Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Allergic Rhinitis | Review

High mobility group box-1: a potential therapeutic target for allergic rhinitis

Authors: Shuhua Wu, Yangyang Yu, Zhong Zheng, Qi Cheng

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Allergic rhinitis (AR) is a prevalent chronic inflammatory disease of the nasal mucosa primarily characterized by symptoms, such as nasal itching, sneezing, runny nose, and nasal congestion. It has a high recurrence rate and low cure rate, with a lack of effective drugs for treatment. The current approach to management focuses on symptom control. High mobility group box-1 (HMGB1) is a highly conserved non-histone protein widely present in the nucleus of eukaryotes. It is recognized as a proinflammatory agent, and recent studies have demonstrated its close association with AR. Here, we will elaborate the role and mechanism of HMGB1 in AR, so as to reveal the potential value of HMGB1 in the occurrence and development of AR, and provide a new target for clinical research on the treatment of AR.
Literature
1.
go back to reference Jia Y, Zou J, Wang Y, Zhang X, Shi Y, Liang Y, et al. Mechanism of allergic rhinitis treated by Centipeda minima from different geographic areas. Pharm Biol. 2021;59(1):606–18.PubMedCrossRef Jia Y, Zou J, Wang Y, Zhang X, Shi Y, Liang Y, et al. Mechanism of allergic rhinitis treated by Centipeda minima from different geographic areas. Pharm Biol. 2021;59(1):606–18.PubMedCrossRef
2.
go back to reference Okamoto Y, Fujieda S, Okano M, Hida H, Kakudo S, Masuyama K. Efficacy of house dust mite sublingual tablet in the treatment of allergic rhinoconjunctivitis: a randomized trial in a pediatric population. Pediatr Allergy Immunol. 2019;30(1):66–73.PubMedCrossRef Okamoto Y, Fujieda S, Okano M, Hida H, Kakudo S, Masuyama K. Efficacy of house dust mite sublingual tablet in the treatment of allergic rhinoconjunctivitis: a randomized trial in a pediatric population. Pediatr Allergy Immunol. 2019;30(1):66–73.PubMedCrossRef
3.
go back to reference Brozek JL, Bousquet J, Agache I, Agarwal A, Bachert C, Bosnic-Anticevich S, et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950–8.PubMedCrossRef Brozek JL, Bousquet J, Agache I, Agarwal A, Bachert C, Bosnic-Anticevich S, et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950–8.PubMedCrossRef
4.
go back to reference Zhang Y, Zhang L. Prevalence of allergic rhinitis in china. Allergy Asthma Immunol Res. 2014;6(2):105–13.PubMedCrossRef Zhang Y, Zhang L. Prevalence of allergic rhinitis in china. Allergy Asthma Immunol Res. 2014;6(2):105–13.PubMedCrossRef
5.
go back to reference Chen Q, Shao L, Li Y, Dai M, Liu H, Xiang N, et al. Tanshinone IIA alleviates ovalbumin-induced allergic rhinitis symptoms by inhibiting Th2 cytokine production and mast cell histamine release in mice. Pharm Biol. 2022;60(1):326–33.PubMedPubMedCentralCrossRef Chen Q, Shao L, Li Y, Dai M, Liu H, Xiang N, et al. Tanshinone IIA alleviates ovalbumin-induced allergic rhinitis symptoms by inhibiting Th2 cytokine production and mast cell histamine release in mice. Pharm Biol. 2022;60(1):326–33.PubMedPubMedCentralCrossRef
6.
go back to reference Seidman MD, Gurgel RK, Lin SY, Schwartz SR, Baroody FM, Bonner JR, et al. Clinical practice guideline: allergic rhinitis. Otolaryngol Head Neck Surg. 2015;152(1 Suppl):S1-43.PubMed Seidman MD, Gurgel RK, Lin SY, Schwartz SR, Baroody FM, Bonner JR, et al. Clinical practice guideline: allergic rhinitis. Otolaryngol Head Neck Surg. 2015;152(1 Suppl):S1-43.PubMed
7.
go back to reference Schuler Iv CF, Montejo JM. Allergic rhinitis in children and adolescents. Pediatr Clin North Am. 2019;66(5):981–93.PubMedCrossRef Schuler Iv CF, Montejo JM. Allergic rhinitis in children and adolescents. Pediatr Clin North Am. 2019;66(5):981–93.PubMedCrossRef
10.
go back to reference Meng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy. 2020;75(12):3069–76.PubMedCrossRef Meng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy. 2020;75(12):3069–76.PubMedCrossRef
11.
go back to reference Bernstein DI, Schwartz G, Bernstein JA. Allergic rhinitis: mechanisms and treatment. Immunol Allergy Clin North Am. 2016;36(2):261–78.PubMedCrossRef Bernstein DI, Schwartz G, Bernstein JA. Allergic rhinitis: mechanisms and treatment. Immunol Allergy Clin North Am. 2016;36(2):261–78.PubMedCrossRef
12.
go back to reference Siddiqui ZA, Walker A, Pirwani MM, Tahiri M, Syed I. Allergic rhinitis: diagnosis and management. Br J Hosp Med (Lond). 2022;83(2):1–9.PubMedCrossRef Siddiqui ZA, Walker A, Pirwani MM, Tahiri M, Syed I. Allergic rhinitis: diagnosis and management. Br J Hosp Med (Lond). 2022;83(2):1–9.PubMedCrossRef
13.
go back to reference Li Y, Xu B, Yang J, Wang L, Tan X, Hu X, et al. Liraglutide protects against lethal renal ischemia-reperfusion injury by inhibiting high-mobility group box 1 nuclear-cytoplasmic translocation and release. Pharmacol Res. 2021;173: 105867.PubMedCrossRef Li Y, Xu B, Yang J, Wang L, Tan X, Hu X, et al. Liraglutide protects against lethal renal ischemia-reperfusion injury by inhibiting high-mobility group box 1 nuclear-cytoplasmic translocation and release. Pharmacol Res. 2021;173: 105867.PubMedCrossRef
14.
go back to reference Zheng H, Liang X, Han Q, Shao Z, Zhang Y, Shi L, et al. Hemin enhances the cardioprotective effects of mesenchymal stem cell-derived exosomes against infarction via amelioration of cardiomyocyte senescence. J Nanobiotechnology. 2021;19(1):332.PubMedPubMedCentralCrossRef Zheng H, Liang X, Han Q, Shao Z, Zhang Y, Shi L, et al. Hemin enhances the cardioprotective effects of mesenchymal stem cell-derived exosomes against infarction via amelioration of cardiomyocyte senescence. J Nanobiotechnology. 2021;19(1):332.PubMedPubMedCentralCrossRef
15.
go back to reference Lee W, Choi HJ, Sim H, Choo S, Song GY, Bae JS. Barrier protective functions of hederacolchiside-E against HMGB1-mediated septic responses. Pharmacol Res. 2021;163: 105318.PubMedCrossRef Lee W, Choi HJ, Sim H, Choo S, Song GY, Bae JS. Barrier protective functions of hederacolchiside-E against HMGB1-mediated septic responses. Pharmacol Res. 2021;163: 105318.PubMedCrossRef
16.
go back to reference Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5(4):331–42.PubMedCrossRef Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5(4):331–42.PubMedCrossRef
18.
go back to reference Martinotti S, Patrone M, Ranzato E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. Immunotargets Ther. 2015;4:101–9.PubMedPubMedCentral Martinotti S, Patrone M, Ranzato E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. Immunotargets Ther. 2015;4:101–9.PubMedPubMedCentral
19.
go back to reference Deng C, Zhao L, Yang Z, Shang JJ, Wang CY, Shen MZ, et al. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin. 2022;43(3):520–8.PubMedCrossRef Deng C, Zhao L, Yang Z, Shang JJ, Wang CY, Shen MZ, et al. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin. 2022;43(3):520–8.PubMedCrossRef
20.
go back to reference Xue J, Suarez JS, Minaai M, Li S, Gaudino G, Pass HI, et al. HMGB1 as a therapeutic target in disease. J Cell Physiol. 2021;236(5):3406–19.PubMedCrossRef Xue J, Suarez JS, Minaai M, Li S, Gaudino G, Pass HI, et al. HMGB1 as a therapeutic target in disease. J Cell Physiol. 2021;236(5):3406–19.PubMedCrossRef
21.
go back to reference Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the receptor for advanced glycation endproducts (rage): a medicinal chemistry perspective. J Med Chem. 2017;60(17):7213–32.PubMedPubMedCentralCrossRef Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the receptor for advanced glycation endproducts (rage): a medicinal chemistry perspective. J Med Chem. 2017;60(17):7213–32.PubMedPubMedCentralCrossRef
22.
go back to reference Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets. 2018;22(3):263–77.PubMedCrossRef Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets. 2018;22(3):263–77.PubMedCrossRef
23.
go back to reference Pusterla T, Nemeth J, Stein I, Wiechert L, Knigin D, Marhenke S, et al. Receptor for advanced glycation endproducts (RAGE) is a key regulator of oval cell activation and inflammation-associated liver carcinogenesis in mice. Hepatology. 2013;58(1):363–73.PubMedCrossRef Pusterla T, Nemeth J, Stein I, Wiechert L, Knigin D, Marhenke S, et al. Receptor for advanced glycation endproducts (RAGE) is a key regulator of oval cell activation and inflammation-associated liver carcinogenesis in mice. Hepatology. 2013;58(1):363–73.PubMedCrossRef
24.
go back to reference Yang Y, Yang L, Jiang S, Yang T, Lan J, Lei Y, et al. HMGB1 mediates lipopolysaccharide-induced inflammation via interacting with GPX4 in colon cancer cells. Cancer Cell Int. 2020;20:205.PubMedPubMedCentralCrossRef Yang Y, Yang L, Jiang S, Yang T, Lan J, Lei Y, et al. HMGB1 mediates lipopolysaccharide-induced inflammation via interacting with GPX4 in colon cancer cells. Cancer Cell Int. 2020;20:205.PubMedPubMedCentralCrossRef
25.
go back to reference Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol. 2020;13(1):91.PubMedPubMedCentralCrossRef Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol. 2020;13(1):91.PubMedPubMedCentralCrossRef
26.
go back to reference Mukherjee A, Vasquez KM. Targeting chromosomal architectural HMGB proteins could be the next frontier in cancer therapy. Cancer Res. 2020;80(11):2075–82.PubMedPubMedCentralCrossRef Mukherjee A, Vasquez KM. Targeting chromosomal architectural HMGB proteins could be the next frontier in cancer therapy. Cancer Res. 2020;80(11):2075–82.PubMedPubMedCentralCrossRef
27.
go back to reference Li R, Wang J, Zhu F, Li R, Liu B, Xu W, et al. HMGB1 regulates T helper 2 and T helper17 cell differentiation both directly and indirectly in asthmatic mice. Mol Immunol. 2018;97:45–55.PubMedCrossRef Li R, Wang J, Zhu F, Li R, Liu B, Xu W, et al. HMGB1 regulates T helper 2 and T helper17 cell differentiation both directly and indirectly in asthmatic mice. Mol Immunol. 2018;97:45–55.PubMedCrossRef
28.
go back to reference Ciprandi G, Colavita L, Cuppari C, Tosca MA. HMGB1 modulation in children with allergic rhinitis. Minerva Pediatr (Torino). 2023;75(1):127–8.PubMed Ciprandi G, Colavita L, Cuppari C, Tosca MA. HMGB1 modulation in children with allergic rhinitis. Minerva Pediatr (Torino). 2023;75(1):127–8.PubMed
29.
go back to reference Kong Y, Hao M, Chen A, Yi T, Yang K, Li P, et al. SymMap database and TMNP algorithm reveal Huanggui Tongqiao granules for allergic rhinitis through IFN-mediated neuroimmuno-modulation. Pharmacol Res. 2022;185: 106483.PubMedCrossRef Kong Y, Hao M, Chen A, Yi T, Yang K, Li P, et al. SymMap database and TMNP algorithm reveal Huanggui Tongqiao granules for allergic rhinitis through IFN-mediated neuroimmuno-modulation. Pharmacol Res. 2022;185: 106483.PubMedCrossRef
30.
go back to reference Nur Husna SM, Tan HT, Md Shukri N, Mohd Ashari NS, Wong KK. Nasal epithelial barrier integrity and tight junctions disruption in allergic rhinitis: overview and pathogenic insights. Front Immunol. 2021;12: 663626.PubMedPubMedCentralCrossRef Nur Husna SM, Tan HT, Md Shukri N, Mohd Ashari NS, Wong KK. Nasal epithelial barrier integrity and tight junctions disruption in allergic rhinitis: overview and pathogenic insights. Front Immunol. 2021;12: 663626.PubMedPubMedCentralCrossRef
31.
go back to reference Yao Y, Wang ZZ, Huang A, Liu Y, Wang N, Wang ZC, et al. T(FH) 2 cells associate with enhanced humoral immunity to SARS-CoV-2 inactivated vaccine in patients with allergic rhinitis. Clin Transl Med. 2022;12(1): e717.PubMedPubMedCentralCrossRef Yao Y, Wang ZZ, Huang A, Liu Y, Wang N, Wang ZC, et al. T(FH) 2 cells associate with enhanced humoral immunity to SARS-CoV-2 inactivated vaccine in patients with allergic rhinitis. Clin Transl Med. 2022;12(1): e717.PubMedPubMedCentralCrossRef
32.
go back to reference Swain MS, Lebherz HG. Hybridization between fructose diphosphate aldolase subunits derived from diverse biological systems: anomolous hybridization behavior of some aldolase subunit types. Arch Biochem Biophys. 1986;244(1):35–41.PubMedCrossRef Swain MS, Lebherz HG. Hybridization between fructose diphosphate aldolase subunits derived from diverse biological systems: anomolous hybridization behavior of some aldolase subunit types. Arch Biochem Biophys. 1986;244(1):35–41.PubMedCrossRef
33.
go back to reference Karatzas K, Katsifarakis N, Riga M, Werchan B, Werchan M, Berger U, et al. New European academy of allergy and clinical immunology definition on pollen season mirrors symptom load for grass and birch pollen-induced allergic rhinitis. Allergy. 2018;73(9):1851–9.PubMedCrossRef Karatzas K, Katsifarakis N, Riga M, Werchan B, Werchan M, Berger U, et al. New European academy of allergy and clinical immunology definition on pollen season mirrors symptom load for grass and birch pollen-induced allergic rhinitis. Allergy. 2018;73(9):1851–9.PubMedCrossRef
34.
go back to reference Toppila-Salmi S, van Drunen CM, Fokkens WJ, Golebski K, Mattila P, Joenvaara S, et al. Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis. Curr Allergy Asthma Rep. 2015;15(2):495.PubMedCrossRef Toppila-Salmi S, van Drunen CM, Fokkens WJ, Golebski K, Mattila P, Joenvaara S, et al. Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis. Curr Allergy Asthma Rep. 2015;15(2):495.PubMedCrossRef
35.
go back to reference Islam R, Dash D, Singh R. Intranasal curcumin and sodium butyrate modulates airway inflammation and fibrosis via HDAC inhibition in allergic asthma. Cytokine. 2022;149: 155720.PubMedCrossRef Islam R, Dash D, Singh R. Intranasal curcumin and sodium butyrate modulates airway inflammation and fibrosis via HDAC inhibition in allergic asthma. Cytokine. 2022;149: 155720.PubMedCrossRef
36.
go back to reference Liu HL, Chen HF, Liu QD, Xu WZ, Zhang JJ, He XC, et al. HDAC Downregulation of Xiaoqinglong Decoction in the Treatment of Allergic Rhinitis. Int Arch Allergy Immunol. 2023;184(4):376–90.PubMedCrossRef Liu HL, Chen HF, Liu QD, Xu WZ, Zhang JJ, He XC, et al. HDAC Downregulation of Xiaoqinglong Decoction in the Treatment of Allergic Rhinitis. Int Arch Allergy Immunol. 2023;184(4):376–90.PubMedCrossRef
37.
go back to reference Zhou LB, Zheng YM, Liao WJ, Song LJ, Meng X, Gong X, et al. MUC1 deficiency promotes nasal epithelial barrier dysfunction in subjects with allergic rhinitis. J Allergy Clin Immunol. 2019;144(6):1716–9.PubMedCrossRef Zhou LB, Zheng YM, Liao WJ, Song LJ, Meng X, Gong X, et al. MUC1 deficiency promotes nasal epithelial barrier dysfunction in subjects with allergic rhinitis. J Allergy Clin Immunol. 2019;144(6):1716–9.PubMedCrossRef
38.
go back to reference Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022;77(5):1418–49.PubMedCrossRef Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022;77(5):1418–49.PubMedCrossRef
39.
go back to reference Celebi Sozener Z, Ozbey Yucel U, Altiner S, Ozdel Ozturk B, Cerci P, Turk M, et al. The external exposome and allergies: from the perspective of the epithelial barrier hypothesis. Front Allergy. 2022;3: 887672.PubMedPubMedCentralCrossRef Celebi Sozener Z, Ozbey Yucel U, Altiner S, Ozdel Ozturk B, Cerci P, Turk M, et al. The external exposome and allergies: from the perspective of the epithelial barrier hypothesis. Front Allergy. 2022;3: 887672.PubMedPubMedCentralCrossRef
40.
go back to reference Li P, Tsang MS, Kan LL, Hou T, Hon SS, Chan BC, et al. The immuno-modulatory activities of pentaherbs formula on ovalbumin-induced allergic rhinitis mice via the activation of Th1 and treg cells and inhibition of Th2 and Th17 cells. Molecules. 2021;27(1):239.PubMedPubMedCentralCrossRef Li P, Tsang MS, Kan LL, Hou T, Hon SS, Chan BC, et al. The immuno-modulatory activities of pentaherbs formula on ovalbumin-induced allergic rhinitis mice via the activation of Th1 and treg cells and inhibition of Th2 and Th17 cells. Molecules. 2021;27(1):239.PubMedPubMedCentralCrossRef
42.
go back to reference Wei X, Zhang B, Liang X, Liu C, Xia T, Xie Y, et al. Higenamine alleviates allergic rhinitis by activating AKT1 and suppressing the EGFR/JAK2/c-JUN signaling. Phytomedicine. 2021;86: 153565.PubMedCrossRef Wei X, Zhang B, Liang X, Liu C, Xia T, Xie Y, et al. Higenamine alleviates allergic rhinitis by activating AKT1 and suppressing the EGFR/JAK2/c-JUN signaling. Phytomedicine. 2021;86: 153565.PubMedCrossRef
43.
go back to reference Fan Y, Nguyen TV, Piao CH, Shin HS, Song CH, Chai OH. Fructus Amomi extract attenuates nasal inflammation by restoring Th1/Th2 balance and down-regulation of NF-kappaB phosphorylation in OVA-induced allergic rhinitis. 2022. Biosci Rep. https://doi.org/10.1042/BSR20212681. Fan Y, Nguyen TV, Piao CH, Shin HS, Song CH, Chai OH. Fructus Amomi extract attenuates nasal inflammation by restoring Th1/Th2 balance and down-regulation of NF-kappaB phosphorylation in OVA-induced allergic rhinitis. 2022. Biosci Rep. https://​doi.​org/​10.​1042/​BSR20212681.
44.
go back to reference Nguyen TV, Piao CH, Fan YJ, Yu ZN, Lee SY, Song CH, et al. Artemisia gmelinii extract alleviates allergic airway inflammation via balancing th1/th2 homeostasis and inhibiting mast cell degranulation. Int J Mol Sci. 2022;23(23):15377.PubMedPubMedCentralCrossRef Nguyen TV, Piao CH, Fan YJ, Yu ZN, Lee SY, Song CH, et al. Artemisia gmelinii extract alleviates allergic airway inflammation via balancing th1/th2 homeostasis and inhibiting mast cell degranulation. Int J Mol Sci. 2022;23(23):15377.PubMedPubMedCentralCrossRef
45.
go back to reference Han X, Krempski JW, Nadeau K. Advances and novel developments in mechanisms of allergic inflammation. Allergy. 2020;75(12):3100–11.PubMedCrossRef Han X, Krempski JW, Nadeau K. Advances and novel developments in mechanisms of allergic inflammation. Allergy. 2020;75(12):3100–11.PubMedCrossRef
46.
go back to reference Rothenberg ME, Saito H, Peebles RS Jr. Advances in mechanisms of allergic disease in 2016. J Allergy Clin Immunol. 2017;140(6):1622–31.PubMedCrossRef Rothenberg ME, Saito H, Peebles RS Jr. Advances in mechanisms of allergic disease in 2016. J Allergy Clin Immunol. 2017;140(6):1622–31.PubMedCrossRef
47.
48.
go back to reference Okubo K, Kurono Y, Ichimura K, Enomoto T, Okamoto Y, Kawauchi H, et al. Japanese guidelines for allergic rhinitis 2017. Allergol Int. 2017;66(2):205–19.PubMedCrossRef Okubo K, Kurono Y, Ichimura K, Enomoto T, Okamoto Y, Kawauchi H, et al. Japanese guidelines for allergic rhinitis 2017. Allergol Int. 2017;66(2):205–19.PubMedCrossRef
49.
go back to reference Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973;38(1):14–9.PubMedCrossRef Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973;38(1):14–9.PubMedCrossRef
50.
51.
go back to reference Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A. 2004;101(1):296–301.PubMedCrossRef Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A. 2004;101(1):296–301.PubMedCrossRef
52.
go back to reference Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, et al. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol. 2004;173(1):307–13.PubMedCrossRef Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, et al. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol. 2004;173(1):307–13.PubMedCrossRef
53.
55.
go back to reference Stevens NE, Chapman MJ, Fraser CK, Kuchel TR, Hayball JD, Diener KR. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep. 2017;7(1):5850.PubMedPubMedCentralCrossRef Stevens NE, Chapman MJ, Fraser CK, Kuchel TR, Hayball JD, Diener KR. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep. 2017;7(1):5850.PubMedPubMedCentralCrossRef
56.
go back to reference Sun Y, Chen H, Dai J, Wan Z, Xiong P, Xu Y, et al. Glycyrrhizin protects mice against experimental autoimmune encephalomyelitis by inhibiting high-mobility group box 1 (HMGB1) Expression and Neuronal HMGB1 Release. Front Immunol. 2018;9:1518.PubMedPubMedCentralCrossRef Sun Y, Chen H, Dai J, Wan Z, Xiong P, Xu Y, et al. Glycyrrhizin protects mice against experimental autoimmune encephalomyelitis by inhibiting high-mobility group box 1 (HMGB1) Expression and Neuronal HMGB1 Release. Front Immunol. 2018;9:1518.PubMedPubMedCentralCrossRef
58.
go back to reference Hou C, Zhao H, Liu L, Li W, Zhou X, Lv Y, et al. High mobility group protein B1 (HMGB1) in Asthma: comparison of patients with chronic obstructive pulmonary disease and healthy controls. Mol Med. 2011;17(7–8):807–15.PubMedPubMedCentralCrossRef Hou C, Zhao H, Liu L, Li W, Zhou X, Lv Y, et al. High mobility group protein B1 (HMGB1) in Asthma: comparison of patients with chronic obstructive pulmonary disease and healthy controls. Mol Med. 2011;17(7–8):807–15.PubMedPubMedCentralCrossRef
59.
go back to reference Shim EJ, Chun E, Lee HS, Bang BR, Cho SH, Min KU, et al. Eosinophils modulate CD4(+) T cell responses via high mobility group box-1 in the pathogenesis of asthma. Allergy Asthma Immunol Res. 2015;7(2):190–4.PubMedCrossRef Shim EJ, Chun E, Lee HS, Bang BR, Cho SH, Min KU, et al. Eosinophils modulate CD4(+) T cell responses via high mobility group box-1 in the pathogenesis of asthma. Allergy Asthma Immunol Res. 2015;7(2):190–4.PubMedCrossRef
60.
go back to reference Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. HMG-1 as a mediator of acute lung inflammation. J Immunol. 2000;165(6):2950–4.PubMedCrossRef Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. HMG-1 as a mediator of acute lung inflammation. J Immunol. 2000;165(6):2950–4.PubMedCrossRef
61.
go back to reference Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, Fink MP. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology. 2002;123(3):790–802.PubMedCrossRef Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, Fink MP. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology. 2002;123(3):790–802.PubMedCrossRef
62.
go back to reference Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H, et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol. 2007;81(3):741–7.PubMedCrossRef Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H, et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol. 2007;81(3):741–7.PubMedCrossRef
63.
go back to reference Zhang BF, Song W, Wang J, Wen PF, Zhang YM. Anti-high-mobility group box-1 (HMGB1) mediates the apoptosis of alveolar epithelial cells (AEC) by receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway in the rats of crush injuries. J Orthop Surg Res. 2022;17(1):20.PubMedPubMedCentralCrossRef Zhang BF, Song W, Wang J, Wen PF, Zhang YM. Anti-high-mobility group box-1 (HMGB1) mediates the apoptosis of alveolar epithelial cells (AEC) by receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway in the rats of crush injuries. J Orthop Surg Res. 2022;17(1):20.PubMedPubMedCentralCrossRef
64.
go back to reference Wang X, Liu C, Wang G. Propofol protects rats and human alveolar epithelial cells against lipopolysaccharide-induced acute lung injury via inhibiting HMGB1 expression. Inflammation. 2016;39(3):1004–16.PubMed Wang X, Liu C, Wang G. Propofol protects rats and human alveolar epithelial cells against lipopolysaccharide-induced acute lung injury via inhibiting HMGB1 expression. Inflammation. 2016;39(3):1004–16.PubMed
65.
go back to reference Liu H, Ye T, Yang X, Liu J, Jiang K, Lu H, et al. H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. EBioMedicine. 2019;50:366–78.PubMedPubMedCentralCrossRef Liu H, Ye T, Yang X, Liu J, Jiang K, Lu H, et al. H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. EBioMedicine. 2019;50:366–78.PubMedPubMedCentralCrossRef
66.
go back to reference Chen D, Bellussi LM, Passali D, Chen L. LPS may enhance expression and release of HMGB1 in human nasal epithelial cells in vitro. Acta Otorhinolaryngol Ital. 2013;33(6):398–404.PubMedPubMedCentral Chen D, Bellussi LM, Passali D, Chen L. LPS may enhance expression and release of HMGB1 in human nasal epithelial cells in vitro. Acta Otorhinolaryngol Ital. 2013;33(6):398–404.PubMedPubMedCentral
67.
go back to reference Ciprandi G, Bellussi LM, Passali GC, Damiani V, Passali D. HMGB1 in nasal inflammatory diseases: a reappraisal 30 years after its discovery. Expert Rev Clin Immunol. 2020;16(5):457–63.PubMedCrossRef Ciprandi G, Bellussi LM, Passali GC, Damiani V, Passali D. HMGB1 in nasal inflammatory diseases: a reappraisal 30 years after its discovery. Expert Rev Clin Immunol. 2020;16(5):457–63.PubMedCrossRef
68.
go back to reference Zheng J, Wei X, Zhan JB, Jiang HY. High mobility group box1 contributes to hypoxia-induced barrier dysfunction of nasal epithelial cells. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(15):1178–81. Zheng J, Wei X, Zhan JB, Jiang HY. High mobility group box1 contributes to hypoxia-induced barrier dysfunction of nasal epithelial cells. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(15):1178–81.
69.
go back to reference Min HJ, Kim JH, Yoo JE, Oh JH, Kim KS, Yoon JH, et al. ROS-dependent HMGB1 secretion upregulates IL-8 in upper airway epithelial cells under hypoxic condition. Mucosal Immunol. 2017;10(3):685–94.PubMedCrossRef Min HJ, Kim JH, Yoo JE, Oh JH, Kim KS, Yoon JH, et al. ROS-dependent HMGB1 secretion upregulates IL-8 in upper airway epithelial cells under hypoxic condition. Mucosal Immunol. 2017;10(3):685–94.PubMedCrossRef
71.
go back to reference Ma L, Zeng J, Mo B, Wang C, Huang J, Sun Y, et al. High mobility group box 1: a novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis. 2015;7(10):1732–41.PubMedPubMedCentral Ma L, Zeng J, Mo B, Wang C, Huang J, Sun Y, et al. High mobility group box 1: a novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis. 2015;7(10):1732–41.PubMedPubMedCentral
72.
go back to reference Cavone L, Cuppari C, Manti S, Grasso L, Arrigo T, Calamai L, et al. Increase in the level of proinflammatory cytokine HMGB1 in nasal fluids of patients with rhinitis and its sequestration by glycyrrhizin induces eosinophil cell death. Clin Exp Otorhinolaryngol. 2015;8(2):123–8.PubMedPubMedCentralCrossRef Cavone L, Cuppari C, Manti S, Grasso L, Arrigo T, Calamai L, et al. Increase in the level of proinflammatory cytokine HMGB1 in nasal fluids of patients with rhinitis and its sequestration by glycyrrhizin induces eosinophil cell death. Clin Exp Otorhinolaryngol. 2015;8(2):123–8.PubMedPubMedCentralCrossRef
73.
go back to reference Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev. 2006;17(3):189–201.PubMedCrossRef Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev. 2006;17(3):189–201.PubMedCrossRef
74.
go back to reference Li R, Zou X, Huang H, Yu Y, Zhang H, Liu P, et al. HMGB1/PI3K/Akt/mTOR signaling participates in the pathological process of acute lung injury by regulating the maturation and function of dendritic cells. Front Immunol. 2020;11:1104.PubMedPubMedCentralCrossRef Li R, Zou X, Huang H, Yu Y, Zhang H, Liu P, et al. HMGB1/PI3K/Akt/mTOR signaling participates in the pathological process of acute lung injury by regulating the maturation and function of dendritic cells. Front Immunol. 2020;11:1104.PubMedPubMedCentralCrossRef
76.
go back to reference Dyer MR, Chen Q, Haldeman S, Yazdani H, Hoffman R, Loughran P, et al. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep. 2018;8(1):2068.PubMedPubMedCentralCrossRef Dyer MR, Chen Q, Haldeman S, Yazdani H, Hoffman R, Loughran P, et al. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep. 2018;8(1):2068.PubMedPubMedCentralCrossRef
77.
go back to reference Ayoub M, Shinde-Jadhav S, Mansure JJ, Alvarez F, Connell T, Seuntjens J, et al. The immune mediated role of extracellular HMGB1 in a heterotopic model of bladder cancer radioresistance. Sci Rep. 2019;9(1):6348.PubMedPubMedCentralCrossRef Ayoub M, Shinde-Jadhav S, Mansure JJ, Alvarez F, Connell T, Seuntjens J, et al. The immune mediated role of extracellular HMGB1 in a heterotopic model of bladder cancer radioresistance. Sci Rep. 2019;9(1):6348.PubMedPubMedCentralCrossRef
78.
go back to reference Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med. 2003;9(1–2):37–45.PubMedPubMedCentralCrossRef Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med. 2003;9(1–2):37–45.PubMedPubMedCentralCrossRef
81.
go back to reference Takahashi H, Nishibori M. Current status and future prospects in HMGB1 and receptor researches. Nihon Rinsho. 2016;74(4):703–11.PubMed Takahashi H, Nishibori M. Current status and future prospects in HMGB1 and receptor researches. Nihon Rinsho. 2016;74(4):703–11.PubMed
82.
go back to reference Zhang Y, Karki R, Igwe OJ. Toll-like receptor 4 signaling: a common pathway for interactions between prooxidants and extracellular disulfide high mobility group box 1 (HMGB1) protein-coupled activation. Biochem Pharmacol. 2015;98(1):132–43.PubMedPubMedCentralCrossRef Zhang Y, Karki R, Igwe OJ. Toll-like receptor 4 signaling: a common pathway for interactions between prooxidants and extracellular disulfide high mobility group box 1 (HMGB1) protein-coupled activation. Biochem Pharmacol. 2015;98(1):132–43.PubMedPubMedCentralCrossRef
83.
go back to reference Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem. 1995;270(43):25752–61.PubMedCrossRef Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem. 1995;270(43):25752–61.PubMedCrossRef
84.
go back to reference Tang SC, Wang YC, Li YI, Lin HC, Manzanero S, Hsieh YH, et al. Functional role of soluble receptor for advanced glycation end products in stroke. Arterioscler Thromb Vasc Biol. 2013;33(3):585–94.PubMedCrossRef Tang SC, Wang YC, Li YI, Lin HC, Manzanero S, Hsieh YH, et al. Functional role of soluble receptor for advanced glycation end products in stroke. Arterioscler Thromb Vasc Biol. 2013;33(3):585–94.PubMedCrossRef
85.
go back to reference Lee W, Ku S, Yoo H, Song K, Bae J. Andrographolide inhibits HMGB1-induced inflammatory responses in human umbilical vein endothelial cells and in murine polymicrobial sepsis. Acta Physiol (Oxf). 2014;211(1):176–87.PubMedCrossRef Lee W, Ku S, Yoo H, Song K, Bae J. Andrographolide inhibits HMGB1-induced inflammatory responses in human umbilical vein endothelial cells and in murine polymicrobial sepsis. Acta Physiol (Oxf). 2014;211(1):176–87.PubMedCrossRef
86.
go back to reference Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol. 2003;284(4):C870–9.PubMedCrossRef Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol. 2003;284(4):C870–9.PubMedCrossRef
87.
go back to reference Zhu X, Cong J, Yang B, Sun Y. Association analysis of high-mobility group box-1 protein 1 (HMGB1)/toll-like receptor (TLR) 4 with nasal interleukins in allergic rhinitis patients. Cytokine. 2020;126: 154880.PubMedCrossRef Zhu X, Cong J, Yang B, Sun Y. Association analysis of high-mobility group box-1 protein 1 (HMGB1)/toll-like receptor (TLR) 4 with nasal interleukins in allergic rhinitis patients. Cytokine. 2020;126: 154880.PubMedCrossRef
88.
go back to reference Yuan Y, Liu Q, Zhao J, Tang H, Sun J. SIRT1 attenuates murine allergic rhinitis by downregulated HMGB 1/TLR4 pathway. Scand J Immunol. 2018;87(6): e12667.PubMedCrossRef Yuan Y, Liu Q, Zhao J, Tang H, Sun J. SIRT1 attenuates murine allergic rhinitis by downregulated HMGB 1/TLR4 pathway. Scand J Immunol. 2018;87(6): e12667.PubMedCrossRef
89.
go back to reference Pellegrini L, Xue J, Larson D, Pastorino S, Jube S, Forest KH, et al. HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma. Oncotarget. 2017;8(14):22649–61.PubMedPubMedCentralCrossRef Pellegrini L, Xue J, Larson D, Pastorino S, Jube S, Forest KH, et al. HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma. Oncotarget. 2017;8(14):22649–61.PubMedPubMedCentralCrossRef
90.
go back to reference Liu YY, Chen NH, Chang CH, Lin SW, Kao KC, Hu HC, et al. Ethyl pyruvate attenuates ventilation-induced diaphragm dysfunction through high-mobility group box-1 in a murine endotoxaemia model. J Cell Mol Med. 2019;23(8):5679–91.PubMedPubMedCentralCrossRef Liu YY, Chen NH, Chang CH, Lin SW, Kao KC, Hu HC, et al. Ethyl pyruvate attenuates ventilation-induced diaphragm dysfunction through high-mobility group box-1 in a murine endotoxaemia model. J Cell Mol Med. 2019;23(8):5679–91.PubMedPubMedCentralCrossRef
91.
go back to reference Wagner N, Dieteren S, Franz N, Kohler K, Mors K, Nicin L, et al. Ethyl pyruvate ameliorates hepatic injury following blunt chest trauma and hemorrhagic shock by reducing local inflammation, NF-kappaB activation and HMGB1 release. PLoS ONE. 2018;13(2): e0192171.PubMedPubMedCentralCrossRef Wagner N, Dieteren S, Franz N, Kohler K, Mors K, Nicin L, et al. Ethyl pyruvate ameliorates hepatic injury following blunt chest trauma and hemorrhagic shock by reducing local inflammation, NF-kappaB activation and HMGB1 release. PLoS ONE. 2018;13(2): e0192171.PubMedPubMedCentralCrossRef
92.
go back to reference Seo MS, Kim HJ, Kim H, Park SW. Ethyl pyruvate directly attenuates active secretion of HMGB1 in proximal tubular cells via induction of heme oxygenase-1. J Clin Med. 2019;8(5):629.PubMedPubMedCentralCrossRef Seo MS, Kim HJ, Kim H, Park SW. Ethyl pyruvate directly attenuates active secretion of HMGB1 in proximal tubular cells via induction of heme oxygenase-1. J Clin Med. 2019;8(5):629.PubMedPubMedCentralCrossRef
93.
go back to reference Shin JH, Kim ID, Kim SW, Lee HK, Jin Y, Park JH, et al. Ethyl pyruvate inhibits HMGB1 phosphorylation and release by chelating calcium. Mol Med. 2015;20(1):649–57.PubMedPubMedCentralCrossRef Shin JH, Kim ID, Kim SW, Lee HK, Jin Y, Park JH, et al. Ethyl pyruvate inhibits HMGB1 phosphorylation and release by chelating calcium. Mol Med. 2015;20(1):649–57.PubMedPubMedCentralCrossRef
94.
go back to reference Chen S, Wang Y, Gong G, Chen J, Niu Y, Kong W. Ethyl pyruvate attenuates murine allergic rhinitis partly by decreasing high mobility group box 1 release. Exp Biol Med (Maywood). 2015;240(11):1490–9.PubMedCrossRef Chen S, Wang Y, Gong G, Chen J, Niu Y, Kong W. Ethyl pyruvate attenuates murine allergic rhinitis partly by decreasing high mobility group box 1 release. Exp Biol Med (Maywood). 2015;240(11):1490–9.PubMedCrossRef
95.
go back to reference Bhat SM, Massey N, Karriker LA, Singh B, Charavaryamath C. Ethyl pyruvate reduces organic dust-induced airway inflammation by targeting HMGB1-RAGE signaling. Respir Res. 2019;20(1):27.PubMedPubMedCentralCrossRef Bhat SM, Massey N, Karriker LA, Singh B, Charavaryamath C. Ethyl pyruvate reduces organic dust-induced airway inflammation by targeting HMGB1-RAGE signaling. Respir Res. 2019;20(1):27.PubMedPubMedCentralCrossRef
96.
go back to reference Bellussi LM, Cocca S, Passali GC, Passali D. HMGB1 in the pathogenesis of nasal inflammatory diseases and its inhibition as new therapeutic approach: a review from the literature. Int Arch Otorhinolaryngol. 2017;21(4):390–8.PubMedPubMedCentralCrossRef Bellussi LM, Cocca S, Passali GC, Passali D. HMGB1 in the pathogenesis of nasal inflammatory diseases and its inhibition as new therapeutic approach: a review from the literature. Int Arch Otorhinolaryngol. 2017;21(4):390–8.PubMedPubMedCentralCrossRef
97.
go back to reference Zhang H, Yang N, Wang T, Dai B, Shang Y. Vitamin D reduces inflammatory response in asthmatic mice through HMGB1/TLR4/NF-kappaB signaling pathway. Mol Med Rep. 2018;17(2):2915–20.PubMed Zhang H, Yang N, Wang T, Dai B, Shang Y. Vitamin D reduces inflammatory response in asthmatic mice through HMGB1/TLR4/NF-kappaB signaling pathway. Mol Med Rep. 2018;17(2):2915–20.PubMed
98.
go back to reference Chen D, Bellussi LM, Cocca S, Wang J, Passali GC, Hao X, et al. Glycyrrhetinic acid suppressed hmgb1 release by up-regulation of Sirt6 in nasal inflammation. J Biol Regul Homeost Agents. 2017;31(2):269–77.PubMed Chen D, Bellussi LM, Cocca S, Wang J, Passali GC, Hao X, et al. Glycyrrhetinic acid suppressed hmgb1 release by up-regulation of Sirt6 in nasal inflammation. J Biol Regul Homeost Agents. 2017;31(2):269–77.PubMed
Metadata
Title
High mobility group box-1: a potential therapeutic target for allergic rhinitis
Authors
Shuhua Wu
Yangyang Yu
Zhong Zheng
Qi Cheng
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01412-z

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue