Skip to main content
Top
Published in: Calcified Tissue International 4/2016

Open Access 01-04-2016 | Review

Alkaline Phosphatase and Hypophosphatasia

Authors: José Luis Millán, Michael P. Whyte

Published in: Calcified Tissue International | Issue 4/2016

Login to get access

Abstract

Hypophosphatasia (HPP) results from ALPL mutations leading to deficient activity of the tissue-non-specific alkaline phosphatase isozyme (TNAP) and thereby extracellular accumulation of inorganic pyrophosphate (PPi), a natural substrate of TNAP and potent inhibitor of mineralization. Thus, HPP features rickets or osteomalacia and hypomineralization of teeth. Enzyme replacement using mineral-targeted TNAP from birth prevented severe HPP in TNAP-knockout mice and was then shown to rescue and substantially treat infants and young children with life-threatening HPP. Clinical trials are revealing aspects of HPP pathophysiology not yet fully understood, such as craniosynostosis and muscle weakness when HPP is severe. New treatment approaches are under development to improve patient care.
Literature
1.
go back to reference Robison R (1923) The possible significance of hexosephosphoric esters in ossification. Biochem J 17:286 Robison R (1923) The possible significance of hexosephosphoric esters in ossification. Biochem J 17:286
2.
go back to reference Robison R (1932) The significance of phosphoric esters in metabolism. New York University Press, New York Robison R (1932) The significance of phosphoric esters in metabolism. New York University Press, New York
3.
go back to reference Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231:1–8PubMedCrossRef Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231:1–8PubMedCrossRef
4.
go back to reference Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA, Mulivor RA, Harris H (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci USA 85:7666–7669PubMedPubMedCentralCrossRef Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA, Mulivor RA, Harris H (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci USA 85:7666–7669PubMedPubMedCentralCrossRef
5.
6.
go back to reference Whyte MP (2013) Hypophosphatasia. In: Thakker RV, Whyte MP, Eisman J, Igarashi T (eds) Genetics of bone biology and skeletal disease. Academic Press, pp 337–360 Whyte MP (2013) Hypophosphatasia. In: Thakker RV, Whyte MP, Eisman J, Igarashi T (eds) Genetics of bone biology and skeletal disease. Academic Press, pp 337–360
7.
go back to reference Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 75:439–445PubMedCrossRef Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 75:439–445PubMedCrossRef
8.
go back to reference Greenberg CR, Taylor CL, Haworth JC, Seargeant LE, Philipps S, Triggs-Raine B, Chodirker BN (1993) A homoallelic Gly317→Asp mutation in ALPL causes the perinatal (lethal) form of hypophosphatasia in Canadian mennonites. Genomics 17:215–217PubMedCrossRef Greenberg CR, Taylor CL, Haworth JC, Seargeant LE, Philipps S, Triggs-Raine B, Chodirker BN (1993) A homoallelic Gly317→Asp mutation in ALPL causes the perinatal (lethal) form of hypophosphatasia in Canadian mennonites. Genomics 17:215–217PubMedCrossRef
9.
go back to reference Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, Van Sickle BJ, Simmons JH, Edgar TS, Bauer ML, Hamdan MA, Bishop N, Lutz RE, McGinn M, Craig S, Moore JN, Taylor JW, Cleveland RH, Cranley WR, Lim R, Thacher TD, Mayhew JE, Downs M, Millán JL, Skrinar AM, Crine P, Landy H (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366:904–913PubMedCrossRef Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, Van Sickle BJ, Simmons JH, Edgar TS, Bauer ML, Hamdan MA, Bishop N, Lutz RE, McGinn M, Craig S, Moore JN, Taylor JW, Cleveland RH, Cranley WR, Lim R, Thacher TD, Mayhew JE, Downs M, Millán JL, Skrinar AM, Crine P, Landy H (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366:904–913PubMedCrossRef
10.
go back to reference Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley-VCH Verlag GmbH & Co., WeinheimCrossRef Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley-VCH Verlag GmbH & Co., WeinheimCrossRef
11.
go back to reference Le Du MH, Stigbrand T, Taussig MJ, Menez A, Stura EA (2001) Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. J Biol Chem 276:9158–9165PubMedCrossRef Le Du MH, Stigbrand T, Taussig MJ, Menez A, Stura EA (2001) Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. J Biol Chem 276:9158–9165PubMedCrossRef
12.
go back to reference Le Du M-H, Millán JL (2002) Structural evidence of functional divergence in human alkaline phosphatases. J Biol Chem 277:49808–49814PubMedCrossRef Le Du M-H, Millán JL (2002) Structural evidence of functional divergence in human alkaline phosphatases. J Biol Chem 277:49808–49814PubMedCrossRef
13.
go back to reference Hummer C, Millán JL (1991) Gly429 is the major determinant of uncompetitive inhibition of human germ cell alkaline phosphatase by L-leucine. Biochem J 274(Pt 1):91–95PubMedPubMedCentralCrossRef Hummer C, Millán JL (1991) Gly429 is the major determinant of uncompetitive inhibition of human germ cell alkaline phosphatase by L-leucine. Biochem J 274(Pt 1):91–95PubMedPubMedCentralCrossRef
14.
go back to reference Hoylaerts MF, Manes T, Millán JL (1992) Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase. Biochem J 286(Pt 1):23–30PubMedPubMedCentralCrossRef Hoylaerts MF, Manes T, Millán JL (1992) Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase. Biochem J 286(Pt 1):23–30PubMedPubMedCentralCrossRef
15.
go back to reference Kozlenkov A, Manes T, Hoylaerts MF, Millan JL (2002) Function assignment to conserved residues in mammalian alkaline phosphatases. J Biol Chem 277:22992–22999PubMedCrossRef Kozlenkov A, Manes T, Hoylaerts MF, Millan JL (2002) Function assignment to conserved residues in mammalian alkaline phosphatases. J Biol Chem 277:22992–22999PubMedCrossRef
16.
go back to reference Tsonis PA, Argraves WS, Millán JL (1988) A putative functional domain of human placental alkaline phosphatase predicted from sequence comparisons. Biochem J 254:623–624PubMedPubMedCentralCrossRef Tsonis PA, Argraves WS, Millán JL (1988) A putative functional domain of human placental alkaline phosphatase predicted from sequence comparisons. Biochem J 254:623–624PubMedPubMedCentralCrossRef
17.
go back to reference Hoylaerts MF, Ding L, Narisawa S, Van Kerckhoven S, Millán JL (2006) Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry 45:9756–9766PubMedCrossRef Hoylaerts MF, Ding L, Narisawa S, Van Kerckhoven S, Millán JL (2006) Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry 45:9756–9766PubMedCrossRef
18.
go back to reference Hoylaerts MF, Manes T, Millán JL (1997) Mammalian alkaline phosphatases are allosteric enzymes. J Biol Chem 272:22781–22787PubMedCrossRef Hoylaerts MF, Manes T, Millán JL (1997) Mammalian alkaline phosphatases are allosteric enzymes. J Biol Chem 272:22781–22787PubMedCrossRef
19.
go back to reference Fauvert D, Brun-Heath I, Lia-Baldini AS, Bellazi L, Taillandier A, Serre JL, de Mazancourt P, Mornet E (2009) Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles. BMC Med Genet 10:51PubMedPubMedCentralCrossRef Fauvert D, Brun-Heath I, Lia-Baldini AS, Bellazi L, Taillandier A, Serre JL, de Mazancourt P, Mornet E (2009) Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles. BMC Med Genet 10:51PubMedPubMedCentralCrossRef
20.
go back to reference Mornet E, Stura E, Lia-Baldini AS, Stigbrand T, Menez A, Le Du MH (2001) Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J Biol Chem 276:31171–31178PubMedCrossRef Mornet E, Stura E, Lia-Baldini AS, Stigbrand T, Menez A, Le Du MH (2001) Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J Biol Chem 276:31171–31178PubMedCrossRef
21.
go back to reference Hoylaerts MF, Van Kerckhoven S, Kiffer-Moreira T, Sheen C, Narisawa S, Millan JL (2015) Functional significance of calcium binding to tissue-nonspecific alkaline phosphatase. PLoS One 10:e0119874PubMedPubMedCentralCrossRef Hoylaerts MF, Van Kerckhoven S, Kiffer-Moreira T, Sheen C, Narisawa S, Millan JL (2015) Functional significance of calcium binding to tissue-nonspecific alkaline phosphatase. PLoS One 10:e0119874PubMedPubMedCentralCrossRef
22.
go back to reference Genge BR, Sauer GR, Wu LN, McLean FM, Wuthier RE (1988) Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J Biol Chem 263:18513–18519PubMed Genge BR, Sauer GR, Wu LN, McLean FM, Wuthier RE (1988) Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J Biol Chem 263:18513–18519PubMed
23.
go back to reference Sharom FJ, Lehto MT (2002) Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem Cell Biol 80:535–549PubMedCrossRef Sharom FJ, Lehto MT (2002) Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem Cell Biol 80:535–549PubMedCrossRef
24.
go back to reference Wong YW, Low MG (1994) Biosynthesis of glycosylphosphatidylinositol-anchored human placental alkaline phosphatase: evidence for a phospholipase C-sensitive precursor and its post-attachment conversion into a phospholipase C-resistant form. Biochem J 301(Pt 1):205–209PubMedPubMedCentralCrossRef Wong YW, Low MG (1994) Biosynthesis of glycosylphosphatidylinositol-anchored human placental alkaline phosphatase: evidence for a phospholipase C-sensitive precursor and its post-attachment conversion into a phospholipase C-resistant form. Biochem J 301(Pt 1):205–209PubMedPubMedCentralCrossRef
25.
go back to reference Weiss MJ, Henthorn PS, Lafferty MA, Slaughter C, Raducha M, Harris H (1986) Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci USA 83:7182–7186PubMedPubMedCentralCrossRef Weiss MJ, Henthorn PS, Lafferty MA, Slaughter C, Raducha M, Harris H (1986) Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci USA 83:7182–7186PubMedPubMedCentralCrossRef
26.
go back to reference Nosjean O, Koyama I, Goseki M, Roux B, Komoda T (1997) Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects. Biochem J 321(Pt 2):297–303PubMedPubMedCentralCrossRef Nosjean O, Koyama I, Goseki M, Roux B, Komoda T (1997) Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects. Biochem J 321(Pt 2):297–303PubMedPubMedCentralCrossRef
27.
go back to reference Halling Linder C, Narisawa S, Millán JL, Magnusson P (2009) Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45:987–993PubMedCrossRef Halling Linder C, Narisawa S, Millán JL, Magnusson P (2009) Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45:987–993PubMedCrossRef
28.
go back to reference Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millán JL, MacGregor GR, Whyte MP (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026PubMedPubMedCentralCrossRef Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millán JL, MacGregor GR, Whyte MP (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026PubMedPubMedCentralCrossRef
29.
go back to reference Fedde KN, Whyte MP (1990) Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5′-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am J Hum Genet 47:767–775PubMedPubMedCentral Fedde KN, Whyte MP (1990) Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5′-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am J Hum Genet 47:767–775PubMedPubMedCentral
30.
go back to reference Ciancaglini P, Yadav MC, Simão AM, Narisawa S, Pizauro JM, Farquharson C, Hoylaerts MF, Millán JL (2010) Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res 25:716–723PubMedPubMedCentral Ciancaglini P, Yadav MC, Simão AM, Narisawa S, Pizauro JM, Farquharson C, Hoylaerts MF, Millán JL (2010) Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res 25:716–723PubMedPubMedCentral
31.
go back to reference Pettengill M, Robson S, Tresenriter M, Millan JL, Usheva A, Bingham T, Belderbos M, Bergelson I, Burl S, Kampmann B, Gelinas L, Kollmann T, Bont L, Levy O (2013) Soluble ecto-5′-nucleotidase (5′-NT), alkaline phosphatase, and adenosine deaminase (ADA1) activities in neonatal blood favor elevated extracellular adenosine. J Biol Chem 288:27315–27326PubMedPubMedCentralCrossRef Pettengill M, Robson S, Tresenriter M, Millan JL, Usheva A, Bingham T, Belderbos M, Bergelson I, Burl S, Kampmann B, Gelinas L, Kollmann T, Bont L, Levy O (2013) Soluble ecto-5′-nucleotidase (5′-NT), alkaline phosphatase, and adenosine deaminase (ADA1) activities in neonatal blood favor elevated extracellular adenosine. J Biol Chem 288:27315–27326PubMedPubMedCentralCrossRef
32.
go back to reference Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC, King IF, Vihko P, Wightman RM, Millan JL, Zylka MJ (2013) Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J Neurosci 33:11314–11322PubMedPubMedCentralCrossRef Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC, King IF, Vihko P, Wightman RM, Millan JL, Zylka MJ (2013) Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J Neurosci 33:11314–11322PubMedPubMedCentralCrossRef
33.
go back to reference Lei W, Nguyen H, Brown N, Ni H, Kiffer-Moreira T, Reese J, Millan JL, Paria BC (2013) Alkaline phosphatases contribute to uterine receptivity, implantation, decidualization, and defense against bacterial endotoxin in hamsters. Reproduction 146:419–432PubMedPubMedCentralCrossRef Lei W, Nguyen H, Brown N, Ni H, Kiffer-Moreira T, Reese J, Millan JL, Paria BC (2013) Alkaline phosphatases contribute to uterine receptivity, implantation, decidualization, and defense against bacterial endotoxin in hamsters. Reproduction 146:419–432PubMedPubMedCentralCrossRef
34.
go back to reference Narisawa S, Yadav MC, Millan JL (2013) In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 28:1587–1598PubMedPubMedCentralCrossRef Narisawa S, Yadav MC, Millan JL (2013) In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 28:1587–1598PubMedPubMedCentralCrossRef
35.
go back to reference Whyte MP (2015) Hypophosphatasia: etiology, nosology, pathogenesis, diagnosis, and treatment. Nat Rev Endocrinol (in press) Whyte MP (2015) Hypophosphatasia: etiology, nosology, pathogenesis, diagnosis, and treatment. Nat Rev Endocrinol (in press)
36.
go back to reference Whyte MP, Zhang F, Wenkert D, McAlister WH, Mack KE, Benigno MC, Coburn SP, Wagy S, Griffin DM, Ericson KL, Mumm S (2015) Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 75:229–239PubMedCrossRef Whyte MP, Zhang F, Wenkert D, McAlister WH, Mack KE, Benigno MC, Coburn SP, Wagy S, Griffin DM, Ericson KL, Mumm S (2015) Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 75:229–239PubMedCrossRef
37.
go back to reference Wenkert D, McAlister WH, Coburn SP, Zerega JA, Ryan LM, Ericson KL, Hersh JH, Mumm S, Whyte MP (2011) Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res 26:2389–2398PubMedCrossRef Wenkert D, McAlister WH, Coburn SP, Zerega JA, Ryan LM, Ericson KL, Hersh JH, Mumm S, Whyte MP (2011) Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res 26:2389–2398PubMedCrossRef
38.
go back to reference Baumgartner-Sigl S, Haberlandt E, Mumm S, Scholl-Burgi S, Sergi C, Ryan L, Ericson KL, Whyte MP, Hogler W (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p. M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661PubMedCrossRef Baumgartner-Sigl S, Haberlandt E, Mumm S, Scholl-Burgi S, Sergi C, Ryan L, Ericson KL, Whyte MP, Hogler W (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p. M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661PubMedCrossRef
39.
go back to reference van den Bos T, Handoko G, Niehof A, Ryan LM, Coburn SP, Whyte MP, Beertsen W (2005) Cementum and dentin in hypophosphatasia. J Dent Res 84:1021–1025PubMedCrossRef van den Bos T, Handoko G, Niehof A, Ryan LM, Coburn SP, Whyte MP, Beertsen W (2005) Cementum and dentin in hypophosphatasia. J Dent Res 84:1021–1025PubMedCrossRef
40.
go back to reference Whyte MP, Wenkert D, McAlister WH, Mughal Z, Freemont AJ, Whitehouse R, Baildam E, Mumm S (2009) Chronic recurrent multifocal osteomyelitis mimicked in childhood hypophosphatasia. J Bone Miner Res 24:1493–1505PubMedCrossRef Whyte MP, Wenkert D, McAlister WH, Mughal Z, Freemont AJ, Whitehouse R, Baildam E, Mumm S (2009) Chronic recurrent multifocal osteomyelitis mimicked in childhood hypophosphatasia. J Bone Miner Res 24:1493–1505PubMedCrossRef
41.
go back to reference Whyte MP, Teitelbaum SL, Murphy WA, Bergfeld MA, Avioli LV (1979) Adult hypophosphatasia. Clinical, laboratory, and genetic investigation of a large kindred with review of the literature. Medicine (Baltimore) 58:329–347CrossRef Whyte MP, Teitelbaum SL, Murphy WA, Bergfeld MA, Avioli LV (1979) Adult hypophosphatasia. Clinical, laboratory, and genetic investigation of a large kindred with review of the literature. Medicine (Baltimore) 58:329–347CrossRef
42.
go back to reference Whyte MP, Murphy WA, Fallon MD (1982) Adult hypophosphatasia with chondrocalcinosis and arthropathy. Variable penetrance of hypophosphatasemia in a large Oklahoma kindred. Am J Med 72:631–641PubMedCrossRef Whyte MP, Murphy WA, Fallon MD (1982) Adult hypophosphatasia with chondrocalcinosis and arthropathy. Variable penetrance of hypophosphatasemia in a large Oklahoma kindred. Am J Med 72:631–641PubMedCrossRef
43.
go back to reference Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51PubMedCrossRef Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51PubMedCrossRef
44.
go back to reference Narisawa S, Frohlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446PubMedCrossRef Narisawa S, Frohlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446PubMedCrossRef
45.
go back to reference Whyte MP, Mahuren JD, Vrabel LA, Coburn SP (1985) Markedly increased circulating pyridoxal-5′-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J Clin Invest 76:752–756PubMedPubMedCentralCrossRef Whyte MP, Mahuren JD, Vrabel LA, Coburn SP (1985) Markedly increased circulating pyridoxal-5′-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J Clin Invest 76:752–756PubMedPubMedCentralCrossRef
46.
go back to reference Halling Linder C, Englund UH, Narisawa S, Millan JL, Magnusson P (2013) Isozyme profile and tissue-origin of alkaline phosphatases in mouse serum. Bone 53:399–408PubMedCrossRef Halling Linder C, Englund UH, Narisawa S, Millan JL, Magnusson P (2013) Isozyme profile and tissue-origin of alkaline phosphatases in mouse serum. Bone 53:399–408PubMedCrossRef
47.
go back to reference Beertsen W, VandenBos T, Everts V (1999) Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res 78:1221–1229PubMedCrossRef Beertsen W, VandenBos T, Everts V (1999) Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res 78:1221–1229PubMedCrossRef
48.
go back to reference McKee MD, Nakano Y, Masica DL, Gray JJ, Lemire I, Heft R, Whyte MP, Crine P, Millán JL (2011) Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90:470–476PubMedPubMedCentralCrossRef McKee MD, Nakano Y, Masica DL, Gray JJ, Lemire I, Heft R, Whyte MP, Crine P, Millán JL (2011) Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90:470–476PubMedPubMedCentralCrossRef
49.
go back to reference Foster BL, Nagatomo KJ, Tso HW, Tran AB, Nociti FH Jr, Narisawa S, Yadav MC, McKee MD, Millan JI, Somerman MJ (2013) Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28:271–282PubMedPubMedCentralCrossRef Foster BL, Nagatomo KJ, Tso HW, Tran AB, Nociti FH Jr, Narisawa S, Yadav MC, McKee MD, Millan JI, Somerman MJ (2013) Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28:271–282PubMedPubMedCentralCrossRef
50.
go back to reference Yadav MC, de Oliveira RC, Foster BL, Fong H, Cory E, Narisawa S, Sah RL, Somerman M, Whyte MP, Millan JL (2012) Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27:1722–1734PubMedPubMedCentralCrossRef Yadav MC, de Oliveira RC, Foster BL, Fong H, Cory E, Narisawa S, Sah RL, Somerman M, Whyte MP, Millan JL (2012) Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27:1722–1734PubMedPubMedCentralCrossRef
51.
go back to reference Liu J, Nam HK, Campbell C, Gasque KC, Millan JL, Hatch NE (2014) Tissue-nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alpl(−/−) mouse model of infantile hypophosphatasia. Bone 67:81–94PubMedPubMedCentralCrossRef Liu J, Nam HK, Campbell C, Gasque KC, Millan JL, Hatch NE (2014) Tissue-nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alpl(−/−) mouse model of infantile hypophosphatasia. Bone 67:81–94PubMedPubMedCentralCrossRef
52.
go back to reference Narisawa S, Wennberg C, Millán JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J. Pathol. 193:125–133PubMedCrossRef Narisawa S, Wennberg C, Millán JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J. Pathol. 193:125–133PubMedCrossRef
53.
go back to reference Aigner B, Rathkolb B, Klaften M, Sedlmeier R, Klempt M, Wagner S, Michel D, Mayer U, Klopstock T, de Angelis MH, Wolf E (2009) Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in plasma enzyme activities as novel organ-specific disease models. Exp Physiol 94:412–421PubMedCrossRef Aigner B, Rathkolb B, Klaften M, Sedlmeier R, Klempt M, Wagner S, Michel D, Mayer U, Klopstock T, de Angelis MH, Wolf E (2009) Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in plasma enzyme activities as novel organ-specific disease models. Exp Physiol 94:412–421PubMedCrossRef
54.
go back to reference Sabrautzki S, Rubio-Aliaga I, Hans W, Fuchs H, Rathkolb B, Calzada-Wack J, Cohrs CM, Klaften M, Seedorf H, Eck S, Benet-Pages A, Favor J, Esposito I, Strom TM, Wolf E, Lorenz-Depiereux B, Hrabe de Angelis M (2012) New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis. Mamm Genome 23:416–430PubMedPubMedCentralCrossRef Sabrautzki S, Rubio-Aliaga I, Hans W, Fuchs H, Rathkolb B, Calzada-Wack J, Cohrs CM, Klaften M, Seedorf H, Eck S, Benet-Pages A, Favor J, Esposito I, Strom TM, Wolf E, Lorenz-Depiereux B, Hrabe de Angelis M (2012) New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis. Mamm Genome 23:416–430PubMedPubMedCentralCrossRef
55.
go back to reference Hough TA, Polewski M, Johnson K, Cheeseman M, Nolan PM, Vizor L, Rastan S, Boyde A, Pritzker K, Hunter AJ, Fisher EMC, Terkeltaub R, Brown SDM (2007) Novel mouse model of autosomal semidominant adult hypophosphatasia has a splice site mutation in the tissue nonspecific alkaline phosphatase gene Akp2. J Bone Miner Res 22:1397–1407PubMedCrossRef Hough TA, Polewski M, Johnson K, Cheeseman M, Nolan PM, Vizor L, Rastan S, Boyde A, Pritzker K, Hunter AJ, Fisher EMC, Terkeltaub R, Brown SDM (2007) Novel mouse model of autosomal semidominant adult hypophosphatasia has a splice site mutation in the tissue nonspecific alkaline phosphatase gene Akp2. J Bone Miner Res 22:1397–1407PubMedCrossRef
56.
go back to reference Foster BL, Sheen CR, Hatch NE, Liu J, Cory E, Narisawa S, Kiffer-Moreira T, Sah RL, Whyte MP, Somerman MJ, Millan JL (2015) Periodontal defects in the A116T knock-in murine model of odontohypophosphatasia. J Dent Res 94:706–714PubMedCrossRef Foster BL, Sheen CR, Hatch NE, Liu J, Cory E, Narisawa S, Kiffer-Moreira T, Sah RL, Whyte MP, Somerman MJ, Millan JL (2015) Periodontal defects in the A116T knock-in murine model of odontohypophosphatasia. J Dent Res 94:706–714PubMedCrossRef
57.
go back to reference Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513–1520PubMedPubMedCentralCrossRef Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513–1520PubMedPubMedCentralCrossRef
58.
go back to reference Bernard GW (1978) Ultrastructural localization of alkaline phosphatase in initial intramembranous osteogenesis. Clin Orthop Relat Res 135:218–225PubMed Bernard GW (1978) Ultrastructural localization of alkaline phosphatase in initial intramembranous osteogenesis. Clin Orthop Relat Res 135:218–225PubMed
59.
go back to reference Morris DC, Masuhara K, Takaoka K, Ono K, Anderson HC (1992) Immunolocalization of alkaline phosphatase in osteoblasts and matrix vesicles of human fetal bone. Bone Miner 19:287–298PubMedCrossRef Morris DC, Masuhara K, Takaoka K, Ono K, Anderson HC (1992) Immunolocalization of alkaline phosphatase in osteoblasts and matrix vesicles of human fetal bone. Bone Miner 19:287–298PubMedCrossRef
60.
go back to reference Anderson HC, Harmey D, Camacho NP, Garimella R, Sipe JB, Tague S, Bi X, Johnson K, Terkeltaub R, Millan JL (2005) Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Am J Pathol 166:1711–1720PubMedPubMedCentralCrossRef Anderson HC, Harmey D, Camacho NP, Garimella R, Sipe JB, Tague S, Bi X, Johnson K, Terkeltaub R, Millan JL (2005) Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Am J Pathol 166:1711–1720PubMedPubMedCentralCrossRef
61.
go back to reference Anderson HC, Hsu HH, Morris DC, Fedde KN, Whyte MP (1997) Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am J Pathol 151:1555–1561PubMedPubMedCentral Anderson HC, Hsu HH, Morris DC, Fedde KN, Whyte MP (1997) Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am J Pathol 151:1555–1561PubMedPubMedCentral
62.
go back to reference Anderson HC, Sipe JB, Hessle L, Dhanyamraju R, Atti E, Camacho NP, Millan JL (2004) Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol 164:841–847PubMedPubMedCentralCrossRef Anderson HC, Sipe JB, Hessle L, Dhanyamraju R, Atti E, Camacho NP, Millan JL (2004) Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol 164:841–847PubMedPubMedCentralCrossRef
63.
64.
go back to reference Russell RG, Bisaz S, Donath A, Morgan DB, Fleisch H (1971) Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta, and other disorders of bone. J Clin Invest 50:961–969PubMedPubMedCentralCrossRef Russell RG, Bisaz S, Donath A, Morgan DB, Fleisch H (1971) Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta, and other disorders of bone. J Clin Invest 50:961–969PubMedPubMedCentralCrossRef
65.
go back to reference Fleisch H, Russell RG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903PubMedCrossRef Fleisch H, Russell RG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903PubMedCrossRef
66.
go back to reference Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millán JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp1, and Ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209PubMedPubMedCentralCrossRef Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millán JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp1, and Ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209PubMedPubMedCentralCrossRef
67.
go back to reference Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449PubMedPubMedCentralCrossRef Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449PubMedPubMedCentralCrossRef
68.
go back to reference Johnson KA, Hessle L, Vaingankar S, Wennberg C, Mauro S, Narisawa S, Goding JW, Sano K, Millan JL, Terkeltaub R (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol Regul Integr Comp Physiol 279:R1365–R1377PubMed Johnson KA, Hessle L, Vaingankar S, Wennberg C, Mauro S, Narisawa S, Goding JW, Sano K, Millan JL, Terkeltaub R (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol Regul Integr Comp Physiol 279:R1365–R1377PubMed
69.
go back to reference Simao AM, Yadav MC, Narisawa S, Bolean M, Pizauro JM, Hoylaerts MF, Ciancaglini P, Millan JL (2010) Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem 285:7598–7609PubMedPubMedCentralCrossRef Simao AM, Yadav MC, Narisawa S, Bolean M, Pizauro JM, Hoylaerts MF, Ciancaglini P, Millan JL (2010) Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem 285:7598–7609PubMedPubMedCentralCrossRef
70.
go back to reference Yadav MC, Simão AM, Narisawa S, Huesa C, McKee MD, Farquharson C, Millán JL (2011) Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 26:286–297PubMedPubMedCentralCrossRef Yadav MC, Simão AM, Narisawa S, Huesa C, McKee MD, Farquharson C, Millán JL (2011) Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 26:286–297PubMedPubMedCentralCrossRef
72.
go back to reference Moss DW, Eaton RH, Smith JK, Whitby LG (1967) Association of inorganic-pyrophosphatase activity with human alkaline-phosphatase preparations. Biochem J 102:53–57PubMedPubMedCentralCrossRef Moss DW, Eaton RH, Smith JK, Whitby LG (1967) Association of inorganic-pyrophosphatase activity with human alkaline-phosphatase preparations. Biochem J 102:53–57PubMedPubMedCentralCrossRef
73.
go back to reference Majeska RJ, Wuthier RE (1975) Studies on matrix vesicles isolated from chick epiphyseal cartilage. Association of pyrophosphatase and ATPase activities with alkaline phosphatase. Biochim Biophys Acta 391:51–60PubMedCrossRef Majeska RJ, Wuthier RE (1975) Studies on matrix vesicles isolated from chick epiphyseal cartilage. Association of pyrophosphatase and ATPase activities with alkaline phosphatase. Biochim Biophys Acta 391:51–60PubMedCrossRef
74.
go back to reference Fallon MD, Whyte MP, Teitelbaum SL (1980) Stereospecific inhibition of alkaline phosphatase by L-tetramisole prevents in vitro cartilage calcification. Lab Invest 43:489–494PubMed Fallon MD, Whyte MP, Teitelbaum SL (1980) Stereospecific inhibition of alkaline phosphatase by L-tetramisole prevents in vitro cartilage calcification. Lab Invest 43:489–494PubMed
75.
go back to reference Rezende AA, Pizauro JM, Ciancaglini P, Leone FA (1994) Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate. Biochem J 301(Pt 2):517–522PubMedPubMedCentralCrossRef Rezende AA, Pizauro JM, Ciancaglini P, Leone FA (1994) Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate. Biochem J 301(Pt 2):517–522PubMedPubMedCentralCrossRef
76.
go back to reference Coburn SP, Slominski A, Mahuren JD, Wortsman J, Hessle L, Millán JL (2003) Cutaneous metabolism of vitamin B-6. J Invest Dermatol 120:292–300PubMedCrossRef Coburn SP, Slominski A, Mahuren JD, Wortsman J, Hessle L, Millán JL (2003) Cutaneous metabolism of vitamin B-6. J Invest Dermatol 120:292–300PubMedCrossRef
77.
go back to reference Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol 8:759–769PubMedCrossRef Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol 8:759–769PubMedCrossRef
78.
go back to reference Whyte MP, Landt M, Ryan LM, Mulivor RA, Henthorn PS, Fedde KN, Mahuren JD, Coburn SP (1995) Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5′-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest 95:1440–1445PubMedPubMedCentralCrossRef Whyte MP, Landt M, Ryan LM, Mulivor RA, Henthorn PS, Fedde KN, Mahuren JD, Coburn SP (1995) Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5′-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest 95:1440–1445PubMedPubMedCentralCrossRef
79.
go back to reference Chodirker BN, Coburn SP, Seargeant LE, Whyte MP, Greenberg CR (1990) Increased plasma pyridoxal-5′-phosphate levels before and after pyridoxine loading in carriers of perinatal/infantile hypophosphatasia. J Inherit Metab Dis 13:891–896PubMedCrossRef Chodirker BN, Coburn SP, Seargeant LE, Whyte MP, Greenberg CR (1990) Increased plasma pyridoxal-5′-phosphate levels before and after pyridoxine loading in carriers of perinatal/infantile hypophosphatasia. J Inherit Metab Dis 13:891–896PubMedCrossRef
80.
go back to reference Whyte MP, Mahuren JD, Fedde KN, Cole FS, McCabe ER, Coburn SP (1988) Perinatal hypophosphatasia: tissue levels of vitamin B6 are unremarkable despite markedly increased circulating concentrations of pyridoxal-5′-phosphate. Evidence for an ectoenzyme role for tissue-nonspecific alkaline phosphatase. J Clin Invest 81:1234–1239PubMedPubMedCentralCrossRef Whyte MP, Mahuren JD, Fedde KN, Cole FS, McCabe ER, Coburn SP (1988) Perinatal hypophosphatasia: tissue levels of vitamin B6 are unremarkable despite markedly increased circulating concentrations of pyridoxal-5′-phosphate. Evidence for an ectoenzyme role for tissue-nonspecific alkaline phosphatase. J Clin Invest 81:1234–1239PubMedPubMedCentralCrossRef
81.
go back to reference Narisawa S, Hasegawa H, Watanabe K, Millán JL (1994) Stage-specific expression of alkaline phosphatase during neural development in the mouse. Dev Dyn 201:227–235PubMedCrossRef Narisawa S, Hasegawa H, Watanabe K, Millán JL (1994) Stage-specific expression of alkaline phosphatase during neural development in the mouse. Dev Dyn 201:227–235PubMedCrossRef
82.
go back to reference Fonta C, Negyessy L (2015) Subcellular biochemistry. In: Fonta C, Negyessy L (eds) Neuronal tissue-nonspecific alkaline phosphatase (TNAP). Springer, DordrechtCrossRef Fonta C, Negyessy L (2015) Subcellular biochemistry. In: Fonta C, Negyessy L (eds) Neuronal tissue-nonspecific alkaline phosphatase (TNAP). Springer, DordrechtCrossRef
83.
go back to reference Hanics J, Barna J, Xiao J, Millan JL, Fonta C, Negyessy L (2012) Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain. Cell Tissue Res 349:459–471PubMedPubMedCentralCrossRef Hanics J, Barna J, Xiao J, Millan JL, Fonta C, Negyessy L (2012) Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain. Cell Tissue Res 349:459–471PubMedPubMedCentralCrossRef
84.
go back to reference Fleshood HL, Pitot HC (1969) O-phosphorylethanolamine ammonia lyase, a new pyridoxal phosphate-dependent enzyme. Biochem Biophys Res Commun 36:110–118PubMedCrossRef Fleshood HL, Pitot HC (1969) O-phosphorylethanolamine ammonia lyase, a new pyridoxal phosphate-dependent enzyme. Biochem Biophys Res Commun 36:110–118PubMedCrossRef
85.
go back to reference Fleshood HL, Pitot HC (1970) The metabolism of O-phosphorylethanolamine in animal tissues. I. O-phosphorylethanolamine phospho-lyase: partial purification and characterization. J Biol Chem 245:4414–4420PubMed Fleshood HL, Pitot HC (1970) The metabolism of O-phosphorylethanolamine in animal tissues. I. O-phosphorylethanolamine phospho-lyase: partial purification and characterization. J Biol Chem 245:4414–4420PubMed
86.
go back to reference Fleshood HL, Pitot HC (1970) The metabolism of O-phosphorylethanolamine in animal tissues. II. Metabolic regulation of O-phosphorylethanolamine phospho-lyase in vivo. Arch Biochem Biophys 141:423–429PubMedCrossRef Fleshood HL, Pitot HC (1970) The metabolism of O-phosphorylethanolamine in animal tissues. II. Metabolic regulation of O-phosphorylethanolamine phospho-lyase in vivo. Arch Biochem Biophys 141:423–429PubMedCrossRef
87.
go back to reference Millán JL, Whyte MP, Avioli LV, Fishman WH (1980) Hypophosphatasia (adult form): quantitation of serum alkaline phosphatase isoenzyme activity in a large kindred. Clin Chem 26:840–845PubMed Millán JL, Whyte MP, Avioli LV, Fishman WH (1980) Hypophosphatasia (adult form): quantitation of serum alkaline phosphatase isoenzyme activity in a large kindred. Clin Chem 26:840–845PubMed
88.
go back to reference Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millán JL (2000) Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15:1879–1888PubMedCrossRef Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millán JL (2000) Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15:1879–1888PubMedCrossRef
89.
go back to reference Johnson K, Goding J, Van Etten D, Sali A, Hu SI, Farley D, Krug H, Hessle L, Millán JL, Terkeltaub R (2003) Linked deficiencies in extracellular PP(i) and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J Bone Miner Res 18:994–1004PubMedCrossRef Johnson K, Goding J, Van Etten D, Sali A, Hu SI, Farley D, Krug H, Hessle L, Millán JL, Terkeltaub R (2003) Linked deficiencies in extracellular PP(i) and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J Bone Miner Res 18:994–1004PubMedCrossRef
90.
go back to reference Harmey D, Johnson KA, Zelken J, Camacho NP, Hoylaerts MF, Noda M, Terkeltaub R, Millán JL (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2(−/−) mice. J Bone Miner Res 21:1377–1386PubMedCrossRef Harmey D, Johnson KA, Zelken J, Camacho NP, Hoylaerts MF, Noda M, Terkeltaub R, Millán JL (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2(/) mice. J Bone Miner Res 21:1377–1386PubMedCrossRef
91.
go back to reference Goldberg HA, Warner KJ, Li MC, Hunter GK (2001) Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res 42:25–37PubMedCrossRef Goldberg HA, Warner KJ, Li MC, Hunter GK (2001) Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res 42:25–37PubMedCrossRef
92.
go back to reference Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sorensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292PubMedPubMedCentralCrossRef Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sorensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292PubMedPubMedCentralCrossRef
93.
go back to reference Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300(Pt 3):723–728PubMedPubMedCentralCrossRef Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300(Pt 3):723–728PubMedPubMedCentralCrossRef
94.
go back to reference Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203PubMedCrossRef Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203PubMedCrossRef
95.
go back to reference Pampena DA, Robertson KA, Litvinova O, Lajoie G, Goldberg HA, Hunter GK (2004) Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J 378:1083–1087PubMedPubMedCentralCrossRef Pampena DA, Robertson KA, Litvinova O, Lajoie G, Goldberg HA, Hunter GK (2004) Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J 378:1083–1087PubMedPubMedCentralCrossRef
96.
go back to reference Addison WN, Masica DL, Gray JJ, McKee MD (2010) Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25:695–705PubMedCrossRef Addison WN, Masica DL, Gray JJ, McKee MD (2010) Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25:695–705PubMedCrossRef
97.
go back to reference Yadav MC, Huesa C, Narisawa S, Hoylaerts MF, Moreau A, Farquharson C, Millan JL (2014) Ablation of osteopontin improves the skeletal phenotype of phospho1(−/−) mice. J Bone Miner Res 29:2369–2381PubMedCrossRef Yadav MC, Huesa C, Narisawa S, Hoylaerts MF, Moreau A, Farquharson C, Millan JL (2014) Ablation of osteopontin improves the skeletal phenotype of phospho1(−/−) mice. J Bone Miner Res 29:2369–2381PubMedCrossRef
98.
go back to reference Goldberg RF, Austen WG Jr, Zhang X, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS, Warren HS, Narisawa S, Millán JL, Hodin RA (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105:3551–3556PubMedPubMedCentralCrossRef Goldberg RF, Austen WG Jr, Zhang X, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS, Warren HS, Narisawa S, Millán JL, Hodin RA (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105:3551–3556PubMedPubMedCentralCrossRef
99.
go back to reference Malo MS, Alam SN, Mostafa G, Zeller SJ, Johnson PV, Mohammad N, Chen KT, Moss AK, Ramasamy S, Faruqui A, Hodin S, Malo PS, Ebrahimi F, Biswas B, Narisawa S, Millan JL, Warren HS, Kaplan JB, Kitts CL, Hohmann EL, Hodin RA (2010) Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 59:1476–1484PubMedCrossRef Malo MS, Alam SN, Mostafa G, Zeller SJ, Johnson PV, Mohammad N, Chen KT, Moss AK, Ramasamy S, Faruqui A, Hodin S, Malo PS, Ebrahimi F, Biswas B, Narisawa S, Millan JL, Warren HS, Kaplan JB, Kitts CL, Hohmann EL, Hodin RA (2010) Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 59:1476–1484PubMedCrossRef
100.
go back to reference Malo MS, Moaven O, Muhammad N, Biswas B, Alam SN, Economopoulos KP, Gul SS, Hamarneh SR, Malo NS, Teshager A, Mohamed MM, Tao Q, Narisawa S, Millan JL, Hohmann EL, Warren HS, Robson SC, Hodin RA (2014) Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am J Physiol Gastrointest Liver Physiol 306:G826–G838PubMedPubMedCentralCrossRef Malo MS, Moaven O, Muhammad N, Biswas B, Alam SN, Economopoulos KP, Gul SS, Hamarneh SR, Malo NS, Teshager A, Mohamed MM, Tao Q, Narisawa S, Millan JL, Hohmann EL, Warren HS, Robson SC, Hodin RA (2014) Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am J Physiol Gastrointest Liver Physiol 306:G826–G838PubMedPubMedCentralCrossRef
101.
go back to reference Panchal J, Uttchin V (2003) Management of craniosynostosis. Plast Reconstr Surg 111:2032–2048 quiz 2049 PubMedCrossRef Panchal J, Uttchin V (2003) Management of craniosynostosis. Plast Reconstr Surg 111:2032–2048 quiz 2049 PubMedCrossRef
102.
go back to reference Liu J, Campbell C, Nam HK, Caron A, Yadav MC, Millan JL, Hatch NE (2015) Enzyme replacement for craniofacial skeletal defects and craniosynostosis in murine hypophosphatasia. Bone 78:203–211PubMedCrossRef Liu J, Campbell C, Nam HK, Caron A, Yadav MC, Millan JL, Hatch NE (2015) Enzyme replacement for craniofacial skeletal defects and craniosynostosis in murine hypophosphatasia. Bone 78:203–211PubMedCrossRef
103.
go back to reference Gasque KC, Foster BL, Kuss P, Yadav MC, Liu J, Kiffer-Moreira T, van Elsas A, Hatch N, Somerman MJ, Millan JL (2015) Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl(−/−) mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone 72:137–147PubMedCrossRef Gasque KC, Foster BL, Kuss P, Yadav MC, Liu J, Kiffer-Moreira T, van Elsas A, Hatch N, Somerman MJ, Millan JL (2015) Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl(−/−) mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone 72:137–147PubMedCrossRef
104.
go back to reference Weber B, Schwabegger AH, Oberaigner W, Rumer-Moser A, Steiner H (2010) Incidence of perinatal complications in children with premature craniosynostosis. J Perinat Med 38:319–325PubMedCrossRef Weber B, Schwabegger AH, Oberaigner W, Rumer-Moser A, Steiner H (2010) Incidence of perinatal complications in children with premature craniosynostosis. J Perinat Med 38:319–325PubMedCrossRef
105.
go back to reference Baumann JM, Bisaz S, Felix R, Fleisch H, Ganz U, Russell RG (1977) The role of inhibitors and other factors in the pathogenesis of recurrent calcium-containing renal stones. Clin Sci Mol Med 53:141–148PubMed Baumann JM, Bisaz S, Felix R, Fleisch H, Ganz U, Russell RG (1977) The role of inhibitors and other factors in the pathogenesis of recurrent calcium-containing renal stones. Clin Sci Mol Med 53:141–148PubMed
106.
go back to reference Laminski NA, Meyers AM, Sonnekus MI, Smyth AE (1990) Prevalence of hypocitraturia and hypopyrophosphaturia in recurrent calcium stone formers: as isolated defects or associated with other metabolic abnormalities. Nephron 56:379–386PubMedCrossRef Laminski NA, Meyers AM, Sonnekus MI, Smyth AE (1990) Prevalence of hypocitraturia and hypopyrophosphaturia in recurrent calcium stone formers: as isolated defects or associated with other metabolic abnormalities. Nephron 56:379–386PubMedCrossRef
107.
go back to reference Russell RG, Smith R, Preston C, Walton RJ, Woods CG, Henderson RG, Norman AW (1975) The effect of 1,25-dihydroxycholecalciferol on renal tubular reabsorption of phosphate, intestinal absorption of calcium and bone histology in hypophosphataemic renal tubular rickets. Clin Sci Mol Med 48:177–186PubMed Russell RG, Smith R, Preston C, Walton RJ, Woods CG, Henderson RG, Norman AW (1975) The effect of 1,25-dihydroxycholecalciferol on renal tubular reabsorption of phosphate, intestinal absorption of calcium and bone histology in hypophosphataemic renal tubular rickets. Clin Sci Mol Med 48:177–186PubMed
108.
go back to reference Rodriguez E, Bober MB, Davey L, Zamora A, Li Puma AB, Chidekel A, Shaffer TH (2012) Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy. Pediatr Pulmonol 47:917–922PubMedCrossRef Rodriguez E, Bober MB, Davey L, Zamora A, Li Puma AB, Chidekel A, Shaffer TH (2012) Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy. Pediatr Pulmonol 47:917–922PubMedCrossRef
109.
go back to reference Coe JD, Murphy WA, Whyte MP (1986) Management of femoral fractures and pseudofractures in adult hypophosphatasia. J Bone Joint Surg Am 68:981–990PubMed Coe JD, Murphy WA, Whyte MP (1986) Management of femoral fractures and pseudofractures in adult hypophosphatasia. J Bone Joint Surg Am 68:981–990PubMed
110.
go back to reference Whyte MP, Valdes R Jr, Ryan LM, McAlister WH (1982) Infantile hypophosphatasia: enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget’s bone disease. J Pediatr 101:379–386PubMedCrossRef Whyte MP, Valdes R Jr, Ryan LM, McAlister WH (1982) Infantile hypophosphatasia: enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget’s bone disease. J Pediatr 101:379–386PubMedCrossRef
111.
go back to reference Whyte MP, McAlister WH, Patton LS, Magill HL, Fallon MD, Lorentz WB Jr, Herrod HG (1984) Enzyme replacement therapy for infantile hypophosphatasia attempted by intravenous infusions of alkaline phosphatase-rich Paget plasma: results in three additional patients. J Pediatr 105:926–933PubMedCrossRef Whyte MP, McAlister WH, Patton LS, Magill HL, Fallon MD, Lorentz WB Jr, Herrod HG (1984) Enzyme replacement therapy for infantile hypophosphatasia attempted by intravenous infusions of alkaline phosphatase-rich Paget plasma: results in three additional patients. J Pediatr 105:926–933PubMedCrossRef
112.
go back to reference Weninger M, Stinson RA, Plenk H Jr, Bock P, Pollak A (1989) Biochemical and morphological effects of human hepatic alkaline phosphatase in a neonate with hypophosphatasia. Acta Paediatr Scand Suppl 360:154–160PubMedCrossRef Weninger M, Stinson RA, Plenk H Jr, Bock P, Pollak A (1989) Biochemical and morphological effects of human hepatic alkaline phosphatase in a neonate with hypophosphatasia. Acta Paediatr Scand Suppl 360:154–160PubMedCrossRef
113.
go back to reference Whyte MP, Habib D, Coburn SP, Tecklenburg F, Ryan L, Fedde KN, Stinson RA (1992) Failure of hyperphosphatasemia by intravenous infusion of purified placental alkaline phosphatase (ALP) to correct severe hypophosphatasia: evidence against a role for circulating ALP in skeletal mineralization (abstract). J Bone Miner Res 7:S155 Whyte MP, Habib D, Coburn SP, Tecklenburg F, Ryan L, Fedde KN, Stinson RA (1992) Failure of hyperphosphatasemia by intravenous infusion of purified placental alkaline phosphatase (ALP) to correct severe hypophosphatasia: evidence against a role for circulating ALP in skeletal mineralization (abstract). J Bone Miner Res 7:S155
114.
go back to reference Whyte MP, Kurtzberg J, McAlister WH, Mumm S, Podgornik MN, Coburn SP, Ryan LM, Miller CR, Gottesman GS, Smith AK, Douville J, Waters-Pick B, Armstrong RD, Martin PL (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636PubMedCrossRef Whyte MP, Kurtzberg J, McAlister WH, Mumm S, Podgornik MN, Coburn SP, Ryan LM, Miller CR, Gottesman GS, Smith AK, Douville J, Waters-Pick B, Armstrong RD, Martin PL (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636PubMedCrossRef
115.
go back to reference Cahill RA, Wenkert D, Perlman SA, Steele A, Coburn SP, McAlister WH, Mumm S, Whyte MP (2007) Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 92:2923–2930PubMedCrossRef Cahill RA, Wenkert D, Perlman SA, Steele A, Coburn SP, McAlister WH, Mumm S, Whyte MP (2007) Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 92:2923–2930PubMedCrossRef
116.
go back to reference Whyte MP, Mumm S, Deal C (2007) Adult hypophosphatasia treated with teriparatide. J Clin Endocrinol Metab 92:1203–1208PubMedCrossRef Whyte MP, Mumm S, Deal C (2007) Adult hypophosphatasia treated with teriparatide. J Clin Endocrinol Metab 92:1203–1208PubMedCrossRef
117.
go back to reference Camacho PM, Painter S, Kadanoff R (2008) Treatment of adult hypophosphatasia with teriparatide. Endocr Pract 14:204–208PubMedCrossRef Camacho PM, Painter S, Kadanoff R (2008) Treatment of adult hypophosphatasia with teriparatide. Endocr Pract 14:204–208PubMedCrossRef
118.
go back to reference Doshi KB, Hamrahian AH, Licata AA (2009) Teriparatide treatment in adult hypophosphatasia in a patient exposed to bisphosphonate: a case report. Clin Cases Miner Bone Metab 6:266–269PubMed Doshi KB, Hamrahian AH, Licata AA (2009) Teriparatide treatment in adult hypophosphatasia in a patient exposed to bisphosphonate: a case report. Clin Cases Miner Bone Metab 6:266–269PubMed
119.
go back to reference Schalin-Jantti C, Mornet E, Lamminen A, Valimaki MJ (2010) Parathyroid hormone treatment improves pain and fracture healing in adult hypophosphatasia. J Clin Endocrinol Metab 95:5174–5179PubMedCrossRef Schalin-Jantti C, Mornet E, Lamminen A, Valimaki MJ (2010) Parathyroid hormone treatment improves pain and fracture healing in adult hypophosphatasia. J Clin Endocrinol Metab 95:5174–5179PubMedCrossRef
120.
go back to reference Gagnon C, Sims NA, Mumm S, McAuley SA, Jung C, Poulton IJ, Ng KW, Ebeling PR (2010) Lack of sustained response to teriparatide in a patient with adult hypophosphatasia. J Clin Endocrinol Metab 95:1007–1012PubMedCrossRef Gagnon C, Sims NA, Mumm S, McAuley SA, Jung C, Poulton IJ, Ng KW, Ebeling PR (2010) Lack of sustained response to teriparatide in a patient with adult hypophosphatasia. J Clin Endocrinol Metab 95:1007–1012PubMedCrossRef
121.
go back to reference Laroche M (2012) Failure of teriparatide in treatment of bone complications of adult hypophosphatasia. Calcif Tissue Int 90:250PubMedCrossRef Laroche M (2012) Failure of teriparatide in treatment of bone complications of adult hypophosphatasia. Calcif Tissue Int 90:250PubMedCrossRef
122.
go back to reference Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M (2004) Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol 32:426–438PubMedCrossRef Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M (2004) Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol 32:426–438PubMedCrossRef
123.
go back to reference McColm J, Hu L, Womack T, Tang CC, Chiang AY (2014) Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res 29:935–943PubMedCrossRef McColm J, Hu L, Womack T, Tang CC, Chiang AY (2014) Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res 29:935–943PubMedCrossRef
124.
go back to reference Kasugai S, Fujisawa R, Waki Y, Miyamoto K, Ohya K (2000) Selective drug delivery system to bone: small peptide (Asp)6 conjugation. J Bone Miner Res 15:936–943PubMedCrossRef Kasugai S, Fujisawa R, Waki Y, Miyamoto K, Ohya K (2000) Selective drug delivery system to bone: small peptide (Asp)6 conjugation. J Bone Miner Res 15:936–943PubMedCrossRef
125.
go back to reference Yokogawa K, Miya K, Sekido T, Higashi Y, Nomura M, Fujisawa R, Morito K, Masamune Y, Waki Y, Kasugai S, Miyamoto K (2001) Selective delivery of estradiol to bone by aspartic acid oligopeptide and its effects on ovariectomized mice. Endocrinology 142:1228–1233PubMedCrossRef Yokogawa K, Miya K, Sekido T, Higashi Y, Nomura M, Fujisawa R, Morito K, Masamune Y, Waki Y, Kasugai S, Miyamoto K (2001) Selective delivery of estradiol to bone by aspartic acid oligopeptide and its effects on ovariectomized mice. Endocrinology 142:1228–1233PubMedCrossRef
126.
go back to reference Nishioka T, Tomatsu S, Gutierrez MA, Miyamoto K, Trandafirescu GG, Lopez PL, Grubb JH, Kanai R, Kobayashi H, Yamaguchi S, Gottesman GS, Cahill R, Noguchi A, Sly WS (2006) Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab 88:244–255PubMedPubMedCentralCrossRef Nishioka T, Tomatsu S, Gutierrez MA, Miyamoto K, Trandafirescu GG, Lopez PL, Grubb JH, Kanai R, Kobayashi H, Yamaguchi S, Gottesman GS, Cahill R, Noguchi A, Sly WS (2006) Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab 88:244–255PubMedPubMedCentralCrossRef
127.
go back to reference Millan JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P, Gramatikova S, Terkeltaub R, Camacho NP, McKee MD, Crine P, Whyte MP (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23:777–787PubMedPubMedCentralCrossRef Millan JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P, Gramatikova S, Terkeltaub R, Camacho NP, McKee MD, Crine P, Whyte MP (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23:777–787PubMedPubMedCentralCrossRef
128.
go back to reference Yadav MC, Lemire I, Leonard P, Boileau G, Blond L, Beliveau M, Cory E, Sah RL, Whyte MP, Crine P, Millan JL (2011) Dose response of bone-targeted enzyme replacement for murine hypophosphatasia. Bone 49:250–256PubMedPubMedCentralCrossRef Yadav MC, Lemire I, Leonard P, Boileau G, Blond L, Beliveau M, Cory E, Sah RL, Whyte MP, Crine P, Millan JL (2011) Dose response of bone-targeted enzyme replacement for murine hypophosphatasia. Bone 49:250–256PubMedPubMedCentralCrossRef
129.
go back to reference Nociti FH Jr, Berry JE, Foster BL, Gurley KA, Kingsley DM, Takata T, Miyauchi M, Somerman MJ (2002) Cementum: a phosphate-sensitive tissue. J Dent Res 81:817–821PubMedCrossRef Nociti FH Jr, Berry JE, Foster BL, Gurley KA, Kingsley DM, Takata T, Miyauchi M, Somerman MJ (2002) Cementum: a phosphate-sensitive tissue. J Dent Res 81:817–821PubMedCrossRef
130.
go back to reference Foster BL, Nagatomo KJ, Nociti FH Jr, Fong H, Dunn D, Tran AB, Wang W, Narisawa S, Millan JL, Somerman MJ (2012) Central role of pyrophosphate in acellular cementum formation. PLoS ONE 7:e38393PubMedPubMedCentralCrossRef Foster BL, Nagatomo KJ, Nociti FH Jr, Fong H, Dunn D, Tran AB, Wang W, Narisawa S, Millan JL, Somerman MJ (2012) Central role of pyrophosphate in acellular cementum formation. PLoS ONE 7:e38393PubMedPubMedCentralCrossRef
131.
go back to reference Whyte MP, Rockman-Greenberg C, Ozono K, Riese R, Moseley S, Melian A, Thompson D, Bishop N, Hofmann C, study ENB-002–08, ENB-003–08, ENB-010–10ENB-011–10 Investigators (2015) Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab. doi:10.1210/jc.2015-3462 Whyte MP, Rockman-Greenberg C, Ozono K, Riese R, Moseley S, Melian A, Thompson D, Bishop N, Hofmann C, study ENB-002–08, ENB-003–08, ENB-010–10ENB-011–10 Investigators (2015) Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab. doi:10.​1210/​jc.​2015-3462
132.
go back to reference Whyte MP, Madson KL, Phillips KL, Reeves A, McAlister WH, Yakimoski A, Mack KE, Hamilton K, Kagan K, Fugita K, Thompson D, Moseley S, Odrljin T, Greenberg CR Asfotase alfa therapy for children with hypophosphatasia (submitted) Whyte MP, Madson KL, Phillips KL, Reeves A, McAlister WH, Yakimoski A, Mack KE, Hamilton K, Kagan K, Fugita K, Thompson D, Moseley S, Odrljin T, Greenberg CR Asfotase alfa therapy for children with hypophosphatasia (submitted)
133.
go back to reference Kiffer-Moreira T, Sheen CR, Gasque K, Bolean M, Ciancaglini P, Van Elsas A, Hoylaerts MF, Millán JL (2014) Catalytic signature of a heat-stable, chimeric human alkaline phosphatase with therapeutic potential. PLoS One 9(2):e89374 Kiffer-Moreira T, Sheen CR, Gasque K, Bolean M, Ciancaglini P, Van Elsas A, Hoylaerts MF, Millán JL (2014) Catalytic signature of a heat-stable, chimeric human alkaline phosphatase with therapeutic potential. PLoS One 9(2):e89374
134.
go back to reference Yamamoto S, Orimo H, Matsumoto T, Iijima O, Narisawa S, Maeda T, Millán JL, Shimada T (2011) Prolonged survival and phenotypic correction of Akp2(−/−) hypophosphatasia mice by lentiviral gene therapy. J Bone Miner Res 26:135–142 Yamamoto S, Orimo H, Matsumoto T, Iijima O, Narisawa S, Maeda T, Millán JL, Shimada T (2011) Prolonged survival and phenotypic correction of Akp2(−/−) hypophosphatasia mice by lentiviral gene therapy. J Bone Miner Res 26:135–142
135.
go back to reference Matsumoto T, Miyake K, Yamamoto S, Orimo H, Miyake N, Odagaki Y, Adachi K, Iijima O, Narisawa S, Millán JL, Fukunaga Y, Shimada T (2011) Rescue of severe infantile hypophosphatasia mice by AAV-mediated sustained expression of soluble alkaline phosphatase. Hum Gene Ther 22:1355–1364PubMedPubMedCentralCrossRef Matsumoto T, Miyake K, Yamamoto S, Orimo H, Miyake N, Odagaki Y, Adachi K, Iijima O, Narisawa S, Millán JL, Fukunaga Y, Shimada T (2011) Rescue of severe infantile hypophosphatasia mice by AAV-mediated sustained expression of soluble alkaline phosphatase. Hum Gene Ther 22:1355–1364PubMedPubMedCentralCrossRef
136.
go back to reference Sugano H, Matsumoto T, Miyake K, Watanabe A, Iijima O, Migita M, Narisawa S, Millan JL, Fukunaga Y, Shimada T (2012) Successful gene therapy in utero for lethal murine hypophosphatasia. Hum Gene Ther 23:399–406PubMedPubMedCentralCrossRef Sugano H, Matsumoto T, Miyake K, Watanabe A, Iijima O, Migita M, Narisawa S, Millan JL, Fukunaga Y, Shimada T (2012) Successful gene therapy in utero for lethal murine hypophosphatasia. Hum Gene Ther 23:399–406PubMedPubMedCentralCrossRef
137.
go back to reference Sheen CR, Kuss P, Narisawa S, Yadav MC, Nigro J, Wang W, Chlea TN, Sergienko E, Kapoor K, Jackson MR, Hoylaerts MF, Pinkerton AB, O’Neill WC, Millán JL (2015) Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 30:824–836. doi:10.1002/jbmr.2420 PubMedPubMedCentralCrossRef Sheen CR, Kuss P, Narisawa S, Yadav MC, Nigro J, Wang W, Chlea TN, Sergienko E, Kapoor K, Jackson MR, Hoylaerts MF, Pinkerton AB, O’Neill WC, Millán JL (2015) Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 30:824–836. doi:10.​1002/​jbmr.​2420 PubMedPubMedCentralCrossRef
Metadata
Title
Alkaline Phosphatase and Hypophosphatasia
Authors
José Luis Millán
Michael P. Whyte
Publication date
01-04-2016
Publisher
Springer US
Published in
Calcified Tissue International / Issue 4/2016
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-015-0079-1

Other articles of this Issue 4/2016

Calcified Tissue International 4/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.