Skip to main content
Top
Published in: Osteoporosis International 1/2016

01-01-2016 | Original Article

Alkaline biodegradable implants for osteoporotic bone defects—importance of microenvironment pH

Authors: W. Liu, T. Wang, C. Yang, B. W. Darvell, J. Wu, K. Lin, J. Chang, H. Pan, W. W. Lu

Published in: Osteoporosis International | Issue 1/2016

Login to get access

Abstract

Summary

Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects.

Introduction

Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time.

Methods

The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner’s trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning.

Results

In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate ‘apatitic’ layer in vivo. EDX suggested that residual material may influence μe-pH even 9 weeks post-surgery.

Conclusion

The pH microelectrode is suitable for in vivo μe-pH detection. Alkaline biodegradable materials generate an in vivo microenvironmental pH which is higher than the normal physiological value and show promising healing effects in the context of osteoporotic bone defects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733PubMedCrossRef Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733PubMedCrossRef
3.
go back to reference Arcos D, Boccaccini AR, Bohner M, Diez-Perez A, Epple M, Gomez-Barrena E et al (2014) The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater 10:1793–1805PubMedCrossRef Arcos D, Boccaccini AR, Bohner M, Diez-Perez A, Epple M, Gomez-Barrena E et al (2014) The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater 10:1793–1805PubMedCrossRef
5.
go back to reference Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348:1535–1541PubMedCrossRef Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348:1535–1541PubMedCrossRef
7.
go back to reference Brandao-Burch A, Utting JC, Orriss IR, Arnett TR (2005) Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int 77:167–174PubMedCrossRef Brandao-Burch A, Utting JC, Orriss IR, Arnett TR (2005) Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int 77:167–174PubMedCrossRef
8.
go back to reference Bushinsky DA (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol 271:F216–F222PubMed Bushinsky DA (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol 271:F216–F222PubMed
9.
go back to reference Kaunitz JD, Yamaguchi DT (2008) TNAP, TrAP, Ecto-purinergic signaling, and bone remodeling. J Cell Biochem 105:655–662PubMedCrossRef Kaunitz JD, Yamaguchi DT (2008) TNAP, TrAP, Ecto-purinergic signaling, and bone remodeling. J Cell Biochem 105:655–662PubMedCrossRef
10.
go back to reference Harada M, Udagawa N, Fukasawa K, Hiraoka BY, Mogi M (1986) Inorganic pyrophosphatase activity of purified bovine pulp alkaline phosphatase at physiological pH. J Dent Res 65:125–127PubMedCrossRef Harada M, Udagawa N, Fukasawa K, Hiraoka BY, Mogi M (1986) Inorganic pyrophosphatase activity of purified bovine pulp alkaline phosphatase at physiological pH. J Dent Res 65:125–127PubMedCrossRef
11.
go back to reference Shen YH, Liu WC, Lin KL, Pan HB, Darvell BW, Peng SL et al (2011) Interfacial pH: a critical factor for osteoporotic bone regeneration. Langmuir 27:2701–2708PubMedCrossRef Shen YH, Liu WC, Lin KL, Pan HB, Darvell BW, Peng SL et al (2011) Interfacial pH: a critical factor for osteoporotic bone regeneration. Langmuir 27:2701–2708PubMedCrossRef
12.
go back to reference Shen YH, Liu WC, Wen CY, Pan HB, Wang T, Darvell BW et al (2012) Bone regeneration: importance of local pH-strontium-doped borosilicate scaffold. J Mater Chem 22:8662–8670CrossRef Shen YH, Liu WC, Wen CY, Pan HB, Wang T, Darvell BW et al (2012) Bone regeneration: importance of local pH-strontium-doped borosilicate scaffold. J Mater Chem 22:8662–8670CrossRef
14.
go back to reference Zhang WB, Shen YH, Pan HB, Lin KL, Liu XG, Darvell BW et al (2011) Effects of strontium in modified biomaterials. Acta Biomater 7:800–808PubMedCrossRef Zhang WB, Shen YH, Pan HB, Lin KL, Liu XG, Darvell BW et al (2011) Effects of strontium in modified biomaterials. Acta Biomater 7:800–808PubMedCrossRef
15.
go back to reference Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A (1993) In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 14:359–364PubMedCrossRef Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A (1993) In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 14:359–364PubMedCrossRef
16.
go back to reference Nilsson B, Korsgren O, Lambris JD, Ekdahl KN (2010) Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol 31:32–38PubMedPubMedCentralCrossRef Nilsson B, Korsgren O, Lambris JD, Ekdahl KN (2010) Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol 31:32–38PubMedPubMedCentralCrossRef
17.
go back to reference Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25:5681–5703PubMedCrossRef Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25:5681–5703PubMedCrossRef
18.
go back to reference Korostynska O, Arshak K, Gill E, Arshak A (2008) Review paper: materials and techniques for in vivo pH monitoring. IEEE Sensors J 8:20–28CrossRef Korostynska O, Arshak K, Gill E, Arshak A (2008) Review paper: materials and techniques for in vivo pH monitoring. IEEE Sensors J 8:20–28CrossRef
19.
go back to reference Zhou DD (2008) Microelectrodes for in-vivo determination of pH. In: Zhang XJ, Ju HX, Wang J (eds) Electrochemical sensors, biosensors and their biomedical applications. Academic Press, USA, pp 261–305CrossRef Zhou DD (2008) Microelectrodes for in-vivo determination of pH. In: Zhang XJ, Ju HX, Wang J (eds) Electrochemical sensors, biosensors and their biomedical applications. Academic Press, USA, pp 261–305CrossRef
20.
go back to reference Pandolfino JE, Ghosh S, Zhang Q, Heath M, Bombeck T, Kahrilas PJ (2006) Slimline vs. glass pH electrodes: what degree of accuracy should we expect? Aliment Pharmacol Ther 23:331–340PubMedCrossRef Pandolfino JE, Ghosh S, Zhang Q, Heath M, Bombeck T, Kahrilas PJ (2006) Slimline vs. glass pH electrodes: what degree of accuracy should we expect? Aliment Pharmacol Ther 23:331–340PubMedCrossRef
21.
go back to reference Ruan CM, Zeng KF, Grimes CA (2003) A mass-sensitive pH sensor based on a stimuli-responsive polymer. Anal Chim Acta 497:123–131CrossRef Ruan CM, Zeng KF, Grimes CA (2003) A mass-sensitive pH sensor based on a stimuli-responsive polymer. Anal Chim Acta 497:123–131CrossRef
22.
go back to reference Bock C, Sartoris FJ, Wittig RM, Portner HO (2001) Temperature-dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in-vivo NMR study. Polar Biol 24:869–874CrossRef Bock C, Sartoris FJ, Wittig RM, Portner HO (2001) Temperature-dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in-vivo NMR study. Polar Biol 24:869–874CrossRef
23.
go back to reference Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R et al (2011) Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors. Bioconjug Chem 22:777–784PubMedPubMedCentralCrossRef Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R et al (2011) Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors. Bioconjug Chem 22:777–784PubMedPubMedCentralCrossRef
25.
go back to reference Bartsch I, Willbold E, Rosenhahn B, Witte F (2014) Non-invasive pH determination adjacent to degradable biomaterials in vivo. Acta Biomater 10:34–39PubMedCrossRef Bartsch I, Willbold E, Rosenhahn B, Witte F (2014) Non-invasive pH determination adjacent to degradable biomaterials in vivo. Acta Biomater 10:34–39PubMedCrossRef
26.
go back to reference Chakkalakal DA, Mashoof AA, Novak J, Strates BS, McGuire MH (1994) Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. J Biomed Mater Res 28:1439–1443PubMedCrossRef Chakkalakal DA, Mashoof AA, Novak J, Strates BS, McGuire MH (1994) Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. J Biomed Mater Res 28:1439–1443PubMedCrossRef
27.
go back to reference Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J et al (2008) Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29:2588–2596PubMedCrossRef Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J et al (2008) Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29:2588–2596PubMedCrossRef
28.
go back to reference Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY et al (2010) A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5:550–560PubMedCrossRef Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY et al (2010) A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5:550–560PubMedCrossRef
29.
go back to reference Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontasi IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58:424–430PubMedPubMedCentral Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontasi IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58:424–430PubMedPubMedCentral
30.
go back to reference Westendorf JJ (2008) Osteoporosis: methods and protocols. Humana Press, TotowaCrossRef Westendorf JJ (2008) Osteoporosis: methods and protocols. Humana Press, TotowaCrossRef
31.
go back to reference An YH, Martin KL (2003) Handbook of histology methods for bone and cartilage. Humana Press, TotowaCrossRef An YH, Martin KL (2003) Handbook of histology methods for bone and cartilage. Humana Press, TotowaCrossRef
32.
go back to reference Kadoya Y, al-Saffar N, Kobayashi A, Revell PA (1994) The expression of osteoclast markers on foreign body giant cells. Bone Miner 27:85–96PubMedCrossRef Kadoya Y, al-Saffar N, Kobayashi A, Revell PA (1994) The expression of osteoclast markers on foreign body giant cells. Bone Miner 27:85–96PubMedCrossRef
33.
go back to reference Kato K, Matsushita M (2014) Proton concentrations can be a major contributor to the modification of osteoclast and osteoblast differentiation, working independently of extracellular bicarbonate ions. J Bone Miner Metab 32:17–28PubMedCrossRef Kato K, Matsushita M (2014) Proton concentrations can be a major contributor to the modification of osteoclast and osteoblast differentiation, working independently of extracellular bicarbonate ions. J Bone Miner Metab 32:17–28PubMedCrossRef
34.
go back to reference Shibutani T, Heersche JNM (1993) Effect of medium-pH on osteoclast activity and osteoclast formation in cultures of dispersed rabbit osteoclasts. J Bone Miner Res 8:331–336PubMedCrossRef Shibutani T, Heersche JNM (1993) Effect of medium-pH on osteoclast activity and osteoclast formation in cultures of dispersed rabbit osteoclasts. J Bone Miner Res 8:331–336PubMedCrossRef
35.
go back to reference Arnett T (2003) Regulation of bone cell function by acid–base balance. Proc Nutr Soc 62:511–520PubMedCrossRef Arnett T (2003) Regulation of bone cell function by acid–base balance. Proc Nutr Soc 62:511–520PubMedCrossRef
36.
go back to reference Kohn DH, Sarmadi M, Helman JI, Krebsbach PH (2002) Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. J Biomed Mater Res 60:292–299PubMedCrossRef Kohn DH, Sarmadi M, Helman JI, Krebsbach PH (2002) Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. J Biomed Mater Res 60:292–299PubMedCrossRef
37.
go back to reference Kaysinger KK, Ramp WK (1998) Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem 68:83–89PubMedCrossRef Kaysinger KK, Ramp WK (1998) Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem 68:83–89PubMedCrossRef
38.
go back to reference Arnett TR (2008) Extracellular pH regulates bone cell function. J Nutr 138:415S–418SPubMed Arnett TR (2008) Extracellular pH regulates bone cell function. J Nutr 138:415S–418SPubMed
39.
go back to reference Ross MH, Ely JO, Archer JG (1951) Alkaline phosphatase activity and pH optima. J Biol Chem 192:561–568PubMed Ross MH, Ely JO, Archer JG (1951) Alkaline phosphatase activity and pH optima. J Biol Chem 192:561–568PubMed
40.
go back to reference Harrison DK, Walker WF (1979) Microelectrode measurement of skin pH in humans during ischemia, hypoxia and local hypothermia. J Physiol Lond 291:339–350PubMedPubMedCentralCrossRef Harrison DK, Walker WF (1979) Microelectrode measurement of skin pH in humans during ischemia, hypoxia and local hypothermia. J Physiol Lond 291:339–350PubMedPubMedCentralCrossRef
41.
go back to reference Jahde E, Rajewsky MF, Baumgartl H (1982) pH distributions in transplanted neural tumors and normal-tissues of BDIX rats as measured with pH microelectrodes. Cancer Res 42:1498–1504PubMed Jahde E, Rajewsky MF, Baumgartl H (1982) pH distributions in transplanted neural tumors and normal-tissues of BDIX rats as measured with pH microelectrodes. Cancer Res 42:1498–1504PubMed
42.
go back to reference Henderson RM, Bell PB, Cohen RD, Browning C, Iles RA (1986) Measurement of intracellular pH with microelectrodes in rat-kidney in vivo. Am J Physiol 250:F203–F209PubMed Henderson RM, Bell PB, Cohen RD, Browning C, Iles RA (1986) Measurement of intracellular pH with microelectrodes in rat-kidney in vivo. Am J Physiol 250:F203–F209PubMed
43.
go back to reference Roach P, Eglin D, Rohde K, Perry CC (2007) Modern biomaterials: a review—bulk properties and implications of surface modifications. J Mater Sci Mater Med 18:1263–1277PubMedCrossRef Roach P, Eglin D, Rohde K, Perry CC (2007) Modern biomaterials: a review—bulk properties and implications of surface modifications. J Mater Sci Mater Med 18:1263–1277PubMedCrossRef
Metadata
Title
Alkaline biodegradable implants for osteoporotic bone defects—importance of microenvironment pH
Authors
W. Liu
T. Wang
C. Yang
B. W. Darvell
J. Wu
K. Lin
J. Chang
H. Pan
W. W. Lu
Publication date
01-01-2016
Publisher
Springer London
Published in
Osteoporosis International / Issue 1/2016
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-015-3217-8

Other articles of this Issue 1/2016

Osteoporosis International 1/2016 Go to the issue