Skip to main content
Top
Published in: Forensic Toxicology 2/2020

01-07-2020 | Alkaloids | Original Article

Identification of five mitragyna alkaloids in blood and tissues using liquid chromatography-quadrupole/time-of-flight mass spectrometry

Authors: Stephanie Basiliere, Justin Brower, Ruth Winecker, Laura Friederich, Sarah Kerrigan

Published in: Forensic Toxicology | Issue 2/2020

Login to get access

Abstract

Purpose

Kratom is a botanical drug with psychoactive properties that is increasingly being used recreationally and “therapeutically” in a non-medically supervised setting. Analytical methods for the detection of kratom use in biological matrices are limited in scope. Prevalence of these alkaloids and their metabolites in forensic specimens is not well understood. The purpose of this study was to develop and validate a procedure to identify five Mitragyna alkaloids in blood and tissues using liquid chromatography quadrupole time–of–flight mass spectrometry (LC–Q/TOF–MS).

Methods

Mitragynine (MG), speciociliatine (SC), paynantheine (PY), speciogynine (SG) and 7-hydroxymitragynine (7-MG-OH) were identified in postmortem blood (n = 40) and liver specimens (n = 20). Mitragyna alkaloids were determined quantitatively using targeted acquisition and metabolites were identified qualitatively using full scan (untargeted) acquisition.

Results

The analytical procedure was validated in accordance with published recommendations. Limits of quantitation were 0.5–2 ng/mL for the five targeted alkaloids. Precision, bias, and matrix effects were all within acceptable thresholds. Concentrations of MG in central and peripheral blood were 1–422 ng/mL and 1–412 ng/mL. Liver concentrations of MG ranged from < 4 to > 1450 ng/g. Metabolites of MG (7-MG-OH, 9-O-demethylmitragynine and 16-carboxymitragynine) were also identified in postmortem blood with 7-MG-OH being identified in at least 95% of cases. Interestingly, SC concentrations were frequently identified in excess of MG concentrations.

Conclusions

A validated LC–Q/TOF–MS method for the analysis of five Mitragyna alkaloids is described. In addition, minor Mitragyna alkaloids and metabolites can serve as biomarkers of kratom use in blood and tissues.
Literature
1.
go back to reference Papsun DM, Chan-Hosokawa A, Friederich L, Brower J, Graf K, Logan B (2019) The trouble with kratom: analytical and interpretative issues involving mitragynine. J Anal Toxicol 43:615PubMedCrossRef Papsun DM, Chan-Hosokawa A, Friederich L, Brower J, Graf K, Logan B (2019) The trouble with kratom: analytical and interpretative issues involving mitragynine. J Anal Toxicol 43:615PubMedCrossRef
2.
go back to reference Hassan Z, Muzaimi M, Navaratnam V, Yusoff NHM, Suhaimi FW, Vadivelu R et al (2013) From kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev 37:138–151PubMedCrossRef Hassan Z, Muzaimi M, Navaratnam V, Yusoff NHM, Suhaimi FW, Vadivelu R et al (2013) From kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev 37:138–151PubMedCrossRef
3.
go back to reference Kruegel AC, Filizola M, Gassaway MM, Javitch JA, Kapoor A, Majumdar S et al (2016) Synthetic and receptor signaling explorations of the mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J Am Chem Soc 138:6754–6764PubMedPubMedCentralCrossRef Kruegel AC, Filizola M, Gassaway MM, Javitch JA, Kapoor A, Majumdar S et al (2016) Synthetic and receptor signaling explorations of the mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J Am Chem Soc 138:6754–6764PubMedPubMedCentralCrossRef
4.
go back to reference Matsumoto K, Mizowaki M, Takayama H, Sakai S, Aimi N, Watanabe H (1997) Suppressive effect of mitragynine on the 5-methoxy-N, N-dimethyltryptamine-induced head-twitch response in mice. Pharmacol Biochem Behav 57:319–323PubMedCrossRef Matsumoto K, Mizowaki M, Takayama H, Sakai S, Aimi N, Watanabe H (1997) Suppressive effect of mitragynine on the 5-methoxy-N, N-dimethyltryptamine-induced head-twitch response in mice. Pharmacol Biochem Behav 57:319–323PubMedCrossRef
5.
go back to reference Corkery JM, Streete P, Claridge H, Goodair C, Papanti D, Orsolini L, Schifano F, Sikka K, Körber S, Hendricks A (2019) Characteristics of deaths associated with kratom use. J Psychopharmacol 33:1102PubMedCrossRef Corkery JM, Streete P, Claridge H, Goodair C, Papanti D, Orsolini L, Schifano F, Sikka K, Körber S, Hendricks A (2019) Characteristics of deaths associated with kratom use. J Psychopharmacol 33:1102PubMedCrossRef
6.
go back to reference Swogger MT, Hart E, Erowid F, Erowid E, Trabold N, Yee K, Parkhurst KA, Priddy BM, Walsh Z (2015) Experiences of kratom users: a qualitative analysis. J Psychoact Drugs 47:360–367CrossRef Swogger MT, Hart E, Erowid F, Erowid E, Trabold N, Yee K, Parkhurst KA, Priddy BM, Walsh Z (2015) Experiences of kratom users: a qualitative analysis. J Psychoact Drugs 47:360–367CrossRef
7.
go back to reference Ward J, Rosenbaum C, Hernon C, McCurdy CR, Boyer EW (2011) Herbal medicines for the management of opioid addiction. CNS Drugs 25:999–1007PubMedCrossRef Ward J, Rosenbaum C, Hernon C, McCurdy CR, Boyer EW (2011) Herbal medicines for the management of opioid addiction. CNS Drugs 25:999–1007PubMedCrossRef
8.
go back to reference Singh D, Müller CP, Vicknasingam BK (2014) Kratom (mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend 139:132–137PubMedCrossRef Singh D, Müller CP, Vicknasingam BK (2014) Kratom (mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend 139:132–137PubMedCrossRef
9.
go back to reference Saingam D, Assanangkornchai S, Geater AF, Balthip Q (2013) Pattern and consequences of krathom (mitragyna speciosa korth.) use among male villagers in southern Thailand: a qualitative study. Int J Drug Policy 24:351–358PubMedCrossRef Saingam D, Assanangkornchai S, Geater AF, Balthip Q (2013) Pattern and consequences of krathom (mitragyna speciosa korth.) use among male villagers in southern Thailand: a qualitative study. Int J Drug Policy 24:351–358PubMedCrossRef
10.
go back to reference Prozialeck W, Jivan J, Andurkar S (2012) Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc 112:792–799PubMed Prozialeck W, Jivan J, Andurkar S (2012) Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc 112:792–799PubMed
11.
go back to reference Grewal K (1932) The effect of mitragynine on man. Br J Med Psychol 12:41–58CrossRef Grewal K (1932) The effect of mitragynine on man. Br J Med Psychol 12:41–58CrossRef
12.
go back to reference McWhirter L, Morris S (2010) A case report of inpatient detoxification after kratom (mitragyna speciosa) dependence. Eur Addict Res 16:229–231PubMedCrossRef McWhirter L, Morris S (2010) A case report of inpatient detoxification after kratom (mitragyna speciosa) dependence. Eur Addict Res 16:229–231PubMedCrossRef
13.
go back to reference Jansen KLR, Prast CJ (1988) Ethnopharmacology of kratom and the mitragyna alkaloids. J Ethnopharmacol 23:115–119PubMedCrossRef Jansen KLR, Prast CJ (1988) Ethnopharmacology of kratom and the mitragyna alkaloids. J Ethnopharmacol 23:115–119PubMedCrossRef
14.
15.
go back to reference Sheleg SV, Collins GB (2011) A coincidence of addiction to “kratom” and severe primary hypothyroidism. J Addict Med 5:300–301PubMedCrossRef Sheleg SV, Collins GB (2011) A coincidence of addiction to “kratom” and severe primary hypothyroidism. J Addict Med 5:300–301PubMedCrossRef
16.
go back to reference Sabetghadam A, Ramanathan S, Sasidharan S, Mansor SM (2013) Subchronic exposure to mitragynine, the principal alkaloid of mitragyna speciosa, in rats. J Ethnopharmacol 146:815–823PubMedCrossRef Sabetghadam A, Ramanathan S, Sasidharan S, Mansor SM (2013) Subchronic exposure to mitragynine, the principal alkaloid of mitragyna speciosa, in rats. J Ethnopharmacol 146:815–823PubMedCrossRef
17.
go back to reference Osborne CS, Overstreet AN, Rockey DC, Schreiner AD (2019) Drug-induced liver injury caused by kratom use as an alternative pain treatment amid an ongoing opioid epidemic. J Investig Med High Impact Case Rep 7:2324709619826167PubMedPubMedCentral Osborne CS, Overstreet AN, Rockey DC, Schreiner AD (2019) Drug-induced liver injury caused by kratom use as an alternative pain treatment amid an ongoing opioid epidemic. J Investig Med High Impact Case Rep 7:2324709619826167PubMedPubMedCentral
18.
go back to reference Pantano F, Tittarelli R, Mannocchi G, Zaami S, Ricci S, Giorgetti R, Terranova D, Busardò FP, Marinelli E (2016) Hepatotoxicity induced by “the 3ks”: kava, kratom and khat. Int J Mol Sci 17:580PubMedPubMedCentralCrossRef Pantano F, Tittarelli R, Mannocchi G, Zaami S, Ricci S, Giorgetti R, Terranova D, Busardò FP, Marinelli E (2016) Hepatotoxicity induced by “the 3ks”: kava, kratom and khat. Int J Mol Sci 17:580PubMedPubMedCentralCrossRef
19.
go back to reference Harizal SN, Mansor SM, Hasnan J, Tharakan JKJ, Abdullah J (2010) Acute toxicity study of the standardized methanolic extract of mitragyna speciosa korth in rodent. J Ethnopharmacol 131:404–409PubMedCrossRef Harizal SN, Mansor SM, Hasnan J, Tharakan JKJ, Abdullah J (2010) Acute toxicity study of the standardized methanolic extract of mitragyna speciosa korth in rodent. J Ethnopharmacol 131:404–409PubMedCrossRef
20.
go back to reference McIntyre IM, Trochta A, Stolberg S, Campman SC (2014) Mitragynine ‘kratom’ related fatality: a case report with postmortem concentrations. J Anal Toxicol 39:152–155PubMedCrossRef McIntyre IM, Trochta A, Stolberg S, Campman SC (2014) Mitragynine ‘kratom’ related fatality: a case report with postmortem concentrations. J Anal Toxicol 39:152–155PubMedCrossRef
21.
go back to reference Neerman MF, Frost RE, Deking J (2013) A drug fatality involving kratom. J Forensic Sci 58:S278–S279PubMedCrossRef Neerman MF, Frost RE, Deking J (2013) A drug fatality involving kratom. J Forensic Sci 58:S278–S279PubMedCrossRef
22.
go back to reference Aggarwal G, Robertson E, McKinlay J, Walter E (2018) Death from kratom toxicity and the possible role of intralipid. J Intensive Care Soc 19:61–63PubMedCrossRef Aggarwal G, Robertson E, McKinlay J, Walter E (2018) Death from kratom toxicity and the possible role of intralipid. J Intensive Care Soc 19:61–63PubMedCrossRef
23.
go back to reference Walsh EE, Shoff EN, Elizabeth Zaney M, Hime GW, Garavan F, Boland DM (2018) To test or not to test?: the value of toxicology in a delayed overdose death. J Forensic Sci 64:314–317PubMedCrossRef Walsh EE, Shoff EN, Elizabeth Zaney M, Hime GW, Garavan F, Boland DM (2018) To test or not to test?: the value of toxicology in a delayed overdose death. J Forensic Sci 64:314–317PubMedCrossRef
24.
go back to reference Hughes RL (2018) Fatal combination of mitragynine and quetiapine—a case report with discussion of a potential herb-drug interaction. Forensic Sci Med Pathol 15:110–113PubMedCrossRef Hughes RL (2018) Fatal combination of mitragynine and quetiapine—a case report with discussion of a potential herb-drug interaction. Forensic Sci Med Pathol 15:110–113PubMedCrossRef
25.
go back to reference Dorman C, Wong D, Khan A (2015) Cholestatic hepatitis from prolonged kratom use: a case report. Hepatology 61:1086–1087PubMedCrossRef Dorman C, Wong D, Khan A (2015) Cholestatic hepatitis from prolonged kratom use: a case report. Hepatology 61:1086–1087PubMedCrossRef
26.
go back to reference Holler JM, Vorce SP, McDonough-Bender PC, Magluilo J, Solomon CJ, Levine B (2011) A drug toxicity death involving propylhexedrine and mitragynine. J Anal Toxicol 35:54–59PubMedCrossRef Holler JM, Vorce SP, McDonough-Bender PC, Magluilo J, Solomon CJ, Levine B (2011) A drug toxicity death involving propylhexedrine and mitragynine. J Anal Toxicol 35:54–59PubMedCrossRef
28.
go back to reference Rosenbaum C, Carreiro S, Babu K (2012) Here today, gone tomorrow…and back again? a review of herbal marijuana alternatives (k2, spice), synthetic cathinones (bath salts), kratom, salvia divinorum, methoxetamine, and piperazines. J Med Toxicol 8:15–32PubMedPubMedCentralCrossRef Rosenbaum C, Carreiro S, Babu K (2012) Here today, gone tomorrow…and back again? a review of herbal marijuana alternatives (k2, spice), synthetic cathinones (bath salts), kratom, salvia divinorum, methoxetamine, and piperazines. J Med Toxicol 8:15–32PubMedPubMedCentralCrossRef
33.
go back to reference Adkins J, Boyer E, McCurdy C (2011) Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Curr Med Chem 11:1165–1175CrossRef Adkins J, Boyer E, McCurdy C (2011) Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Curr Med Chem 11:1165–1175CrossRef
34.
go back to reference Kruegel AC, Grundmann O (2017) The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology 15:108–120 Kruegel AC, Grundmann O (2017) The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology 15:108–120
35.
go back to reference Raffa RB (2015) Kratom and other mitragynines: the chemistry and pharmacology of opioids from a non-opium source, 1st edn. Florida, Boca Raton Raffa RB (2015) Kratom and other mitragynines: the chemistry and pharmacology of opioids from a non-opium source, 1st edn. Florida, Boca Raton
36.
go back to reference Takayama H (2004) Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, mitragyna speciosa. Chem Pharm Bull 52:916–928PubMedCrossRef Takayama H (2004) Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, mitragyna speciosa. Chem Pharm Bull 52:916–928PubMedCrossRef
37.
go back to reference Kronstrand R, Roman M, Thelander G, Eriksson A (2011) Unintentional fatal intoxications with mitragynine and o-desmethyltramadol from the herbal blend krypton. J Anal Toxicol 35:242–247PubMedCrossRef Kronstrand R, Roman M, Thelander G, Eriksson A (2011) Unintentional fatal intoxications with mitragynine and o-desmethyltramadol from the herbal blend krypton. J Anal Toxicol 35:242–247PubMedCrossRef
38.
go back to reference Philipp AA, Meyer MR, Wissenbach DK, Weber AA, Zoerntlein SW, Zweipfenning PGM, Maurer HH (2011) Monitoring of kratom or krypton intake in urine using gc-ms in clinical and forensic toxicology. Anal Bioanal Chem 400:127–135PubMedCrossRef Philipp AA, Meyer MR, Wissenbach DK, Weber AA, Zoerntlein SW, Zweipfenning PGM, Maurer HH (2011) Monitoring of kratom or krypton intake in urine using gc-ms in clinical and forensic toxicology. Anal Bioanal Chem 400:127–135PubMedCrossRef
39.
go back to reference Arndt T, Claussen U, Gussregen B, Schrofel S, Sturzer B, Werle A, Wolf G (2011) Kratom alkaloids and O-desmethyltramadol in urine of a “Krypton” herbal mixture consumer. Forensic Sci Int 208:47–52PubMedCrossRef Arndt T, Claussen U, Gussregen B, Schrofel S, Sturzer B, Werle A, Wolf G (2011) Kratom alkaloids and O-desmethyltramadol in urine of a “Krypton” herbal mixture consumer. Forensic Sci Int 208:47–52PubMedCrossRef
41.
go back to reference Vuppala PK, Boddu SP, Furr EB, McCurdy CR, Avery BA (2011) Simple, sensitive, high-throughput method for the quantification of mitragynine in rat plasma using uplc-ms and its application to an intravenous pharmacokinetic study. Chromatographia 74:703–710CrossRef Vuppala PK, Boddu SP, Furr EB, McCurdy CR, Avery BA (2011) Simple, sensitive, high-throughput method for the quantification of mitragynine in rat plasma using uplc-ms and its application to an intravenous pharmacokinetic study. Chromatographia 74:703–710CrossRef
42.
go back to reference Vuppala PK, Jamalapuram S, Furr EB, McCurdy CR, Avery BA (2013) Development and validation of a uplc-ms/ms method for the determination of 7-hydroxymitragynine, a μ-opioid agonist, in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 27:1726–1732PubMedPubMedCentralCrossRef Vuppala PK, Jamalapuram S, Furr EB, McCurdy CR, Avery BA (2013) Development and validation of a uplc-ms/ms method for the determination of 7-hydroxymitragynine, a μ-opioid agonist, in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 27:1726–1732PubMedPubMedCentralCrossRef
43.
go back to reference de Moraes NV, Moretti RAC, Furr EB, McCurdy CR, Lanchote VL (2009) Determination of mitragynine in rat plasma by lc-ms/ms: application to pharmacokinetics. J Chromatogr B 877:2593–2597CrossRef de Moraes NV, Moretti RAC, Furr EB, McCurdy CR, Lanchote VL (2009) Determination of mitragynine in rat plasma by lc-ms/ms: application to pharmacokinetics. J Chromatogr B 877:2593–2597CrossRef
44.
go back to reference Parthasarathy S, Ramanathan S, Ismail S, Adenan MI, Mansor SM, Murugaiyah V (2010) Determination of mitragynine in plasma with solid-phase extraction and rapid hplc–uv analysis, and its application to a pharmacokinetic study in rat. Anal Bioanal Chem 397:2023–2030PubMedCrossRef Parthasarathy S, Ramanathan S, Ismail S, Adenan MI, Mansor SM, Murugaiyah V (2010) Determination of mitragynine in plasma with solid-phase extraction and rapid hplc–uv analysis, and its application to a pharmacokinetic study in rat. Anal Bioanal Chem 397:2023–2030PubMedCrossRef
46.
go back to reference Scientific working group for forensic toxicology (SWGTOX) (2013) Standard practices for method validation in forensic toxicology. J Anal Toxicol 37:452–474CrossRef Scientific working group for forensic toxicology (SWGTOX) (2013) Standard practices for method validation in forensic toxicology. J Anal Toxicol 37:452–474CrossRef
47.
go back to reference Philipp AA, Wissenbach DK, Zoerntlein SW, Klein ON, Kanogsunthornrat J, Maurer HH (2009) Studies on the metabolism of mitragynine, the main alkaloid of the herbal drug Kratom, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. J Mass Spectrom 44:1249–1261PubMedCrossRef Philipp AA, Wissenbach DK, Zoerntlein SW, Klein ON, Kanogsunthornrat J, Maurer HH (2009) Studies on the metabolism of mitragynine, the main alkaloid of the herbal drug Kratom, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. J Mass Spectrom 44:1249–1261PubMedCrossRef
48.
go back to reference Avula B, Sagi S, Yan-Hong W, Mei W, Ali Z, Smillie TJ, Zweigenbaum J, Khan IA (2015) Identification and characterization of indole and oxindole alkaloids from leaves of mitragyna speciosa korth using liquid chromatography–accurate qtof mass spectrometry. J AOAC Int 98:13–31PubMedCrossRef Avula B, Sagi S, Yan-Hong W, Mei W, Ali Z, Smillie TJ, Zweigenbaum J, Khan IA (2015) Identification and characterization of indole and oxindole alkaloids from leaves of mitragyna speciosa korth using liquid chromatography–accurate qtof mass spectrometry. J AOAC Int 98:13–31PubMedCrossRef
49.
go back to reference Basiliere S, Bryand K, Kerrigan S (2018) Identification of five mitragyna alkaloids in urine using liquid chromatography-quadrupole/time of flight mass spectrometry. J Chromatogr B 1080:11–19CrossRef Basiliere S, Bryand K, Kerrigan S (2018) Identification of five mitragyna alkaloids in urine using liquid chromatography-quadrupole/time of flight mass spectrometry. J Chromatogr B 1080:11–19CrossRef
50.
go back to reference Kruegal A, Uprety R, Grinnell S, Langreck C, Pekarskaya E, Le Rouzic V et al (2019) 7-Hydroxymitragynine is an active metabolite of mitragynine and a key mediator of its analgesic effects. ACS Cent Sci 5:992–1001CrossRef Kruegal A, Uprety R, Grinnell S, Langreck C, Pekarskaya E, Le Rouzic V et al (2019) 7-Hydroxymitragynine is an active metabolite of mitragynine and a key mediator of its analgesic effects. ACS Cent Sci 5:992–1001CrossRef
51.
go back to reference Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH (2010) Phase I and II metabolites of speciogynine, a diastereomer of the main Kratom alkaloid mitragynine, identified in rat and human urine by liquid chromatography coupled to low- and high-resolution linear ion trap mass spectrometry. J Mass Spectrom 45:1344–1357PubMedCrossRef Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH (2010) Phase I and II metabolites of speciogynine, a diastereomer of the main Kratom alkaloid mitragynine, identified in rat and human urine by liquid chromatography coupled to low- and high-resolution linear ion trap mass spectrometry. J Mass Spectrom 45:1344–1357PubMedCrossRef
52.
go back to reference Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH (2011) Metabolism studies of the Kratom alkaloid speciociliatine, a diastereomer of the main alkaloid mitragynine, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. Anal Bioanal Chem 399:2747–2753PubMedCrossRef Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH (2011) Metabolism studies of the Kratom alkaloid speciociliatine, a diastereomer of the main alkaloid mitragynine, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. Anal Bioanal Chem 399:2747–2753PubMedCrossRef
Metadata
Title
Identification of five mitragyna alkaloids in blood and tissues using liquid chromatography-quadrupole/time-of-flight mass spectrometry
Authors
Stephanie Basiliere
Justin Brower
Ruth Winecker
Laura Friederich
Sarah Kerrigan
Publication date
01-07-2020
Publisher
Springer Singapore
Published in
Forensic Toxicology / Issue 2/2020
Print ISSN: 1860-8965
Electronic ISSN: 1860-8973
DOI
https://doi.org/10.1007/s11419-020-00537-8

Other articles of this Issue 2/2020

Forensic Toxicology 2/2020 Go to the issue