Skip to main content
Top
Published in: Journal of Natural Medicines 4/2021

Open Access 01-09-2021 | Alkaloids | Original Paper

Effects of nicotinic acetylcholine receptor-activating alkaloids on anxiety-like behavior in zebrafish

Authors: Ainhoa Alzualde, Oihane Jaka, Diogo A. R. S. Latino, Omar Alijevic, Iñaki Iturria, Jorge Hurtado de Mendoza, Pavel Pospisil, Stefan Frentzel, Manuel C. Peitsch, Julia Hoeng, Kyoko Koshibu

Published in: Journal of Natural Medicines | Issue 4/2021

Login to get access

Abstract

Alkaloids are a structurally complex group of natural products that have a diverse range of biological activities and significant therapeutic applications. In this study, we examined the acute, anxiolytic-like effects of nicotinic acetylcholine receptor (nAChR)-activating alkaloids with reported neuropharmacological effects but whose effects on anxiety are less well understood. Because α4β2 nAChRs can regulate anxiety, we first demonstrated the functional activities of alkaloids on these receptors in vitro. Their effects on anxiety-like behavior in zebrafish were then examined using the zebrafish novel tank test (NTT). The NTT is a relatively high-throughput behavioral paradigm that takes advantage of the natural tendency of fish to dive down when stressed or anxious. We report for the first time that cotinine, anatabine, and methylanatabine may suppress this anxiety-driven zebrafish behavior after a single 20-min treatment. Effective concentrations of these alkaloids were well above the concentrations naturally found in plants and the concentrations needed to induce anxiolytic-like effect by nicotine. These alkaloids showed good receptor interactions at the α4β2 nAChR agonist site as demonstrated by in vitro binding and in silico docking model, although somewhat weaker than that for nicotine. Minimal or no significant effect of other compounds may have been due to low bioavailability of these compounds in the brain, which is supported by the in silico prediction of blood–brain barrier permeability. Taken together, our findings indicate that nicotine, although not risk-free, is the most potent anxiolytic-like alkaloid tested in this study, and other natural alkaloids may regulate anxiety as well.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adenot M, Lahana R (2004) Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates. J Chem Inf Comput Sci 44:239–248PubMedCrossRef Adenot M, Lahana R (2004) Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates. J Chem Inf Comput Sci 44:239–248PubMedCrossRef
2.
go back to reference Alijevic O, McHugh D, Rufener L, Mazurov A, Hoeng J, Peitsch M (2020) An electrophysiological characterization of naturally occurring tobacco alkaloids and their action on human alpha4beta2 and alpha7 nicotinic acetylcholine receptors. Phytochemistry 170:112187PubMedCrossRef Alijevic O, McHugh D, Rufener L, Mazurov A, Hoeng J, Peitsch M (2020) An electrophysiological characterization of naturally occurring tobacco alkaloids and their action on human alpha4beta2 and alpha7 nicotinic acetylcholine receptors. Phytochemistry 170:112187PubMedCrossRef
3.
go back to reference Alzualde A, Behl M, Sipes NS, Hsieh JH, Alday A, Tice RR, Paules RS, Muriana A, Quevedo C (2018) Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance. Neurotoxicol Teratol 70:40–50PubMedCrossRef Alzualde A, Behl M, Sipes NS, Hsieh JH, Alday A, Tice RR, Paules RS, Muriana A, Quevedo C (2018) Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance. Neurotoxicol Teratol 70:40–50PubMedCrossRef
4.
go back to reference Andersson C, Wennström P, Gry J (2003) Nicotine alkaloids in Solanaceous food plants Ekspressen Tryk & Kopicenter, Copenhagen, Sweden Andersson C, Wennström P, Gry J (2003) Nicotine alkaloids in Solanaceous food plants Ekspressen Tryk & Kopicenter, Copenhagen, Sweden
5.
go back to reference Bencan Z, Levin ED (2008) The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 95:408–412PubMedPubMedCentralCrossRef Bencan Z, Levin ED (2008) The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 95:408–412PubMedPubMedCentralCrossRef
6.
go back to reference Bencan Z, Sledge D, Levin ED (2009) Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 94:75–80PubMedPubMedCentralCrossRef Bencan Z, Sledge D, Levin ED (2009) Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 94:75–80PubMedPubMedCentralCrossRef
7.
8.
go back to reference Bertrand D, Terry AV Jr (2018) The wonderland of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 151:214–225PubMedCrossRef Bertrand D, Terry AV Jr (2018) The wonderland of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 151:214–225PubMedCrossRef
9.
go back to reference Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S (2012) Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov 11:909–922PubMedCrossRef Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S (2012) Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov 11:909–922PubMedCrossRef
10.
go back to reference Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, Wu N, Wong K, Roy S, Suciu C, Goodspeed J, Elegante M, Bartels B, Elkhayat S, Tien D, Tan J, Denmark A, Gilder T, Kyzar E, Dileo J, Frank K, Chang K, Utterback E, Hart P, Kalueff AV (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5:1786–1799PubMedCrossRef Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, Wu N, Wong K, Roy S, Suciu C, Goodspeed J, Elegante M, Bartels B, Elkhayat S, Tien D, Tan J, Denmark A, Gilder T, Kyzar E, Dileo J, Frank K, Chang K, Utterback E, Hart P, Kalueff AV (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5:1786–1799PubMedCrossRef
11.
go back to reference Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105PubMedCrossRef Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105PubMedCrossRef
12.
13.
go back to reference Echeverria F, Zeitlin R (2019) Chapter 22 - Cotinine and Memory: Remembering to Forget. Mechanisms and Treatment. Academic Press, Neuroscience of Nicotine, pp 173–180 Echeverria F, Zeitlin R (2019) Chapter 22 - Cotinine and Memory: Remembering to Forget. Mechanisms and Treatment. Academic Press, Neuroscience of Nicotine, pp 173–180
14.
go back to reference Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44PubMedPubMedCentralCrossRef Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44PubMedPubMedCentralCrossRef
15.
go back to reference Egan WJ, Merz KM Jr, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877PubMedCrossRef Egan WJ, Merz KM Jr, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877PubMedCrossRef
16.
go back to reference Eliceiri BP, Gonzalez AM, Baird A (2011) Zebrafish model of the blood-brain barrier: morphological and permeability studies. Methods in molecular biology (Clifton, NJ) 686:371–378CrossRef Eliceiri BP, Gonzalez AM, Baird A (2011) Zebrafish model of the blood-brain barrier: morphological and permeability studies. Methods in molecular biology (Clifton, NJ) 686:371–378CrossRef
18.
go back to reference Gebauer DL, Pagnussat N, Piato AL, Schaefer IC, Bonan CD, Lara DR (2011) Effects of anxiolytics in zebrafish: similarities and differences between benzodiazepines, buspirone and ethanol. Pharmacol Biochem Behav 99:480–486PubMedCrossRef Gebauer DL, Pagnussat N, Piato AL, Schaefer IC, Bonan CD, Lara DR (2011) Effects of anxiolytics in zebrafish: similarities and differences between benzodiazepines, buspirone and ethanol. Pharmacol Biochem Behav 99:480–486PubMedCrossRef
19.
go back to reference Ghosheh O, Dwoskin LP, Li WK, Crooks PA (1999) Residence times and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2’-(14)C]nicotine. Drug Metabol Dispos Biolog Fate Chem 27:1448–1455 Ghosheh O, Dwoskin LP, Li WK, Crooks PA (1999) Residence times and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2’-(14)C]nicotine. Drug Metabol Dispos Biolog Fate Chem 27:1448–1455
20.
go back to reference Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396PubMedCrossRef Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396PubMedCrossRef
21.
go back to reference Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491PubMedCrossRef Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491PubMedCrossRef
22.
go back to reference Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J, Gilder T, Wu N, Dileo J, Cachat J, Kalueff AV (2010) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284PubMedCrossRef Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J, Gilder T, Wu N, Dileo J, Cachat J, Kalueff AV (2010) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284PubMedCrossRef
24.
go back to reference Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N, Nicolson T, Braubach O, Gilman CP, Pittman J, Rosemberg DB, Gerlai R, Echevarria D, Lamb E, Neuhauss SC, Weng W, Bally-Cuif L, Schneider H, Zebrafish Neuroscience Research C (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10:70–86PubMedPubMedCentralCrossRef Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N, Nicolson T, Braubach O, Gilman CP, Pittman J, Rosemberg DB, Gerlai R, Echevarria D, Lamb E, Neuhauss SC, Weng W, Bally-Cuif L, Schneider H, Zebrafish Neuroscience Research C (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10:70–86PubMedPubMedCentralCrossRef
25.
go back to reference Kalueff AV, Kaluyeva A, Maillet EL (2017) Anxiolytic-like effects of noribogaine in zebrafish. Behav Brain Res 330:63–67PubMedCrossRef Kalueff AV, Kaluyeva A, Maillet EL (2017) Anxiolytic-like effects of noribogaine in zebrafish. Behav Brain Res 330:63–67PubMedCrossRef
26.
go back to reference Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ (2017) Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 174:1925–1944PubMedPubMedCentralCrossRef Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ (2017) Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 174:1925–1944PubMedPubMedCentralCrossRef
27.
go back to reference Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395PubMedCrossRef Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395PubMedCrossRef
28.
go back to reference Klee EW, Ebbert JO, Schneider H, Hurt RD, Ekker SC (2011) Zebrafish for the study of the biological effects of nicotine. Nicotine Tobacco Res 13:301–312CrossRef Klee EW, Ebbert JO, Schneider H, Hurt RD, Ekker SC (2011) Zebrafish for the study of the biological effects of nicotine. Nicotine Tobacco Res 13:301–312CrossRef
29.
go back to reference Kulkarni P, Chaudhari GH, Sripuram V, Banote RK, Kirla KT, Sultana R, Rao P, Oruganti S, Chatti K (2014) Oral dosing in adult zebrafish: proof-of-concept using pharmacokinetics and pharmacological evaluation of carbamazepine. Pharmacol Rep PR 66:179–183PubMedCrossRef Kulkarni P, Chaudhari GH, Sripuram V, Banote RK, Kirla KT, Sultana R, Rao P, Oruganti S, Chatti K (2014) Oral dosing in adult zebrafish: proof-of-concept using pharmacokinetics and pharmacological evaluation of carbamazepine. Pharmacol Rep PR 66:179–183PubMedCrossRef
30.
go back to reference Kysil EV, Meshalkina DA, Frick EE, Echevarria DJ, Rosemberg DB, Maximino C, Lima MG, Abreu MS, Giacomini AC, Barcellos LJG, Song C, Kalueff AV (2017) Comparative analyses of zebrafish anxiety-like behavior using conflict-based novelty tests. Zebrafish 14:197–208PubMedCrossRef Kysil EV, Meshalkina DA, Frick EE, Echevarria DJ, Rosemberg DB, Maximino C, Lima MG, Abreu MS, Giacomini AC, Barcellos LJG, Song C, Kalueff AV (2017) Comparative analyses of zebrafish anxiety-like behavior using conflict-based novelty tests. Zebrafish 14:197–208PubMedCrossRef
31.
32.
go back to reference Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90:54–58PubMedCrossRef Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90:54–58PubMedCrossRef
33.
go back to reference Levin ED (2011) Zebrafish assessment of cognitive improvement and anxiolysis: filling the gap between in vitro and rodent models for drug development. Rev Neurosci 22:75–84PubMedPubMedCentralCrossRef Levin ED (2011) Zebrafish assessment of cognitive improvement and anxiolysis: filling the gap between in vitro and rodent models for drug development. Rev Neurosci 22:75–84PubMedPubMedCentralCrossRef
34.
go back to reference Levin ED, Hao I, Burke DA, Cauley M, Hall BJ, Rezvani AH (2014) Effects of tobacco smoke constituents, anabasine and anatabine, on memory and attention in female rats. J Psychopharmacol 28:915–922PubMedPubMedCentralCrossRef Levin ED, Hao I, Burke DA, Cauley M, Hall BJ, Rezvani AH (2014) Effects of tobacco smoke constituents, anabasine and anatabine, on memory and attention in female rats. J Psychopharmacol 28:915–922PubMedPubMedCentralCrossRef
35.
go back to reference Lippiello PM, Bencherif M, Caldwell WS, Arrington SR, Fowler KW, Lovette ME, Reeves LK (1996) Metanicotine: a nicotinic agonist with central nervous system selectivity-in vitro and in vivo characterization. Drug Dev Res 38:169–176CrossRef Lippiello PM, Bencherif M, Caldwell WS, Arrington SR, Fowler KW, Lovette ME, Reeves LK (1996) Metanicotine: a nicotinic agonist with central nervous system selectivity-in vitro and in vivo characterization. Drug Dev Res 38:169–176CrossRef
36.
go back to reference Maximino C, Puty B, Benzecry R, Araujo J, Lima MG, de Jesus Oliveira Batista E, Renata de Matos Oliveira K, Crespo-Lopez ME, Herculano AM (2013) Role of serotonin in zebrafish (Danio rerio) anxiety: relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 71:83-97 Maximino C, Puty B, Benzecry R, Araujo J, Lima MG, de Jesus Oliveira Batista E, Renata de Matos Oliveira K, Crespo-Lopez ME, Herculano AM (2013) Role of serotonin in zebrafish (Danio rerio) anxiety: relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 71:83-97
37.
go back to reference Maximino C, Puty B, Matos Oliveira KR, Herculano AM (2013) Behavioral and neurochemical changes in the zebrafish leopard strain. Genes Brain Behav 12:576–582PubMedCrossRef Maximino C, Puty B, Matos Oliveira KR, Herculano AM (2013) Behavioral and neurochemical changes in the zebrafish leopard strain. Genes Brain Behav 12:576–582PubMedCrossRef
38.
go back to reference Mazurov AA, Miao L, Bhatti BS, Strachan JP, Akireddy S, Murthy S, Kombo D, Xiao YD, Hammond P, Zhang J, Hauser TA, Jordan KG, Miller CH, Speake JD, Gatto GJ, Yohannes D (2012) Discovery of 3-(5-chloro-2-furoyl)-3,7-diazabicyclo[3.3.0]octane (TC-6683, AZD1446), a novel highly selective alpha4beta2 nicotinic acetylcholine receptor agonist for the treatment of cognitive disorders. J Med Chem 55:9181–9194PubMedCrossRef Mazurov AA, Miao L, Bhatti BS, Strachan JP, Akireddy S, Murthy S, Kombo D, Xiao YD, Hammond P, Zhang J, Hauser TA, Jordan KG, Miller CH, Speake JD, Gatto GJ, Yohannes D (2012) Discovery of 3-(5-chloro-2-furoyl)-3,7-diazabicyclo[3.3.0]octane (TC-6683, AZD1446), a novel highly selective alpha4beta2 nicotinic acetylcholine receptor agonist for the treatment of cognitive disorders. J Med Chem 55:9181–9194PubMedCrossRef
39.
go back to reference Mezzomo NJ, Silveira A, Giuliani GS, Quadros VA, Rosemberg DB (2016) The role of taurine on anxiety-like behaviors in zebrafish: A comparative study using the novel tank and the light-dark tasks. Neurosci Lett 613:19–24PubMedCrossRef Mezzomo NJ, Silveira A, Giuliani GS, Quadros VA, Rosemberg DB (2016) The role of taurine on anxiety-like behaviors in zebrafish: A comparative study using the novel tank and the light-dark tasks. Neurosci Lett 613:19–24PubMedCrossRef
40.
go back to reference Mineur YS, Fote GM, Blakeman S, Cahuzac EL, Newbold SA, Picciotto MR (2016) Multiple nicotinic acetylcholine receptor subtypes in the mouse amygdala regulate affective behaviors and response to social stress. Neuropsychopharmacology 41:1579–1587PubMedCrossRef Mineur YS, Fote GM, Blakeman S, Cahuzac EL, Newbold SA, Picciotto MR (2016) Multiple nicotinic acetylcholine receptor subtypes in the mouse amygdala regulate affective behaviors and response to social stress. Neuropsychopharmacology 41:1579–1587PubMedCrossRef
42.
go back to reference Nickel J, Gohlke BO, Erehman J, Banerjee P, Rong WW, Goede A, Dunkel M, Preissner R (2014) SuperPred: update on drug classification and target prediction. Nucleic Acids Res 42:W26-31PubMedPubMedCentralCrossRef Nickel J, Gohlke BO, Erehman J, Banerjee P, Rong WW, Goede A, Dunkel M, Preissner R (2014) SuperPred: update on drug classification and target prediction. Nucleic Acids Res 42:W26-31PubMedPubMedCentralCrossRef
43.
go back to reference Papke RL, Ono F, Stokes C, Urban JM, Boyd RT (2012) The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study. Biochem Pharmacol 84:352–365PubMedPubMedCentralCrossRef Papke RL, Ono F, Stokes C, Urban JM, Boyd RT (2012) The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study. Biochem Pharmacol 84:352–365PubMedPubMedCentralCrossRef
44.
go back to reference Parker MO, Brock AJ, Walton RT, Brennan CH (2013) The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits 7:63PubMedPubMedCentralCrossRef Parker MO, Brock AJ, Walton RT, Brennan CH (2013) The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits 7:63PubMedPubMedCentralCrossRef
45.
go back to reference Perry N, Perry E (2018) Botanical Brain Balms. Filbert Press, China Perry N, Perry E (2018) Botanical Brain Balms. Filbert Press, China
46.
47.
48.
go back to reference Picciotto MR, Lewis AS, van Schalkwyk GI, Mineur YS (2015) Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states. Neuropharmacology 96:235–243PubMedPubMedCentralCrossRef Picciotto MR, Lewis AS, van Schalkwyk GI, Mineur YS (2015) Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states. Neuropharmacology 96:235–243PubMedPubMedCentralCrossRef
49.
go back to reference Pickart MA, Klee EW (2014) Zebrafish approaches enhance the translational research tackle box. Transl Res 163:65–78PubMedCrossRef Pickart MA, Klee EW (2014) Zebrafish approaches enhance the translational research tackle box. Transl Res 163:65–78PubMedCrossRef
50.
go back to reference Pittman JT, Ichikawa KM (2013) iPhone(R) applications as versatile video tracking tools to analyze behavior in zebrafish (Danio rerio). Pharmacol Biochem Behav 106:137–142PubMedCrossRef Pittman JT, Ichikawa KM (2013) iPhone(R) applications as versatile video tracking tools to analyze behavior in zebrafish (Danio rerio). Pharmacol Biochem Behav 106:137–142PubMedCrossRef
51.
go back to reference Quevedo C, Behl M, Ryan K, Paules RS, Alday A, Muriana A, Alzualde A (2019) Detection and Prioritization of Developmentally Neurotoxic and/or Neurotoxic Compounds Using Zebrafish. Toxicol Sci 168:225–240PubMedCrossRef Quevedo C, Behl M, Ryan K, Paules RS, Alday A, Muriana A, Alzualde A (2019) Detection and Prioritization of Developmentally Neurotoxic and/or Neurotoxic Compounds Using Zebrafish. Toxicol Sci 168:225–240PubMedCrossRef
52.
go back to reference Romanelli MN, Gratteri P, Guandalini L, Martini E, Bonaccini C, Gualtieri F (2007) Central nicotinic receptors: structure, function, ligands, and therapeutic potential. ChemMedChem 2:746–767PubMedCrossRef Romanelli MN, Gratteri P, Guandalini L, Martini E, Bonaccini C, Gualtieri F (2007) Central nicotinic receptors: structure, function, ligands, and therapeutic potential. ChemMedChem 2:746–767PubMedCrossRef
53.
go back to reference Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, Gould GG (2010) Zebrafish Behavior in Novel Environments: Effects of Acute Exposure to Anxiolytic Compounds and Choice of Danio rerio Line. Int J Comp Psychol 23:43–61PubMedPubMedCentralCrossRef Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, Gould GG (2010) Zebrafish Behavior in Novel Environments: Effects of Acute Exposure to Anxiolytic Compounds and Choice of Danio rerio Line. Int J Comp Psychol 23:43–61PubMedPubMedCentralCrossRef
54.
go back to reference Schapira M, Abagyan R, Totrov M (2002) Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine. BMC Struct Biol 2:1PubMedPubMedCentralCrossRef Schapira M, Abagyan R, Totrov M (2002) Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine. BMC Struct Biol 2:1PubMedPubMedCentralCrossRef
55.
go back to reference Seelig A (1998) A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 251:252–261PubMedCrossRef Seelig A (1998) A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 251:252–261PubMedCrossRef
56.
go back to reference Shen J, Cheng F, Xu Y, Li W, Tang Y (2010) Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model 50:1034–1041PubMedCrossRef Shen J, Cheng F, Xu Y, Li W, Tang Y (2010) Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model 50:1034–1041PubMedCrossRef
57.
go back to reference Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K, Utterback E, Gilder T, Kyzar E, Newman A, Carlos D, Chang K, Hook M, Rhymes C, Caffery M, Greenberg M, Zadina J, Kalueff AV (2011) Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry 35:1421–1431PubMedCrossRef Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K, Utterback E, Gilder T, Kyzar E, Newman A, Carlos D, Chang K, Hook M, Rhymes C, Caffery M, Greenberg M, Zadina J, Kalueff AV (2011) Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry 35:1421–1431PubMedCrossRef
58.
go back to reference Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV (2012) Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology 62:135–143PubMedCrossRef Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV (2012) Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology 62:135–143PubMedCrossRef
59.
go back to reference Stewart AM, Gaikwad S, Kyzar E, Kalueff AV (2012) Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Res 1451:44–52PubMedCrossRef Stewart AM, Gaikwad S, Kyzar E, Kalueff AV (2012) Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Res 1451:44–52PubMedCrossRef
60.
61.
go back to reference Terry AV, Callahan PM (2019) Nicotinic acetylcholine receptor ligands, cognitive function, and preclinical approaches to drug discovery. Nicotine Tobacco Res 21:383–394CrossRef Terry AV, Callahan PM (2019) Nicotinic acetylcholine receptor ligands, cognitive function, and preclinical approaches to drug discovery. Nicotine Tobacco Res 21:383–394CrossRef
62.
go back to reference Terry AV Jr, Hernandez CM, Hohnadel EJ, Bouchard KP, Buccafusco JJ (2005) Cotinine, a neuroactive metabolite of nicotine: potential for treating disorders of impaired cognition. CNS Drug Rev 11:229–252PubMedCrossRef Terry AV Jr, Hernandez CM, Hohnadel EJ, Bouchard KP, Buccafusco JJ (2005) Cotinine, a neuroactive metabolite of nicotine: potential for treating disorders of impaired cognition. CNS Drug Rev 11:229–252PubMedCrossRef
63.
go back to reference Terry AV Jr, Callahan PM, Hernandez CM (2015) Nicotinic ligands as multifunctional agents for the treatment of neuropsychiatric disorders. Biochem Pharmacol 97:388–398PubMedPubMedCentralCrossRef Terry AV Jr, Callahan PM, Hernandez CM (2015) Nicotinic ligands as multifunctional agents for the treatment of neuropsychiatric disorders. Biochem Pharmacol 97:388–398PubMedPubMedCentralCrossRef
64.
go back to reference Turner JR, Wilkinson DS, Poole RL, Gould TJ, Carlson GC, Blendy JA (2013) Divergent functional effects of sazetidine-a and varenicline during nicotine withdrawal. Neuropsychopharmacology 38:2035–2047PubMedPubMedCentralCrossRef Turner JR, Wilkinson DS, Poole RL, Gould TJ, Carlson GC, Blendy JA (2013) Divergent functional effects of sazetidine-a and varenicline during nicotine withdrawal. Neuropsychopharmacology 38:2035–2047PubMedPubMedCentralCrossRef
66.
go back to reference Vignet C, Begout ML, Pean S, Lyphout L, Leguay D, Cousin X (2013) Systematic screening of behavioral responses in two zebrafish strains. Zebrafish 10:365–375PubMedCrossRef Vignet C, Begout ML, Pean S, Lyphout L, Leguay D, Cousin X (2013) Systematic screening of behavioral responses in two zebrafish strains. Zebrafish 10:365–375PubMedCrossRef
67.
go back to reference Viscarra F, Gonzalez-Gutierrez J, Esparza E, Figueroa C, Paillali P, Hodar-Salazar M, Cespedes C, Quiroz G, Sotomayor-Zarate R, Reyes-Parada M, Bermudez I, Iturriaga-Vasquez P (2020) Nicotinic Antagonist UFR2709 Inhibits Nicotine Reward and Decreases Anxiety in Zebrafish. Molecules 25:2998PubMedCentralCrossRef Viscarra F, Gonzalez-Gutierrez J, Esparza E, Figueroa C, Paillali P, Hodar-Salazar M, Cespedes C, Quiroz G, Sotomayor-Zarate R, Reyes-Parada M, Bermudez I, Iturriaga-Vasquez P (2020) Nicotinic Antagonist UFR2709 Inhibits Nicotine Reward and Decreases Anxiety in Zebrafish. Molecules 25:2998PubMedCentralCrossRef
68.
go back to reference Whitebread S, Hamon J, Bojanic D, Urban L (2005) Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov Today 10:1421–1433PubMedCrossRef Whitebread S, Hamon J, Bojanic D, Urban L (2005) Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov Today 10:1421–1433PubMedCrossRef
69.
go back to reference Wink M (2016) Alkaloids: Properties and Determination. In: Caballero B, Finglas PM, Toldra F (eds) Encyclopedia of Food and Health. Academic Press, Waltham, pp 97–105CrossRef Wink M (2016) Alkaloids: Properties and Determination. In: Caballero B, Finglas PM, Toldra F (eds) Encyclopedia of Food and Health. Academic Press, Waltham, pp 97–105CrossRef
70.
go back to reference Xing H, Keshwah S, Rouchaud A, Kem WR (2020) A Pharmacological Comparison of Two Isomeric Nicotinic Receptor Agonists: The Marine Toxin Isoanatabine and the Tobacco Alkaloid Anatabine. Marine drugs 18:106PubMedCentralCrossRef Xing H, Keshwah S, Rouchaud A, Kem WR (2020) A Pharmacological Comparison of Two Isomeric Nicotinic Receptor Agonists: The Marine Toxin Isoanatabine and the Tobacco Alkaloid Anatabine. Marine drugs 18:106PubMedCentralCrossRef
71.
go back to reference Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y (2019) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35:1067–1069PubMedCrossRef Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y (2019) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35:1067–1069PubMedCrossRef
72.
go back to reference Yu LF, Zhang HK, Caldarone BJ, Eaton JB, Lukas RJ, Kozikowski AP (2014) Recent developments in novel antidepressants targeting alpha4beta2-nicotinic acetylcholine receptors. J Med Chem 57:8204–8223PubMedPubMedCentralCrossRef Yu LF, Zhang HK, Caldarone BJ, Eaton JB, Lukas RJ, Kozikowski AP (2014) Recent developments in novel antidepressants targeting alpha4beta2-nicotinic acetylcholine receptors. J Med Chem 57:8204–8223PubMedPubMedCentralCrossRef
Metadata
Title
Effects of nicotinic acetylcholine receptor-activating alkaloids on anxiety-like behavior in zebrafish
Authors
Ainhoa Alzualde
Oihane Jaka
Diogo A. R. S. Latino
Omar Alijevic
Iñaki Iturria
Jorge Hurtado de Mendoza
Pavel Pospisil
Stefan Frentzel
Manuel C. Peitsch
Julia Hoeng
Kyoko Koshibu
Publication date
01-09-2021
Publisher
Springer Singapore
Published in
Journal of Natural Medicines / Issue 4/2021
Print ISSN: 1340-3443
Electronic ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-021-01544-8

Other articles of this Issue 4/2021

Journal of Natural Medicines 4/2021 Go to the issue