of this Issue 9/2015

European Radiology 9/2015 Go to the issue