Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Alopecia | Case report

Ocular characteristics in a variant microcephalic primordial dwarfism type II

Authors: Wan-Ju Chen, Fu-Chin Huang, Min-Hsiu Shih

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

Microcephalic osteodysplastic primordial dwarfism, type II (MOPD II) is a rare disease that is assumed to be caused by a pericentrin (PCNT) gene mutation. Clinical manifestations have been reported in pediatrics and neurology; however, only a few ocular findings have been documented.

Case presentation

We present three unrelated cases of MOPD II with similar facial features and short stature. Unlike the cases described in the literature, all subjects had normal birth weight and height but their growth was retarded thereafter. In addition to delayed milestones, they have a broad forehead, maxillary protrusion, long peaked nose, high nasal bridge, low-set large ears, extreme reromicrogenia, and normal-sized teeth. These three patients had similar ocular manifestations with the short axial length associated with high hyperopia more than + 9 diopters (D) and macular scarring. The oldest subject was a 20 year-old male without neurological symptoms. One female subject had developed alopecia during the previous 2 years. The other female subject had moyamoya disease, but a genetic study revealed a normal PCNT gene.

Conclusion

This is the first report of MOPD II focusing on ocular findings, suggesting that macular dystrophy and high hyperopia are the common ocular characteristics of MOPD II. Prompt referral to an ophthalmologist is essential. Although refractive amblyopia can be treated with optical correction, visual prognosis may be poor due to maculopathy.
Literature
1.
go back to reference Klingseisen A, Jackson AP. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 2011;25:2011–24.CrossRef Klingseisen A, Jackson AP. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 2011;25:2011–24.CrossRef
2.
go back to reference Willems M, Genevieve D, Borck G, et al. Molecular analysis of pericentrin gene (PCNT) in a series of 24 Seckel/microcephalic osteodysplastic primordial dwarfism type II (MOPD II) families. J Med Genet. 2010;47:797–802.CrossRef Willems M, Genevieve D, Borck G, et al. Molecular analysis of pericentrin gene (PCNT) in a series of 24 Seckel/microcephalic osteodysplastic primordial dwarfism type II (MOPD II) families. J Med Genet. 2010;47:797–802.CrossRef
3.
go back to reference Li FF, Wang XD, Zhu MW, et al. Identification of two novel critical mutations in PCNT gene resulting in microcephalic osteodysplastic primordial dwarfism type II associated with multiple intracranial aneurysms. Metab Brain Dis. 2015;30:1387–94.CrossRef Li FF, Wang XD, Zhu MW, et al. Identification of two novel critical mutations in PCNT gene resulting in microcephalic osteodysplastic primordial dwarfism type II associated with multiple intracranial aneurysms. Metab Brain Dis. 2015;30:1387–94.CrossRef
4.
go back to reference Rauch A, Thiel CT, Schindler D, et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science. 2008;319:816–9.CrossRef Rauch A, Thiel CT, Schindler D, et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science. 2008;319:816–9.CrossRef
5.
go back to reference Bober MB, Jackson AP. Microcephalic Osteodysplastic primordial dwarfism, type II: a clinical review. Curr Osteoporos Rep. 2017;15:61–9.CrossRef Bober MB, Jackson AP. Microcephalic Osteodysplastic primordial dwarfism, type II: a clinical review. Curr Osteoporos Rep. 2017;15:61–9.CrossRef
6.
go back to reference Herman TE, Mendelsohn NJ, Dowton SB, McAlister WH. Microcephalic osteodysplastic primordial dwarfism, type II. Report of a case with characteristic skeletal features. Pediatr Radiol. 1991;21:602–4.CrossRef Herman TE, Mendelsohn NJ, Dowton SB, McAlister WH. Microcephalic osteodysplastic primordial dwarfism, type II. Report of a case with characteristic skeletal features. Pediatr Radiol. 1991;21:602–4.CrossRef
7.
go back to reference Hall JG, Flora C, Scott CI Jr, Pauli RM, Tanaka KI. Majewski osteodysplastic primordial dwarfism type II (MOPD II): natural history and clinical findings. Am J Med Genet A. 2004;130a:55–72.CrossRef Hall JG, Flora C, Scott CI Jr, Pauli RM, Tanaka KI. Majewski osteodysplastic primordial dwarfism type II (MOPD II): natural history and clinical findings. Am J Med Genet A. 2004;130a:55–72.CrossRef
8.
go back to reference Sugio Y, Tsukahara M, Kajii T. Two Japanese cases with microcephalic primordial dwarfism: classical Seckel syndrome and osteodysplastic primordial dwarfism type II. Jpn J Hum Genet. 1993;38:209–17.CrossRef Sugio Y, Tsukahara M, Kajii T. Two Japanese cases with microcephalic primordial dwarfism: classical Seckel syndrome and osteodysplastic primordial dwarfism type II. Jpn J Hum Genet. 1993;38:209–17.CrossRef
9.
go back to reference Bober MB, Niiler T, Duker AL, et al. Growth in individuals with Majewski osteodysplastic primordial dwarfism type II caused by pericentrin mutations. Am J Med Genet A. 2012;158a:2719–25.CrossRef Bober MB, Niiler T, Duker AL, et al. Growth in individuals with Majewski osteodysplastic primordial dwarfism type II caused by pericentrin mutations. Am J Med Genet A. 2012;158a:2719–25.CrossRef
10.
go back to reference Kantaputra P, Tanpaiboon P, Porntaveetus T, et al. The smallest teeth in the world are caused by mutations in the PCNT gene. Am J Med Genet A. 2011;155a:1398–403.CrossRef Kantaputra P, Tanpaiboon P, Porntaveetus T, et al. The smallest teeth in the world are caused by mutations in the PCNT gene. Am J Med Genet A. 2011;155a:1398–403.CrossRef
11.
go back to reference Kantaputra PN. Apparently new osteodysplastic and primordial short stature with severe microdontia, opalescent teeth, and rootless molars in two siblings. Am J Med Genet. 2002;111:420–8.CrossRef Kantaputra PN. Apparently new osteodysplastic and primordial short stature with severe microdontia, opalescent teeth, and rootless molars in two siblings. Am J Med Genet. 2002;111:420–8.CrossRef
12.
go back to reference Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226–37.CrossRef Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226–37.CrossRef
13.
go back to reference Waldron JS, Hetts SW, Armstrong-Wells J, et al. Multiple intracranial aneurysms and moyamoya disease associated with microcephalic osteodysplastic primordial dwarfism type II: surgical considerations. J Neurosurg Pediatr. 2009;4:439–44.CrossRef Waldron JS, Hetts SW, Armstrong-Wells J, et al. Multiple intracranial aneurysms and moyamoya disease associated with microcephalic osteodysplastic primordial dwarfism type II: surgical considerations. J Neurosurg Pediatr. 2009;4:439–44.CrossRef
14.
go back to reference Bober MB, Khan N, Kaplan J, et al. Majewski osteodysplastic primordial dwarfism type II (MOPD II): expanding the vascular phenotype. Am J Med Genet A. 2010;152a:960–5.CrossRef Bober MB, Khan N, Kaplan J, et al. Majewski osteodysplastic primordial dwarfism type II (MOPD II): expanding the vascular phenotype. Am J Med Genet A. 2010;152a:960–5.CrossRef
15.
go back to reference Sam C, Li FF, Liu SL. Inherited neurovascular diseases affecting cerebral blood vessels and smooth muscle. Metab Brain Dis. 2015;30:1105–16.CrossRef Sam C, Li FF, Liu SL. Inherited neurovascular diseases affecting cerebral blood vessels and smooth muscle. Metab Brain Dis. 2015;30:1105–16.CrossRef
16.
go back to reference Perry LD, Robertson F, Ganesan V. Screening for cerebrovascular disease in microcephalic osteodysplastic primordial dwarfism type II (MOPD II): an evidence-based proposal. Pediatr Neurol. 2013;48:294–8.CrossRef Perry LD, Robertson F, Ganesan V. Screening for cerebrovascular disease in microcephalic osteodysplastic primordial dwarfism type II (MOPD II): an evidence-based proposal. Pediatr Neurol. 2013;48:294–8.CrossRef
17.
go back to reference Derdeyn CP. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;361:97 author reply 8.CrossRef Derdeyn CP. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;361:97 author reply 8.CrossRef
18.
go back to reference Bang GM, Kirmani S, Patton A, Pulido JS, Brodsky MC. “Ocular moyamoya” syndrome in a patient with features of microcephalic osteodysplastic primordial dwarfism type II. J AAPOS. 2013;17:100–2.CrossRef Bang GM, Kirmani S, Patton A, Pulido JS, Brodsky MC. “Ocular moyamoya” syndrome in a patient with features of microcephalic osteodysplastic primordial dwarfism type II. J AAPOS. 2013;17:100–2.CrossRef
Metadata
Title
Ocular characteristics in a variant microcephalic primordial dwarfism type II
Authors
Wan-Ju Chen
Fu-Chin Huang
Min-Hsiu Shih
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1685-2

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue